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=⇒ Thermodynamic equilibrium

Teq

Eeq
Peq

seq

• Teq - the equilibrium temperature

• Eeq - the energy density

• Peq - pressure

• seq - thermodynamic entropy density

Feq = −Peq = Eeq − seq Teq , dEeq = Teq dseq



=⇒ Thermodynamic equilibrium is a late-time attractor of dynamical

evolution of isolated interacting quantum system:

lim
t→∞

Tµν(t,x) = diag (Eeq, Peq, · · ·Peq)

Tµν are the component of the stress-energy tensor of the system at time t

and the spatial location x

=⇒ We also have a theory — the hydrodynamics — that describes the

approach to that equilibrium (assuming we are not-far from it):

• Given the local energy density E and the equilibrium equation of state

Peq = Peq(Eeq) we define the local pressure P

E(t,x) ≡ T00(t,x) =⇒ P (t,x) = Peq (E(t,x))

• and obtain the local entropy density s(t,x) and temperature T (t,x)

E + P = s T , dE = T ds



• ”not-far from equilibrium” is then
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where uµ = uµ(t,x) is a local fluid 4-velocity, uµuµ = −1, used to define

the hydrodynamic stress-energy tensor

Tµν = E uµuν + P ∆µν

︸ ︷︷ ︸

”equilibrium′′ part

+ T µν

︸︷︷︸

first−order dissipative terms

∆µν = gµν + uµuν , gµν is the background space-time metric

T µν = −η σµν − ζ ∆µν (∇ · u)
where σµν ∼ ∂µuν , and η = η(E) , ζ = ζ(E) are the shear and the bulk

viscosities

=⇒ viscosities are completely determined from the equilibrium thermodynamics (the two-point

correlation functions of the equilibrium stress-energy tensor)



=⇒ How do we recover equilibrium thermodynamics?

• assume that E and P are constant throughout the system and

time-independent; the background metric is Minkowski:

gµν = diag(−1, 1, 1, 1)

• set uµ = uµ
eq ≡ (1,0) =⇒

∆00 = g00 + u0u0 = 0 , ∆ii = gii + uiui = 1 , ∂µu
ν = 0

=⇒

T µν ≡ 0 , Tµν = diag(E , P, P, P ) ≡ diag(Eeq, Peq, Peq, Peq)

• In addition, we can introduce the equilibrium entropy current Sµ
eq:

Sµ
eq ≡ seq uµ

Note:

no entropy production ⇐⇒ ∇ · S =
dseq

dt
= 0

i.e., the thermal equilibrium is characterized by the vanishing divergence

of the entropy current



=⇒ Back to hydrodynamics (the approach to equilibrium):

• There is no first-principle definition of Sµ away from equilibrium; to the

first-order in the gradients of the local fluid velocity uµ,

Sµ = s uµ − 1

T
T µνuν

• from the conservation of the stress-energy tensor,

∇µT
µν = 0 =⇒

T ∇ · S = ζ (∇ · u)2 + η

2
σµνσ

µν ≥ 0

which is manifestly non-negative, provided the viscosities are positive.

=⇒ As one approaches the equilibrium,

lim
t→∞

uµ = uµ
eq = (1,0) =⇒ lim

t→∞
T ∇ · S = 0

i.e., in the approach to equilibrium the entropy production rate vanishes



We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum

field theory with spatially homogeneous and time-independent one-

point correlation functions of its stress energy tensor Tµν , and

(possibly additional) set of gauge-invariant local operators {Oi},
and

strictly positive divergence of the entropy current at late-times:

lim
t→∞

(

∇ · S
)

> 0

=⇒ Apart from the requirement of the strictly non-zero entropy production

rate at late times, characteristics of a DFP coincide with that of the

thermodynamic equilibrium.



Why?

=⇒ DFP, i.e., the non-vanishing late-time entropy production in driven

(open) quantum-mechanical systems/QFT:

• time-dependent coupling constants (quantum quenches)

• time-dependent masses

• time-dependent external EM fields, etc

and

• QFTs in cosmological backgrounds,

asymptotically de Sitter space-times in particular

=⇒ To study DFPs means to classify the end-of-time dynamics of massive

QFTs, in cosmologies with dark energy



Outline

• A trivial DFP: thermal states of N = 4 supersymmetric Yang-Mills

(SYM) in de Sitter

gauge theory perspective

holographic picture

de Sitter vacuum ’entanglement’ entropy

• Nontrivial DFP

• A taster of results from arXiv:2111.04122 — the zoo of DFPs



N = 4 SYM

Not our QCD (the theory of strong interactions):

• different gauge group - SU(3) versus SU(N) (we take N → ∞)

• QCD has a strong coupling scale (the typical scale in nuclear physics);

SYM is conformal, i.e., the scale invariant

• QCD confines (and forms nuclei), SYM is always deconfined

BUT:

• similar equation of state at strong coupling in deconfined phase

• similar transport coefficients:

η

s
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Minkowski vs. de Sitter space-time

A de Sitter space-time is a special case of FLRW cosmology:

ds2closed = −dt2 + a(t)2dS2
3 or ds2open = −dt2 + a2(t) dx2

closed cosmology : a(t) =
1

H
cosh(Ht)

open cosmology : a(t) = eHt

Minkowski space-time

ds2Minkowski = ds2open

∣
∣
∣
∣
a(t)≡1



Note:

ds2open = a(t)2
(

− dt2

a(t)2
+ dx2

)

= a2
(

−dτ2 + dx2

)

︸ ︷︷ ︸

ds2
Minkowski

where we introduced the conformal time

τ =

∫ t dt

a(t)

=⇒ For a conformal field theory, e.g., N = 4 SYM,

• if O∆ is a primary operator of dimension ∆,

〈O∆〉
∣
∣
∣
∣
FLRW

= a−∆ 〈O∆〉
∣
∣
∣
∣
Minkowski

• stress-energy tensor is not a primary field:

〈Tµν〉
∣
∣
∣
∣
FLRW

= a−4 〈Tµν〉
∣
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∣
∣
Minkowski

+ conformal anomaly



=⇒ for a trace of the stress-energy tensor

〈Tµ
µ 〉
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= a−4 〈Tµ
µ 〉

∣
∣
∣
∣
Minkowski

︸ ︷︷ ︸

=0

+
c

24π3

(

RµνR
µν − 1

3
R2

)

︸ ︷︷ ︸

=−12 (ȧ)2ä

a3

e.g., for N = 4 SU(N) SYM,
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〈Tµ
µ 〉
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∣
FLRW

= a−4

(

−E + 3P

)

︸ ︷︷ ︸

=0
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8π2

(ȧ)2ä
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=⇒ Minkowski space-time thermal equilibrium states of N = 4 SYM (strong

coupling) of temperature T0:

E0 =
3

8
π2N2T 4

0 , P0 =
1

3
E0

=⇒ in FLRW cosmology,

E(t) = 3

8
π2N2T (t)4 +

3N2

32π2

(ȧ)4

a4
, P (t) =

1

3
E(t)− N2

8π2

(ȧ)2ä

a3

where T (t) is the effective temperature

T (t) =
T0

a(t)

=⇒ Stress-energy tensor in FLRW is covariantly conserved:

0 = 〈∇µT ν
µ 〉 ⇐⇒ dE(t)

dt
+ 3

ȧ

a
(E(t) + P (t)) = 0



=⇒ entropy density is more tricky...(non-equilibrium, time-dependent)

• In Minkowski space-time:

s0 =
π2

2
N2T 3

0

• Assuming the adiabatic expansion in FLRW, the co-moving entropy

density, scomoving,

scomoving ≡ a(t)3s(t)

is conserved:

d

dt
scomoving = 0 =⇒ scomoving = scomoving

∣
∣
∣
∣
t=0

= s0

=⇒
s(t) =

π2

2
N2T (t)3

• In expansing FLRW, with a(t) → ∞ as t → ∞,

lim
t→∞

s(t) = 0



=⇒ Let’s rephrase the de Sitter entropy discussion in the language of the

entropy current Sµ:

• A locally static observer has uµ = (1,0)

• The entropy current (in Landau frame T µνuν = 0) is

Sµ = s uµ

=⇒
∇ · S =

1

a(t)3
d

dt

(
a(t)3s

)
=

1

a(t)3
d

dt
scomoving(t) = 0

That is is why N = 4 SYM (same is true for any conformal theory!) in de

Sitter evolved to a trivial DFP



How would a non-trivial DFP arise?

• Imagine that

lim
t→∞

s(t) = sent 6= 0

This limit is natural to call the vacuum entanglement entropy density,

hence ent

• Then,

lim
t→∞

(

∇ · S
)

= 3 H sent

where

H = lim
t→∞

d

dt
ln a(t)

=⇒ In strongly coupled non-conformal theories with holographic dual

sent > 0



Basic AdS/CFT correspondence in the planar limit

Ngs ≪ 1 Ngs ≫ 1

• Ngs ≪ 1: weakly coupled open strings, ending on D3 branes in Type IIB

SUGRA on R
9,1 ⇐⇒ N = 4 SU(N) SYM

• Ngs ≫ 1: weakly coupled closed strings in Type IIB SUGRA on

AdS5 × S5



=⇒ Holographic picture for N = 4 SYM in de Sitter

SN=4 =
1

16πG5

∫

M5

d5ξ
√−g

[

R+
12

L2

]

L4 = ℓ4s Ng2YM , G5 =
πL3

2N2
, 4πgs = g2YM

=⇒ Consider general spatially homogeneous, time-dependent states:

ds25 = 2dt (dr −Adt) + Σ2 dx2

A = A(t, r) , Σ = Σ(t, r)



=⇒ We are interested in spatially homogeneous and isotropic states

of N = 4 SYM in FLRW, so the bulk metric warp approach the AdS

boundary r → ∞ as

Σ =
a(t)r

L
+O(r0) , A =

r2

2L2
+O(r1)

Indeed, as r → ∞,

ds25 =
r2

L2

(

−dt2 + a(t)2dx2

)

︸ ︷︷ ︸

boundary FLRW

+ · · ·



=⇒ Given the metric ansatz, we can derive derive EOMs

(without loss of generality we set L = 2):

0 = (d+Σ)
′ + 2Σ′ d+ lnΣ− Σ

2

0 = A′′ − 6(lnΣ)′ d+ lnΣ +
1

2

0 = Σ′′

0 = d2+Σ− 2AΣ′ − (4AΣ′ +A′Σ) d+ lnΣ + ΣA

where

′ =
∂

∂r
, ˙ =

∂

∂t
, d+ =

∂

∂t
+A

∂

∂r



=⇒ These equations can be solve in all generality for arbitrary a(t):

A =
(r + λ)2

8
− (r + λ)

ȧ

a
− λ̇− r40

8a4(r + λ)2
,

Σ =
(r + λ)a

2

where

r0 is a single constant parameter

λ(t) is an arbitrary function - the leftover diffeomorphism of the 5d

gravitational metric reparametrization r → r̄ = r − λ(t):

A(t, r) → Ā(t, r̄) = A(t, r + λ(r))− λ̇(t)

Σ(t, r) → Σ̄(t, r̄) = Σ(t, r + λ(t))

=⇒
ds25 =⇒ ds̄25 = 2dt (dr̄ − Ādt) + Σ̄2 dx2



=⇒ Identifying
r0

2
≡ T0

=⇒ from holographic computation of the boundary stress energy tensor,

E(t) = 3

8
π2N2T (t)4 +

3N2

32π2

(ȧ)4

a4
, P (t) =

1

3
E(t)− N2

8π2

(ȧ)2ä

a3

T (t) =
T0

a(t)

Precisely as expected from the Weyl transformation of the thermal

state from Minkowski to FLRW!



=⇒ Holography buys us more:

• Chesler-Yaffe pioneered numerical studies of EF metrics:

ds25 = 2dt (dr −Adt) + Σ2 dx2

• such metrics has an apparent horizon (AH) at rAH

d+Σ

∣
∣
∣
∣
r=rAH

= 0 =⇒ rAH =
r0

a(t)
− λ(t)

• causal dependence must include

r ∈ [rAH ,+∞)

• region

r < rAH

is causally disconnected from the holographic dynamics and must be

excised

• AH is a dynamical horizon



•

Σ3

4G5

∣
∣
∣
∣
r=rAH

︸ ︷︷ ︸

comoving Bekenstein entropy of the AH

=
N2r30
128π

= scomoving
︸ ︷︷ ︸

SYM comoving entropy density in FLRW

= a(t)3s(t) =
π2

2
N2T 3

0



Comments on t → +∞ dynamics:

• Consider de Sitter background for SYM,

a(t) = eHt and set λ(t) = 0

• from exact solutions of PDEs:

lim
t→∞

A(t, r) ≡ Av(r) =
r

8
(r − 8H)

lim
t→∞

Σ(t, r)

a(t)
≡ σv(r) =

r

2

where v stands for vacuum



• Exactly the same same bulk geometry can be obtained solving ODEs

with the metric ansatz

ds25,vacuum = 2dt (dr −Avdt) + e2Htσ2
v dx2

Av = Av(r) and σv = σv(r)

i.e., the late time limit can be taken at the level of PDEs!



• location of the AH is identified from

0 = lim
t→∞

1

a(t)
d+Σ

∣
∣
∣
∣
r=rAH

= (Hσv + Avσ
′
v)

∣
∣
∣
∣
r=rAH,v

• With σv = r
2 and Av = r(r−8H)

8 =⇒

rAH,v = 0 , while Av = 0 at r = rAv
= 8H

Remarkable:

causal evolution requires r ∈ [rAH,v,+∞) = [0,+∞)

−gtt = 2A metric component

(being “outside the Schwarzschild radius of a black hole”) must be

non-negative =⇒ r ∈ [rAv
,+∞)

the part of the geometry r ∈ [rAH,v, rAv
] disappears upon analytical

continuation to Bunch–Davies vacuum or Euclidean vacuum!

=⇒
maybe one of the reasons no previous discussion of sent in the literature



Non-trivial DFPs: holographic non-conformal models in de Sitter:

• In N = 4 SYM duality we had luxury to study full dynamics (described

by PDEs) analytically

• In non-conformal examples (KK reduced from 10-dimensions to

5-dimensions)

Snon−conformal =
1

16πG5

∫

M5

d5ξ
√−g [R+ scalars + scalar potential]

we focus directly on vacuum geometry:

ds25,vacuum = 2dt (dr −Avdt) + e2Htσ2
v dx2

Av = Av(r) and σv = σv(r) and scalars = scalars(r)



• We identify location of the AH at late times

0 = (Hσv + Avσ
′
v)

∣
∣
∣
∣
r=rAH,v

• compute associated vacuum entanglement entropy:

sent,v ≡ lim
t→∞

s(t) =
σ3
v

4G5

∣
∣
∣
∣
r=rAH,v

• from explicit computations of various examples of holography

sN=4 or CFT
ent,v = 0 BUT snon−conformal

ent,v 6= 0



Taster from arXiv:2111.04122

=⇒ The model is d = 2 + 1 dimensional QFT with a holographic dual:

• Start with a conformal theory HCFT , with the operators

Tµν
︸︷︷︸

stress−energy tensor

, Oφ
︸︷︷︸

∆φ=2<d

, Oχ
︸︷︷︸

∆χ=4>d

• there is Zφ
2 × Z

χ
2 discrete symmetry that acts as a parity transformation

φ ↔ −φ and χ ↔ −χ

• A mass parameter Λ deformed the CFT to a massive QFT, explicitly

breaking Z
φ
2 symmetry

HCFT → HCFT + Λ Oφ , [Λ] = 1

• Z
χ
2 symmetry can 〈Oχ〉 6= 0 (or not 〈Oχ〉 = 0) be spontaneously broken,

depending on the Hubble constant:

ds24 = −dt2 + e2Ht
(
dx2

1 + dx2
2

)



In this model we:

• Studied t → +∞ vacua — DFPs — as a function of Λ
H

• DFPs has unbroken Z
χ
2 symmetry, i.e., 〈Oχ〉 = 0

• DFPb has broken Z
χ
2 symmetry, i.e., 〈Oχ〉 6= 0

• We studied perturbative stability DFPs — QNMs in BHs

• We developed the evolution code and studied dynamics to confirm:

DFP is really an attractor of late-time dynamics

verified stability analysis

discovered that some perturbatively stable DFP are unstable once the

amplitude of perturbation is large; confirmed the role of sent in

classification of attractors
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〈Oφ〉 and sent in DFPs, i.e., 〈Oχ〉 = 0

• c is the central charge of the theory

• Note that sent → 0 as Λ → 0 — recovering the conformal limit of trivial

DFP

• Dashed lines are near-conformal perturbation theory (analytics)





perturbatively stable w.r.t 

f uctuations

perturbatively unstable

l





perturbatively unstable

Highlighted DFPs, when perturbed, evolve to naked singularities with

lim
t→+∞

∇ · S = +∞



Current work:

• Study DFP in ’realistic’ QCD-like model:

top-down string theory holographic example (not a toy)

Λ is a strong coupling scale, as in QCD

Like QCD, the theory confined

Like in QCD, there is chiral symmetry



Extra slides



from: https://slideplayer.com/slide/15105141/

talk by: Berndt Mueller, 2008



from: P.Romatschke and U.Romatschke, Phys.Rev.Lett. 99 (2007) 172301
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=
1

4π
≈ 0.0796


