Dynamical fixed points in strongly coupled holographic systems

Alex Buchel

(Perimeter Institute & University of Western Ontario)

<u>Based on</u> arXiv:2111.04122

also: arXiv: 1702.01320 (with A.Karapetyan), 1809.08484, 1904.09968, 1912.03566

The University of Winnipeg, June 6, 2022

 \implies Thermodynamic equilibrium

- T_{eq} the equilibrium temperature
- \mathcal{E}_{eq} the energy density
- P_{eq} pressure
- s_{eq} thermodynamic entropy density

$$\mathcal{F}_{eq} = -P_{eq} = \mathcal{E}_{eq} - s_{eq} T_{eq}, \qquad d\mathcal{E}_{eq} = T_{eq} ds_{eq}$$

 \implies Thermodynamic equilibrium is a late-time attractor of dynamical evolution of isolated interacting quantum system:

$$\lim_{t \to \infty} T_{\mu\nu}(t, \boldsymbol{x}) = \operatorname{diag}\left(\mathcal{E}_{eq}, P_{eq}, \cdots P_{eq}\right)$$

• $T_{\mu\nu}$ are the component of the stress-energy tensor of the system at time t and the spatial location \boldsymbol{x}

 \implies We also have a theory — the hydrodynamics — that describes the approach to that equilibrium (assuming we are not-far from it):

• Given the local energy density \mathcal{E} and the equilibrium equation of state $P_{eq} = P_{eq}(\mathcal{E}_{eq})$ we define the local pressure P

$$\mathcal{E}(t, \boldsymbol{x}) \equiv T_{00}(t, \boldsymbol{x}) \implies P(t, \boldsymbol{x}) = P_{eq}\left(\mathcal{E}(t, \boldsymbol{x})\right)$$

• and obtain the local entropy density $s(t, \boldsymbol{x})$ and temperature $T(t, \boldsymbol{x})$

$$\mathcal{E} + P = s T, \qquad d\mathcal{E} = T ds$$

• "not-far from equilibrium" is then

$$T \cdot \left| \frac{\partial_{\mu} \mathcal{E}}{\mathcal{E}} \right| \ll 1 \qquad \underline{and} \qquad T \cdot \left| \nabla_{\mu} u^{\nu} \right| \ll 1$$

where $u^{\mu} = u^{\mu}(t, \boldsymbol{x})$ is a local fluid 4-velocity, $u^{\mu}u_{\mu} = -1$, used to define the hydrodynamic stress-energy tensor

• $\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu}u^{\nu}$, $g_{\mu\nu}$ is the background space-time metric

$$\mathcal{T}^{\mu\nu} = -\eta \ \sigma^{\mu\nu} - \zeta \ \Delta^{\mu\nu} \ (\nabla \cdot u)$$

where $\sigma^{\mu\nu} \sim \partial^{\mu} u^{\nu}$, and $\eta = \eta(\mathcal{E})$, $\zeta = \zeta(\mathcal{E})$ are the shear and the bulk viscosities

 $[\]implies$ viscosities are completely determined from the equilibrium thermodynamics (the two-point correlation functions of the equilibrium stress-energy tensor)

 \implies How do we recover equilibrium thermodynamics?

• assume that \mathcal{E} and P are constant throughout the system and time-independent; the background metric is Minkowski:

$$g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$$

• set
$$u^{\mu} = u^{\mu}_{eq} \equiv (1, \mathbf{0}) \implies$$

 $\Delta^{00} = g^{00} + u^0 u^0 = 0, \qquad \Delta^{ii} = g^{ii} + u^i u^i = 1, \qquad \partial_{\mu} u^{\nu} = 0$
 \implies
 $\mathcal{T}^{\mu\nu} \equiv 0, \qquad T^{\mu\nu} = \operatorname{diag}(\mathcal{E}, P, P, P) \equiv \operatorname{diag}(\mathcal{E}_{eq}, P_{eq}, P_{eq}, P_{eq})$

• In addition, we can introduce the equilibrium entropy current S_{eq}^{μ} :

$$\mathcal{S}^{\mu}_{eq} \equiv s_{eq} \ u^{\mu}$$

Note:

no entropy production
$$\iff \nabla \cdot S = \frac{ds_{eq}}{dt} = 0$$

the thermal equilibrium is characterized by the vanishing diverge

i.e., the thermal equilibrium is characterized by the vanishing divergence of the entropy current

 \implies Back to hydrodynamics (the approach to equilibrium):

• There is no first-principle definition of S^{μ} away from equilibrium; to the first-order in the gradients of the local fluid velocity u^{μ} ,

$$\mathcal{S}^{\mu} = s \ u^{\mu} - \frac{1}{T} \ \mathcal{T}^{\mu\nu} u_{\nu}$$

• from the conservation of the stress-energy tensor,

$$\nabla_{\mu} T^{\mu\nu} = 0 \implies$$
$$T \nabla \cdot \mathcal{S} = \zeta \ (\nabla \cdot u)^{2} + \frac{\eta}{2} \sigma_{\mu\nu} \sigma^{\mu\nu} \ge 0$$

which is manifestly non-negative, provided the viscosities are positive.

 \implies As one approaches the equilibrium,

$$\lim_{t \to \infty} u^{\mu} = u^{\mu}_{eq} = (1, \mathbf{0}) \qquad \Longrightarrow \qquad \lim_{t \to \infty} T \ \nabla \cdot \mathcal{S} = 0$$

i.e., in the approach to equilibrium the entropy production rate vanishes

We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum field theory with spatially homogeneous and time-independent onepoint correlation functions of its stress energy tensor $T^{\mu\nu}$, and (possibly additional) set of gauge-invariant local operators $\{\mathcal{O}_i\}$, <u>and</u> strictly positive divergence of the entropy current at late-times: $\lim_{t\to\infty} \left(\nabla \cdot \mathcal{S}\right) > 0$

 \implies Apart from the requirement of the strictly non-zero entropy production rate at late times, characteristics of a DFP coincide with that of the thermodynamic equilibrium.

Why?

 \implies DFP, *i.e.*, the non-vanishing late-time entropy production in **driven** (open) quantum-mechanical systems/QFT:

- time-dependent coupling constants (quantum quenches)
- time-dependent masses
- time-dependent external EM fields, etc

and

• QFTs in cosmological backgrounds, asymptotically de Sitter space-times in particular

 \implies To study DFPs means to classify the end-of-time dynamics of <u>massive</u> QFTs, in cosmologies with dark energy

Outline

- A trivial DFP: thermal states of $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM) in de Sitter
 - gauge theory perspective
 - holographic picture
 - de Sitter vacuum 'entanglement' entropy
- Nontrivial DFP
- A taster of results from arXiv:2111.04122 the zoo of DFPs

$\mathcal{N} = 4 \text{ SYM}$

- Not our QCD (the theory of strong interactions):
 - different gauge group SU(3) versus SU(N) (we take $N \to \infty$)
 - QCD has a strong coupling scale (the typical scale in nuclear physics); SYM is *conformal*, *i.e.*, the scale invariant
 - QCD confines (and forms nuclei), SYM is always deconfined
- BUT:
 - similar equation of state at strong coupling in deconfined phase
 - similar transport coefficients:

$$\frac{\eta}{s}\Big|_{QCD} \sim (1\cdots3) \cdot \frac{\eta}{s}\Big|_{\mathcal{N}=4\ SYM}$$

Minkowski vs. de Sitter space-time

• A de Sitter space-time is a special case of FLRW cosmology:

$$\begin{aligned} ds_{closed}^2 &= -dt^2 + a(t)^2 dS_3^2 \quad \text{or} \quad ds_{open}^2 &= -dt^2 + a^2(t) \, dx^2 \\ \text{closed cosmology}: \quad a(t) &= \frac{1}{H} \, \cosh(Ht) \\ \text{open cosmology}: \quad a(t) &= e^{Ht} \end{aligned}$$

Minkowski space-time

$$ds^2_{Minkowski} = ds^2_{open} \bigg|_{a(t) \equiv 1}$$

■ Note:

$$ds_{open}^2 = a(t)^2 \left(-\frac{dt^2}{a(t)^2} + d\mathbf{x}^2 \right) = a^2 \underbrace{\left(-d\tau^2 + d\mathbf{x}^2 \right)}_{ds_{Minkowski}^2}$$

where we introduced the conformal time

$$\tau = \int^t \frac{dt}{a(t)}$$

- \implies For a conformal field theory, e.g., $\mathcal{N} = 4$ SYM,
 - if \mathcal{O}_{Δ} is a primary operator of dimension Δ ,

$$\left\langle \mathcal{O}_{\Delta} \right\rangle \Big|_{FLRW} = a^{-\Delta} \left\langle \mathcal{O}_{\Delta} \right\rangle \Big|_{Minkowski}$$

• stress-energy tensor is not a primary field:

$$\langle T_{\mu\nu} \rangle \Big|_{FLRW} = a^{-4} \langle T_{\mu\nu} \rangle \Big|_{Minkowski} + \text{conformal anomaly}$$

 \implies for a trace of the stress-energy tensor

$$\left\langle T^{\mu}_{\mu} \right\rangle \Big|_{FLRW} = a^{-4} \left. \left\langle T^{\mu}_{\mu} \right\rangle \Big|_{\underbrace{Minkowski}}_{=0} + \frac{c}{24\pi^3} \underbrace{\left(R_{\mu\nu}R^{\mu\nu} - \frac{1}{3}R^2 \right)}_{=-12\frac{(\dot{a})^2\ddot{a}}{a^3}} \right\}$$

e.g., for $\mathcal{N} = 4 SU(N)$ SYM,

$$- \langle T_t^t \rangle \bigg|_{FLRW} = \frac{1}{a(t)^4} \,\mathcal{E} + \frac{3N^2}{32\pi^2} \,\frac{(\dot{a})^4}{a^4} \\ - \langle T_x^x \rangle \bigg|_{FLRW} = \frac{1}{a(t)^4} \,P + \frac{N^2}{8\pi^2} \,\left\{ \frac{(\dot{a})^4}{4a^4} - \frac{(\dot{a})^2\ddot{a}}{a^3} \right\}$$

$$\left\langle T^{\mu}_{\mu} \right\rangle \bigg|_{FLRW} = a^{-4} \underbrace{\left(-\mathcal{E} + 3P\right)}_{=0} - \frac{3N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$

 \implies Minkowski space-time thermal equilibrium states of $\mathcal{N} = 4$ SYM (strong coupling) of temperature T_0 :

$$\mathcal{E}_0 = \frac{3}{8}\pi^2 N^2 T_0^4 , \qquad P_0 = \frac{1}{3}\mathcal{E}_0$$

 \implies in FLRW cosmology,

$$\mathcal{E}(t) = \frac{3}{8}\pi^2 N^2 T(t)^4 + \frac{3N^2}{32\pi^2} \frac{(\dot{a})^4}{a^4}, \qquad P(t) = \frac{1}{3}\mathcal{E}(t) - \frac{N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$

where T(t) is the *effective* temperature

$$T(t) = \frac{T_0}{a(t)}$$

 \implies Stress-energy tensor in FLRW is covariantly conserved:

$$0 = \langle \nabla^{\mu} T^{\nu}_{\mu} \rangle \qquad \Longleftrightarrow \qquad \frac{d\mathcal{E}(t)}{dt} + 3\frac{\dot{a}}{a} \ \left(\mathcal{E}(t) + P(t)\right) = 0$$

- / >

 \implies entropy density is more tricky...(non-equilibrium, time-dependent)

• In Minkowski space-time:

$$s_0 = \frac{\pi^2}{2} N^2 T_0^3$$

• Assuming the adiabatic expansion in FLRW, the co-moving entropy density, $s_{comoving}$,

$$s_{comoving} \equiv a(t)^3 s(t)$$

is conserved:

$$\frac{d}{dt}s_{comoving} = 0 \implies s_{comoving} = s_{comoving} \Big|_{t=0} = s_0$$

$$\implies s(t) = \frac{\pi^2}{2} N^2 T(t)^3$$

• In expansing FLRW, with $a(t) \to \infty$ as $t \to \infty$,

$$\lim_{t \to \infty} s(t) = 0$$

 \implies Let's rephrase the de Sitter entropy discussion in the language of the entropy current S^{μ} :

- A locally static observer has $u^{\mu} = (1, \mathbf{0})$
- The entropy current (in Landau frame $\mathcal{T}^{\mu\nu}u_{\nu}=0$) is

$$\mathcal{S}^{\mu} = s \ u^{\mu}$$

$$\Rightarrow \qquad \nabla \cdot S = \frac{1}{a(t)^3} \frac{d}{dt} \left(a(t)^3 s \right) = \frac{1}{a(t)^3} \frac{d}{dt} s_{comoving}(t) = 0$$

That is is why $\mathcal{N} = 4$ SYM (same is true for any conformal theory!) in de Sitter evolved to a trivial DFP How would a non-trivial DFP arise?

• Imagine that

$$\lim_{t \to \infty} s(t) = s_{ent} \neq 0$$

This limit is natural to call the <u>vacuum entanglement entropy</u> density, hence $_{ent}$

• Then,

$$\lim_{t \to \infty} \left(\nabla \cdot \mathcal{S} \right) = 3 \ H \ s_{ent}$$

where

$$H = \lim_{t \to \infty} \frac{d}{dt} \, \ln a(t)$$

 \implies In strongly coupled non-conformal theories with holographic dual

$$s_{ent} > 0$$

Basic AdS/CFT correspondence in the planar limit

- $Ng_s \ll 1$: weakly coupled open strings, ending on D3 branes in Type IIB SUGRA on $\mathbb{R}^{9,1} \iff \mathcal{N} = 4 SU(N)$ SYM
- $Ng_s \gg 1$: weakly coupled closed strings in Type IIB SUGRA on $AdS_5 \times S^5$

 \implies Holographic picture for $\mathcal{N} = 4$ SYM in de Sitter

$$S_{\mathcal{N}=4} = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 \xi \sqrt{-g} \left[R + \frac{12}{L^2} \right]$$
$$L^4 = \ell_s^4 N g_{YM}^2, \qquad G_5 = \frac{\pi L^3}{2N^2}, \qquad 4\pi g_s = g_{YM}^2$$

 \implies Consider general spatially homogeneous, time-dependent states:

$$ds_5^2 = 2dt (dr - Adt) + \Sigma^2 dx^2$$
$$A = A(t, r), \qquad \Sigma = \Sigma(t, r)$$

 \implies We are interested in spatially homogeneous and isotropic states of $\mathcal{N} = 4$ SYM in FLRW, so the bulk metric warp approach the AdS boundary $r \to \infty$ as

$$\Sigma = \frac{a(t)r}{L} + \mathcal{O}(r^0) \,, \qquad A = \frac{r^2}{2L^2} + \mathcal{O}(r^1)$$

Indeed, as $r \to \infty$,

$$ds_5^2 = \frac{r^2}{L^2} \underbrace{\left(-dt^2 + a(t)^2 d\boldsymbol{x}^2\right)}_{-dt^2 + a(t)^2 d\boldsymbol{x}^2} + \cdots$$

boundary FLRW

 \implies Given the metric ansatz, we can derive EOMs (without loss of generality we set L = 2):

$$0 = (d_{+}\Sigma)' + 2\Sigma' d_{+} \ln \Sigma - \frac{\Sigma}{2}$$

$$0 = A'' - 6(\ln \Sigma)' d_{+} \ln \Sigma + \frac{1}{2}$$

$$0 = \Sigma''$$

$$0 = d_{+}^{2}\Sigma - 2A\Sigma' - (4A\Sigma' + A'\Sigma) d_{+} \ln \Sigma + \Sigma A$$

where

$$' = \frac{\partial}{\partial r}, \qquad \dot{} = \frac{\partial}{\partial t}, \qquad d_+ = \frac{\partial}{\partial t} + A \frac{\partial}{\partial r}$$

 \implies These equations can be solve in all generality for arbitrary a(t):

$$A = \frac{(r+\lambda)^2}{8} - (r+\lambda)\frac{\dot{a}}{a} - \dot{\lambda} - \frac{r_0^4}{8a^4(r+\lambda)^2},$$
$$\Sigma = \frac{(r+\lambda)a}{2}$$

where

- r_0 is a single constant parameter
- $\lambda(t)$ is an arbitrary function the leftover diffeomorphism of the 5d gravitational metric reparametrization $r \to \bar{r} = r \lambda(t)$:

$$A(t,r) \to \bar{A}(t,\bar{r}) = A(t,r+\lambda(r)) - \dot{\lambda}(t)$$
$$\Sigma(t,r) \to \bar{\Sigma}(t,\bar{r}) = \Sigma(t,r+\lambda(t))$$

$$ds_5^2 \implies d\bar{s}_5^2 \qquad = 2dt \ (d\bar{r} - \bar{A}dt) + \bar{\Sigma}^2 \ d\boldsymbol{x}^2$$

\implies Identifying

$$\frac{r_0}{2} \equiv T_0$$

 \implies from holographic computation of the boundary stress energy tensor,

$$\mathcal{E}(t) = \frac{3}{8}\pi^2 N^2 T(t)^4 + \frac{3N^2}{32\pi^2} \frac{(\dot{a})^4}{a^4}, \qquad P(t) = \frac{1}{3}\mathcal{E}(t) - \frac{N^2}{8\pi^2} \frac{(\dot{a})^2 \ddot{a}}{a^3}$$
$$T(t) = \frac{T_0}{a(t)}$$

Precisely as expected from the Weyl transformation of the thermal state from Minkowski to FLRW! \implies Holography buys us more:

• Chesler-Yaffe pioneered numerical studies of EF metrics:

$$ds_5^2 = 2dt \ (dr - Adt) + \Sigma^2 \ d\boldsymbol{x}^2$$

• such metrics has an **apparent horizon** (AH) at r_{AH}

$$d_{+}\Sigma\Big|_{r=r_{AH}} = 0 \implies r_{AH} = \frac{r_{0}}{a(t)} - \lambda(t)$$

• causal dependence **must** include

$$r \in [r_{AH}, +\infty)$$

• region

 $r < r_{AH}$

is causally disconnected from the holographic dynamics and **must be** excised

• AH is a dynamical horizon

comoving Bekenstein entropy of the AH

•

Comments on $t \to +\infty$ dynamics:

• Consider de Sitter background for SYM,

$$a(t) = e^{Ht}$$
 and set $\lambda(t) = 0$

• from exact solutions of PDEs:

$$\lim_{t \to \infty} A(t, r) \equiv A_v(r) = \frac{r}{8}(r - 8H)$$
$$\lim_{t \to \infty} \frac{\Sigma(t, r)}{a(t)} \equiv \sigma_v(r) = \frac{r}{2}$$

where v stands for <u>vacuum</u>

• Exactly the same same bulk geometry can be obtained solving ODEs with the metric ansatz

$$ds_{5,vacuum}^2 = 2dt \ (dr - A_v dt) + e^{2Ht} \sigma_v^2 \ dx^2$$

$$A_v = A_v(r)$$
 and $\sigma_v = \sigma_v(r)$

i.e., the late time limit can be taken at the level of PDEs!

• location of the AH is identified from

$$0 = \lim_{t \to \infty} \frac{1}{a(t)} \left. d_+ \Sigma \right|_{r=r_{AH}} = \left(H\sigma_v + A_v \sigma'_v \right) \right|_{r=r_{AH,v}}$$

• With
$$\sigma_v = \frac{r}{2}$$
 and $A_v = \frac{r(r-8H)}{8} \implies$

 $r_{AH,v} = 0$, while $A_v = 0$ at $r = r_{A_v} = 8H$

Remarkable:

 \Longrightarrow

• causal evolution requires $r \in [r_{AH,v}, +\infty) = [0, +\infty)$

• $-g_{tt} = 2A$ metric component (being "outside the Schwarzschild radius of a black hole") must be non-negative $\implies r \in [r_{A_v}, +\infty)$

• the part of the geometry $r \in [r_{AH,v}, r_{A_v}]$ disappears upon analytical continuation to Bunch–Davies vacuum or Euclidean vacuum!

maybe one of the reasons no previous discussion of s_{ent} in the literature

Non-trivial DFPs: holographic non-conformal models in de Sitter:

- In $\mathcal{N} = 4$ SYM duality we had luxury to study full dynamics (described by PDEs) analytically
- In non-conformal examples (KK reduced from 10-dimensions to 5-dimensions)

$$S_{\text{non-conformal}} = \frac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 \xi \sqrt{-g} \left[R + \text{scalars} + \text{scalar potential} \right]$$

we focus directly on vacuum geometry:

$$ds_{5,vacuum}^2 = 2dt \ (dr - A_v dt) + e^{2Ht} \sigma_v^2 \ dx^2$$
$$A_v = A_v(r) \quad \text{and} \quad \sigma_v = \sigma_v(r) \quad \text{and} \quad \text{scalars} = \text{scalars}(r)$$

• We identify location of the AH at late times

$$0 = (H\sigma_v + A_v\sigma'_v) \bigg|_{r=r_{AH,v}}$$

• compute associated vacuum entanglement entropy:

$$s_{ent,v} \equiv \lim_{t \to \infty} s(t) = \frac{\sigma_v^3}{4G_5} \Big|_{r=r_{AH,v}}$$

• from explicit computations of various examples of holography

$$s_{ent,v}^{\mathcal{N}=4 \text{ or CFT}} = 0 \qquad \underline{\text{BUT}} \qquad s_{ent,v}^{\text{non-conformal}} \neq 0$$

Taster from arXiv:2111.04122

 \implies The model is d = 2 + 1 dimensional QFT with a holographic dual:

• Start with a conformal theory \mathcal{H}_{CFT} , with the operators

• there is $\mathbb{Z}_2^{\phi} \times \mathbb{Z}_2^{\chi}$ discrete symmetry that acts as a parity transformation

$$\phi \leftrightarrow -\phi$$
 and $\chi \leftrightarrow -\chi$

• A mass parameter Λ deformed the CFT to a massive QFT, explicitly breaking \mathbb{Z}_2^{ϕ} symmetry

$$\mathcal{H}_{CFT} \to \mathcal{H}_{CFT} + \Lambda \mathcal{O}_{\phi}, \qquad [\Lambda] = 1$$

• \mathbb{Z}_2^{χ} symmetry can $\langle \mathcal{O}_{\chi} \rangle \neq 0$ (or not $\langle \mathcal{O}_{\chi} \rangle = 0$) be spontaneously broken, depending on the Hubble constant:

$$ds_4^2 = -dt^2 + e^{2Ht} \left(dx_1^2 + dx_2^2 \right)$$

In this model we:

- Studied $t \to +\infty$ vacua DFPs as a function of $\frac{\Lambda}{H}$
- DFP_s has unbroken \mathbb{Z}_2^{χ} symmetry, *i.e.*, $\langle \mathcal{O}_{\chi} \rangle = 0$
- DFP_b has broken \mathbb{Z}_2^{χ} symmetry, *i.e.*, $\langle \mathcal{O}_{\chi} \rangle \neq 0$
- $\bullet\,$ We studied perturbative stability DFPs QNMs in BHs

- We developed the evolution code and studied dynamics to confirm:
 - DFP is really an attractor of late-time dynamics
 - verified stability analysis
 - discovered that some perturbatively stable DFP are unstable once the amplitude of perturbation is large; confirmed the role of s_{ent} in classification of attractors

 $\langle \mathcal{O}_{\phi} \rangle$ and s_{ent} in DFP_s, *i.e.*, $\langle \mathcal{O}_{\chi} \rangle = 0$

- c is the central charge of the theory
- Note that $s_{ent} \to 0$ as $\Lambda \to 0$ recovering the conformal limit of trivial DFP
- Dashed lines are near-conformal perturbation theory (analytics)

Highlighted DFPs, when perturbed, evolve to naked singularities with

$$\lim_{t \to +\infty} \nabla \cdot S = +\infty$$

Current work:

• Study DFP in 'realistic' QCD-like model:

- top-down string theory holographic example (not a toy)
- Λ is a strong coupling scale, as in QCD
- Like QCD, the theory confined
- Like in QCD, there is chiral symmetry

Extra slides

L Contraction

QCD equation of state

from: https://slideplayer.com/slide/15105141/ talk by: Berndt Mueller, 2008 4

from: P.Romatschke and U.Romatschke, Phys.Rev.Lett. 99 (2007) 172301

$$\left. \frac{\eta}{s} \right|_{\mathcal{N}=4 SYM} = \frac{1}{4\pi} \approx 0.0796$$