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—> Thermodynamic equilibrium
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e 1., - the equilibrium temperature
o &, - the energy density
o [°,, - pressure

® 5., - thermodynamic entropy density
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—> Thermodynamic equilibrium is a late-time attractor of dynamical
evolution of isolated interacting quantum system:

lim Tuy(t’ iE) = dlag (geqa PGQ7 e Peq)

t— 00

= 7}, are the component of the stress-energy tensor of the system at time ¢
and the spatial location @

—> We also have a theory — the hydrodynamics — that describes the
approaCh tO that GQUilibI‘ium (assuming we are not-far from it).

e Given the local energy density £ and the equilibrium equation of state
P., = P.y(E.q) we define the local pressure P

E(t,x) =Ty(t,x) — Pt,x) =P, (E(t,x))
e and obtain the local entropy density s(¢,x) and temperature T'(¢, x)

E+P=sT, d€ =T ds



e "not-far from equilibrium” is then

0,&
T-% < 1 and T-Vu'| <1
where u* = u” (¢, x) is a local fluid 4-velocity, uu, = —1, used to define

the hydrodynamic stress-energy tensor

TH = € w'u’ + P A® s
N ~ - N~~~
”equilibrium’/ part first —order dissipative terms
n AP = gt + yHuY, guv 18 the background space-time metric

TH = —np o’ —( A* (V- u)

where o ~ 0*u”, and n =n(€), ¢ = ((€) are the shear and the bulk
viscosities

:> viscosities are completely determined from the equilibrium thermodynamics (the two-point
correlation functions of the equilibrium stress-energy tensor)



—> How do we recover equilibrium thermodynamics?

e assume that £ and P are constant throughout the system and
time-independent; the background metric is Minkowski:

9.y = diag(—1,1,1,1)

o set ut = ul, = (1,0) —

A0 — 400 4 0,0 — AP = it iyt =1 9,u” =0

TH =0, TH = diag(&, P, P, P) = diag(&eqy Peg, Pegs Peq)
e In addition, we can introduce the equilibrium entropy current SZ:
Shy = Seq Ut

Note:
dSeq
dt

1.e., the thermal equilibrium is characterized by the vanishing divergence

no entropy production = V:-§= =0

of the entropy current



— BaCk tO hYdrOdynamiCS (the approach to equilibrium).

e There is no first-principle definition of S# away from equilibrium; to the
first-order in the gradients of the local fluid velocity u*,

1
S“:su“—TTWuV

e from the conservation of the stress-energy tensor,

vV, T =0 —

gawa“” > ()

TV-S=( (V-u)’+

which is manifestly non-negative, provided the viscosities are positive.

— As one approaches the equilibrium,

lim v* =ul, = (1,0) — lim T"V-§=0

t—00 t—00

i.e., in the approach to equilibrium the entropy production rate vanishes



We can now provide a formal definition of a dynamical fixed point (DFP):

A Dynamical Fixed Point is an internal state of a quantum

field theory with spatially homogeneous and time-independent one-

point correlation functions of its stress energy tensor T*”, and

(possibly additional) set of gauge-invariant local operators {O;},
and

strictly positive divergence of the entropy current at late-times:

lim (V : 5) > 0
t— 00

— Apart from the requirement of the strictly non-zero entropy production
rate at late times, characteristics of a DFP coincide with that of the
thermodynamic equilibrium.



Why?

—> DFP, i.e., the non-vanishing late-time entropy production in driven
(open) quantum-mechanical systems/QFT:

e time-dependent coupling constants (quantum quenches)
e time-dependent masses

e time-dependent external EM fields, etc

and

e QFTs in cosmological backgrounds,
asymptotically de Sitter space-times in particular

— To study DFPs means to classify the end-of-time dynamics of massive
QFTs, in cosmologies with dark energy



Outline

e A trivial DFP: thermal states of N' = 4 supersymmetric Yang-Mills
(SYM) in de Sitter
m gauge theory perspective
m holographic picture

m de Sitter vacuum ’entanglement’ entropy
e Nontrivial DFP
e A taster of results from arXiv:2111.04122 — the zoo of DFPs



N =4 SYM

m Not our QCD (the theory of strong interactions):
e different gauge group - SU(3) versus SU(N) (we take N — 00)

e QCD has a strong coupling scale (the typical scale in nuclear physics);
SYM is conformal, i.e., the scale invariant

e QCD confines (and forms nuclei), SYM is always deconfined

m BUT:
e similar equation of state at strong coupling in deconfined phase

e similar transport coefficients:



Minkowski vs. de Sitter space-time

m A de Sitter space-time is a special case of FLRW cosmology:

ds?), .oq = —dt* + a(t)*dS3 or dsgpen = —dt* + a*(t) dx”
1
closed cosmology : a(t) = I cosh(Ht)
open cosmology : a(t) = e

s Minkowski space-time

2 _ 2
dSMinkowski - dsopen

a(t)=1



m Note:

dt?
dsgpen = a(t)? (_a(t)2 + dw2> = a” (—de + dw2>
ds?%inkowski
where we introduced the conformal time
/’j dt
T = —
a(t)
— For a conformal field theory, e.g., N =4 SYM,
o if OA is a primary operator of dimension A,
(Oa) =a" (Oa)
FLRW Minkowsk?

e stress-energy tensor is not a primary field:

=a™* (L)
FLRW

+ conformal anomaly
Minkowsk?

(L)



— for a trace of the stress-energy tensor

(T") =a* (T74) + 2 (RWRW — —RQ)
FLRW O Minkowski 24T\
=0 :_12(aa)§a
e.g., for N =4 SU(N) SYM,
1 3N? (a)?
S I S
rrrw ot 3212 a
L <T£B> — 1 P—l— N2 (&)4 . (&)20’
“Nerpw  alt)? 8r2 | 4a* a3
_ 3N? (a)%ad
(T7) =a* [-E£+3P) - 53
FLRW /81 a




—> Minkowski space-time thermal equilibrium states of N'=4 SYM (strong

coupling) of temperature Tj:

3 1
50 = §7T2N2T61, PO = 560
—> in FLRW cosmology,
3 3N? (a)* 1 N? (a)%ad
E(t) = =m*N?T(t)* P(t) = =E(t) —
where T'(t) is the effective temperature
1o
T(t) = —=
(2) ot
— Stress-energy tensor in FLRW is covariantly conserved:
d&(t '
0= (V“T:) = % + 3% (E(t)+ P(t)) =0



— entropy density is more tricky...(non-equilibrium, time-dependent)

e In Minkowski space-time:
2

S — %NQT(?

e Assuming the adiabatic expansion in FLRW, the co-moving entropy
density, Scomoving
Scomoving = a(t)”s(t)
is conserved:

d

Escomom’ng =0 — Scomoving — Scomoving — S0

2

s(t) = %NQT(t)3

e In expansing FLRW, with a(t) — co as t — oo,

lim s(t) =0

t— 00



— Let’s rephrase the de Sitter entropy discussion in the language of the

entropy current S*:
e A locally static observer has u* = (1, 0)

e The entropy current (in Landau frame T*"u, = 0) is

St = s ut

1 d 5 1 d
v ) S T &(t)3 dt (a’(t) S) T a(t)?) dtscomovzng(t) - O

That is is why N/ =4 SYM (same is true for any conformal theory!) in de
Sitter evolved to a trivial DF'P



How would a non-trivial DFP arise?

e Imagine that
lim s(t) = Sent # 0

t—00

This limit is natural to call the vacuum entanglement entropy density,

hence .t
e Then,
tli)rglo(v : S) =3 H Sepnt
where
H = tlggl()% Ina(t)

— In strongly coupled non-conformal theories with holographic dual

Sent > O



Basic AdS/CFT correspondence in the planar limit

// B

>Ngs <1 Ng; > e
S %,

N

\\

¥’
\_/
N-D3 branes AdSy x S°

e Ng, < 1. weakly coupled open strings, ending on D3 branes in Type IIB
SUGRA on R¥»! <= N =4 SU(N) SYM

e Ng, > 1. weakly coupled closed strings in Type IIB SUGRA on
AdS5 X S5



— Holographic picture for N =4 SYM in de Sitter

1
167TG5

SN=4 =

/ d°¢\/—g [R + %]
M

w3

L4:€4N2 G:—
s VY M 5= oN2

Amgs = 95\

— (Consider general spatially homogeneous, time-dependent states:
dsz = 2dt (dr — Adt) + X* dx?

A= A(t,r), ¥ =3(t,r)



—> We are interested in spatially homogeneous and isotropic states
of N =4 SYM in FLRW, so the bulk metric warp approach the AdS

boundary r — oo as

a(t)r 0 1
=400, A= +00)
Indeed, as r — oo,
o 17 2 2 7.2
ds5:ﬁ —dt® + a(t)dx” | + - - -

A\ J/
N/

boundary FLRW




—> Given the metric ansatz, we can derive derive EOMs
(without loss of generality we set L = 2):

)
0=(dsX) +2%" dylny — 5

1
0=A"—-6(InX) d InX + 5

O — E//
0=d2% — 24 — (4A¥' + A'Y) dy InX + XA

where



— These equations can be solve in all generality for arbitrary a(t):

(r 4+ N)? a re
A= — A) — — X\ —
8 r+2 5 8at(r + A)2’
5 _ (r+XNa
2

where

m 7o is a single constant parameter

m \(¢) is an arbitrary function - the leftover diffeomorphism of the 5d
gravitational metric reparametrization r — 7 =1 — A\(¢):

A(t, ) = A(t,7) = A(t, 7 + X)) — A(t)
S(t,r) = S, T) = (T 4+ A1)

ds: = ds; = 2dt (dr — Adt) + %? dz?



— Identifying

— from holographic computation of the boundary stress energy tensor,

3 oo e, 3N (a) 1 N® (a)%a
E) = g N°T()' + o5, P(t)=3&(t) — 55
T(t):ﬂ

Precisely as expected from the Weyl transformation of the thermal
state from Minkowski to FLRW!



—> Holography buys us more:

e Chesler-Yaffe pioneered numerical studies of EF metrics:
ds? = 2dt (dr — Adt) + %? da?

e such metrics has an apparent horizon (AH) at rag

d. 3 — = —— — A\t
r=raAH

e causal dependence must include
r € |[ramg,+00)

e region
r<<TAH

is causally disconnected from the holographic dynamics and must be
excised

e AH is a dynamical horizon



3 - N3
4G5 | 1287
N T—?“AHJ

comoving Bekenstein entropy of the AH

~~

SYM comoving entropy density in FLRW




Comments on ¢t — 400 dynamics:

e Consider de Sitter background for SYM,

a(t) = et

e from exact solutions of PDEs:

lim A(t,r) = A, (r)

t— 00

. X(t,r
lim
t—00 a(t)

where , stands for vacuum

)

and set

A(t) =0



e Exactly the same same bulk geometry can be obtained solving ODEs

with the metric ansatz

dS2 ypeuum = 2dt (dr — A, dt) + e*"'o? dax”

Ay = Ay(r) and 0y = 0y(7)

i.e., the late time limit can be taken at the level of PDES!



e location of the AH is identified from
1

0= lim — d; % = (Ho, + A,0,)
t—o0 aft) T=TAH T=TAH, v
e With o, = 5 and A, = T(T_SSH) —
TAH» = 0, while A, =0atr=ry, =8H

Remarkable:

m causal evolution requires r € |[rag ., +00) = [0, +00)

m —g;; = 2A metric component

(being “outside the Schwarzschild radius of a black hole”) must be
non-negative = r € [r4_, +00)

» the part of the geometry r € [ram ., 74,] disappears upon analytical
continuation to Bunch—Davies vacuum or Euclidean vacuum!

—

maybe one of the reasons no previous discussion of s.,; in the literature



Non-trivial DF'Ps: holographic non-conformal models in de Sitter:

e In N =4 SYM duality we had luxury to study full dynamics (described
by PDEs) analytically

e In non-conformal examples (KK reduced from 10-dimensions to

5-dimensions)

1
Shon—conformal = / d°&+/—g | R + scalars 4 scalar potentiall
167TG5 M

we focus directly on vacuum geometry:
dS2 ypeuum = 2dt (dr — A, dt) + e*"'o? dax”

Ay, = Ay(r) and 0y = 0y(7) and scalars = scalars(r)



e We identify location of the AH at late times

0= (Ho, + Ay,0,)

'=TAH,v

e compute associated vacuum entanglement entropy:

3
v

) O
Sent,v = tlifglos(t) — 4G5

T"=TAH,v

e from explicit computations of various examples of holography

N=4 or CFT —0 BUT non—conformal % 0

Sent,v Sent,v



Taster from arXiv:2111.04122

—> The model is d = 2 + 1 dimensional QFT with a holographic dual:

e Start with a conformal theory Hopr, with the operators

Tuv ) ch ’ Ox
—~— N~ N~
stress—energy tensor Ayp=2<d Ay =4>d

e there is Zg x Zyx discrete symmetry that acts as a parity transformation
D> —@ and X ¢ —X

e A mass parameter A deformed the CFT to a massive QFT, explicitly
breaking Zg symmetry
Herr — Horr + A Oy, Al =1

o 73 symmetry can (O,) # 0 (or not (O,) = 0) be spontaneously broken,
depending on the Hubble constant:

ds? = —dt* 4 e*H? (dx% + dx%)



In this model we:

e Studied t — +o00 vacua — DFPs — as a function of %

e DFP, has unbroken Z3 symmetry, i.e., (O, ) =0

e DFP, has broken ZJ symmetry, i.e., (O ) # 0

e We studied perturbative stability DFPs — QNMs in BHs

e We developed the evolution code and studied dynamics to confirm:
m DFP is really an attractor of late-time dynamics
m verified stability analysis
m discovered that some perturbatively stable DF'P are unstable once the
amplitude of perturbation is large; confirmed the role of s.,; in

classification of attractors
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Note that s.,; — 0 as A — 0 — recovering the conformal limit of trivial

DFP

Dashed lines are near-conformal perturbation theory (analytics)
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Highlighted DFPs, when perturbed, evolve to naked singularities with
lim V.5 =+

t——+o0



Current work:

e Study DFP in ’realistic’ QCD-like model:

» top-down string theory holographic example (not a toy)
m A\ is a strong coupling scale, as in QCD

m Like QCD, the theory confined

m Like in QCD, there is chiral symmetry



Extra slides



QCD equation of state

gluons quarks

Degrees of freedom: v :[(2><§) +1x (sz %X 11\," ):X(l - O(gz))

spin color spin | color | flavor

170 340 510 MeV

3077 %91 RHIC ese/™ 7= Weak or
14.0 . 1 strong
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Lattice QCD

3 flavor, N.=4, p4 staggered
m,=770 MeV
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from: https://slideplayer.com /slide/15105141/
talk byv: Berndt Mueller. 2008
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