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A SYMMETRIC THEORY OF ELECTRONS AND POSITRONS
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(Received April 20, 1981)

The interpretation of the so-called "negative energy states" proposed by Dirac(l) leads, as it is

well known, to a substantially symmetric description of electrons and positrons. The substantial

symmetry of the formalism consists precisely in that the theory itself gives completely symmetric

results, whenever it is possible to apply it, overcoming divergence problems.

The prescriptions needed to cast the theory into a symmetric form, in conformity with its

content, are however not entirely satisfactory, either because one always starts from an asymmetric

form and because symmetric results are of?tained only after one applies appropriate procedures, such

as the cancellation of divergent constants, that one should possibly avoid. For these reasons, we have

attempted a new approach, which leads more directly to the desired result.

In the case of electrons and positrons, we may anticipate only a formal progress; but we

consider it important, for possible extensions by analogy, that the very notion of negative energy

states can be avoided. We ~hail see, in fact, that it is perfectly, and most naturally, possible to

formulate a theory of elementary neutral particles which do not have negative (energy) states.

1. It is well known that quantum electrodynamics can be deduced by quantizing a system of

equations which include the Dirac wave equations for the electron and the Maxwell equations. In

the latter, the charge density and current are represented by certain expressions containing the

electron wave function. The form given to these expressions adds, in reality, something new because

it allows to derive the asymmetry with respect to the sign of the electric charge, an asymmetry which

is not present in the Dirac equations. These expressions can be derived directly from a variational

principle, which yields the Maxwell and the Dirac equations at the same time. Therefore, our first
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problem will be to examine the foundation of the variational principle itself, and the possibility of

replacing it with a more appropriate one.

The Maxwell-Dirac equations contain quantities of two different types. On one side, we have

the electromagnetic potentials, which can be given a classical interpretation, within the limits posed

by the correspondence principle. On the other side, there are the matter waves, which represent

particles obeying to the Fermi Statistic, and which have only a quantum interpretation. In this

respect, it seems little satisfactory that the equations as well as the whole quantization procedure

have to be derived from a variational principle which can be given only a classical interpretation. It

se'ems more natural to search for a generalization of the variational method, such that the variables

appearing in the Lagrange function assume, from the very beginning, their final significance, and,

therefore, represent not necessarily commuting quantities.

This is the approach we shall follow, This approach is most important for fields obeying the

Fermi statistics; reasons of simplicity may indicate, on the other hand, that nothing has to be added

to the old method in the case of the electromagnetic field. In fact, we shall not perform a systematic

study of all the logical possibilities offered by the new point of view we are adopting. Rather, we

limit ourselves to the description of a quantization procedure for the matter-waves, which is the only

important case for applications, at present; this method appears as a natural generalization of the

J ordan-Wigner method(2), and it allows not only to cast the electron-positron theory into a

symmetric form, but also to construct an essentially new theory for particles not endowed with an

electric charge (neutrons and the hypothetical neutrinos). Even through it is perhaps not yet possible

to ask experiments to decide between the new theory and a simple extension of the Dirac equations

to neutral particles, one should keep in mind that the new theory introduces a smaller number of

hypothetical entities, in this yet unexplored,.{ield.

Leaving to the reader the ob~i6us extension of the formulae to the continuous systems, which

we shall consider later on, we illustrate in the following the quantization procedure for discrete

systems. Let a physical system be described by the real variables ql, q2, . . . qn (symmetric,

hermite,an matrices). We define a Lagrange function:

L = i L: (Arsqrq..+ Brsqrq..),
r,..

(1)

and set:

ofLdt = 0, (2)

we understand that Ars and Brs are ordinary real numbers, constant the former and, eventually, time-

dependent the latter, which obey the relations:

Ars =Asr; Brs = - Bsr (3)
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and, furthermore, with detIIArsll:;bO.

If the q's were ordinary, commuting, variables, the variational principle (2) would have no meaning

because it would be identically satisfied.

In the case of non commuting variables, eq. (2) implies the vanishing, at any time, of the

Hermitian matrix:

i L: [oqr (L:sArsqs+Brsqs) - L;s (Arsqs+ Brsqs) aqrJ = 0,r

for arbitrary variations <5qr- This is only possible if the expression ~S<Arsqs + Brsqs) are multiple of

the unit matrix so that, after some appropriate modification of the variational principle (2) (e. g. by

requiring the sum of the diagonal terms in the above expressions to vanish (n») we may consider the

following equations of motion:

L:s (Anqs + Brsqs ) = ° r = 1, 2,"" n. (4)

We now show that these equations can be derived, following the usual procedure:

. 271:i

qr = -he qrH-Hqr)

from the Hamiltonian:

H = - i L: Brsqrqs'
r,s

(5)

(whose exact form will be better justified in the following) provided we assume suitable anticom-

mutation relations for the qr' Substituting in eq. (4) the successive equations, one finds:

271:

L:sBrsqs =T L: ArsBi", (qsqiq", - qiq",qs)s,i,'"

271:

=T L: ArsBim [(qsqi + qiqs)q", - qi (qsqm + q",q..)Js,i""

271: 'fi'

=;: L: Bim {q",[L~sArs (qsqi + qiqs,)J + [L:sArs (qsqi + qiqs) J q",J },i",

so that it suffices to set:

h.
L:sArs (qsqi + qiqs) = 471:art,

(6)

for eqs. (4) to be satisfied. Denoting by IIArs.lll the inverse matrix of Ars' eq. (6) can be written as:

+ h. A-l
qrqs qsqr = ~ rs

(6)'
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In special case where A is reduced to the diagonal form:

Au = arors

we have therefore:

=~O
qrqs + qsqr 4nar rs.

(7)

We shall now apply the present scheme to the Dirac equations.

2. It is well known that one can eliminate the imaginary unit from the Dirac equations with no

external field:

[:+ (a, p ) + ftme ] cP = 0
(8)

with an appropriate choice of the operators a and 13(and this can be done in a relativistically invariant

fashion). We shall, in fact, refer to a system of intrinsic coordinates such as to make eq. (8) real,

keeping explicitly in mind that the formulae we shall derive are not valid, without suitable modi-

t"ication, in a more general coordinate system. Denoting, as usual, with ax' ay, az and PI, Pz, P3

two independen t sets of Pauli matrices, we set:

a = P I a ; a = P 3 ; a = P I a ; 17= - P I a ;
x x y z z y

Dividing ellS. (9) by -~ and defining 13'= -i 13, J1= 21Tmc , we obtain the real equations;21Tl h

f2
.

~-(a grad)+j7'p. ] cP=O.l e at '

(9)

(8)'

As a consequence, eqs. (8) sep.arate,.~nto two independent set of equations, one for the real and

one for the imaginary part of 1': We set cP= U + iV and consider the real equations (8') as acting on

U:

[~ :t - (a, grad) + j7/p.] U = O.
(10)

The latter equations, by themselveS<fZ), i. e. without the similar equations involving V, can be

derived from the variational principle previously illustrated and quantized as indicated above.

Nothing similar could be done with elementary methods.

Eq. (10) can be obtained from the variational principle:

f
he

[

1 a

]0 i _
2 U* - - - (a, grad) + 17'p. U dqdt = O.n e at (11)

It is easy to verify that the condition(3), in their natural extension to a continuous system, are

obeyed. Following eq. (7) the anticommutation relations hold:
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Vi (q) Vk(q') + VkCq') Vi (q) = ~ °iko (q - q'),
(12)

while the energy, according to (5), is:

H=JU*[-cCa, p)-,amcZJVdq. (13)

The relativistic invariance of (12) and (13) does not require a separate demonstration. If one adds to

these equations the analogous ones involving V, as well as the anticommutation relations:

Dr(q)Vs(q') + Vs(q')Dr(q) = 0, one reobtains the usual Jordan-Wigner scheme, applied to the Dirac

equations without external field.

It is remarkable, however, that the part of the formalism which refers to D (or V) can be
considered, in itself, as the theoretical descriptions of some material system, in conformity with the

general methods of quantum mechanics.

The fact that the reduced formalism cannot be applied to the description of positive and

negative electrons may well be attributed to the presence of the electric charge, and it does not invali-

date the statement that, at the present level of knowledge, eqs. (12) and (13) constitute the simplest

theoretical representation of neutral particles. The advantage, with respect to the elementary inter-

pretation of the Dirac equation, is that there is now no need to assume the existence of antineutrons

or antineutrinos (as we shall see shortly). The latter particles are indeed introduces in the theory of

positive (3-ray emission(3); the theory, however, can be obviously modified so that the (3-emission,

both positive and negative, is always accompanied by the emission of a neutrino.

Considering the interest that the above mentioned hypothesis gives to eqs. (12) and (13), it

seems useful to examine more closely their meaning. To this aim, we developed D, inside a cube of

side L, over the system of periodical functions:

- 1 .

f/q) = -eZn:l(r,q)
L 3/2 ' .'j

,

r=(rx,ry,rz);

nl

rx=T'

n2

ry=T'
n3 .

rz =T' (14)

nl' nz, n3 = 0, :t 1, :t 2, ...

setting:

VrC q) = L:rar(r)fr (q). (15)

As a consequence of the reality of D, we have:

ar(r) = -;r( -7). (16)
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In the general case, r =1=0, it follows from (12) that:

- - 1
ar(r)a...(r) + a...(r)ar(T) =2 Or...

ar(r)a...(T) + a...(r)~(T) = 0, U7)

~(r)~(T) + -;;...(r)-;;r(T)= o.

Furthermore, these quantities anticommute with a(r') and a.(r'), when r' differs both from rand

from -r.

The expression of the energy resulting from (13) is:

H = L.r t- [- he( r, ar...)- mcz,8r...l~r(r) a...(T).
r, j J

U8)

The x component of the linear momentum corresponds to the unit translation along x, up to

the factor ~1Ti , as usual:
4

Mx = fU*pxUd'l=L.r L. hrx~r(r)ak(r),
r=j

U9)

and similarly for My and Mz.

For any value of r we have in (18) an Hermitian form which has, notoriously, two positive and

two negative eigenvalues, all equal in absolute value to cJm2c2 + h2r2.

We can thus replace (18) by:

H = L.rc./mzcZ+ 11hz [hj (r) hj (r) +hz (r) hz(T) - h3 (r) h3(r) - h4 (r) h4(r)] U8)'

br being appropriate linear combinatiO'l1s of.,the ar, obtained by a unitary transformation. Further-
'.i'

more, it follows from (16) that br (r) are linearly related to br (-r).

The Hermitian form (18), for a given value of r, remains invariant under the exchange of r

with -r, as a consequence of (16) and (17). From this, and keeping again (17) into account, it

follows that we can set:

h3(r)=bj(-r); b4(r)=hz(-r). (2())

We introduce, for simplicity, the new variables:

Bj(r)=J2"hj(r) ; Bz(T)=.[2hz(r), (21)

and we obtain:

H=L.rc/mzcz +hzrz t [nr(T) - ;},
r-l

(22)
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MX=~ThT",~ (nr(r)-~1,r-l
(23)

where we have set:

-
{

o
nr(r) = Br(r)Br(r) = 1

considering, furthermore, that the following relations hold:

I Br(r)B",(r') + B",(r')Br(r)= °rr,(Ju,
Br (r) B", (T') + B",(r')Br(r) = 0,

1 Br(r)B",(r') +B",(r')Br(r)= 0,

(24)

as it would follow formally, in the Jordan-Wigner scheme, for the coefficients in the development of

a two component matter-wave.

The preceding formulae are entirely analogous to those obtained in the quantization of the

Maxwell equations, except for the different statistic. In the place of massless quanta, we have parti-

des with a finite mass and also for them we have two available polarization states. In the present

case, as in the case of the electromagnetic radiation, the half-quanta of rest energy and momentum

are present, except that they appear with the opposite sign, in apparent connection with the different

statistic. They do not constitute a specific difficulty, and they must be considered simply as ad-

ditive constants, with no physical significance.

Similarly to the case of light qua~ta, it is not possible to describe with eigenfunctions the states

of such particles. In the pres~nfcase, however, the presence of a rest mass allows one to consider the

non relativistic approximation, where all the notions of elementary quantum mechanics apply,

obviously. The non relativistic approximation may be useful primarily in the case of the heavy

particles (neutrons).

The simplest way to go to the configuration space representation is to associate to each oscil-

lator the following plane wave:

1 2,,"i(T,q) °/J/Jr.-e ,L3/2
(r=1,2).

corresponding to the same value of the momentum, and with two possible polarization states, to keep

into account the multiplicity of oscillators. We can go further, and describe not a simple particle, but
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a system with an indefinite number of particles with the two-valued, complex eigenfunction

<P= «PI ,<P2),accordingto the Jordan-Wignermethod. It is sufficient to set:

j
q)l(g)=L:r ~/ ezmCr,q)Bl(r),

L3Z

1q)z(g)=L: ~ eZITiCr,q)Bz(r).
r L3/Z

(25)

In the non relativistic approximation (1),1« ¥) the constants br('}') in (18') are linear

combinations of are'}'), with '}'-independent coefficients.

The latter coefficients depend only upon the elements of [3 and, according to (9), we have:

which satisfy also eq. (20), as a consequence of (16). From eqs. (15) and (25) we have, in the non

relativistic approximation:

jq)1(g)=U3(g)- iUz(g),

1 q)z(g) = U4 ( g) + i Ul ( g).

(26)

On the purely formal side, we pote ,Qtat <P= «PI ,<P2) coincides, up to a ,.f2 factor, with the

pair of large eigenfunctions of eqs:'(l 0), when interpreted in the usual way, that is with no reality

restriction.
I-P2 a

To prove this, it is enough to verify that the transformation if; = ff Y U allows one to go

from the scheme (9) to the usual Dirac scheme (ex=PI a;[3 = P3), so that, effectively:

1
r/, - -q)I'
'JV3- J2

1 '" .- -""z '<1'4- .f2

notoriously, in the latter scheme, if;3 and cP4 are the large components. This relation clarifies the

transformation law of <P with respect to space rotations, but it has no meaning, obviously, with

respect to general Lorentz transformations.

The existence of simple formulae such as (26) could lead one to suspect that, to a certain

extent, the passage through plane waves is superfluous. As a matter of fact, such a passage is

conceptually needed to obtain the cancellation ot the rest-energy half-quanta. In fact, after such

a3 (r) - iaz (r) a3U) + iaz(r)
bl(r)= .f2

; b3(r)=
ff

bz(r)=
a4 (r) + ial (r) a4(r)-ial(r)

ff
; b4(r) =

v0:"
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cancellation, the expression of the energy is naturally given by:

J
"""

( 2 1 2

)H= (/J me + 2m p (/Jdq,
(Z/)

to first approximation, and it differs in an essential way from (13).

3. As we have already said, the scheme (12) is not sufficient to describe charged particles; but,

upon the introduction of a further quadrupl~t of real quantities V r, analogous to the Ur, one re-

obtains the usual electrodynamics, in a form symmetric with respect to the electron and positron. We

consider, therefore, two sets of real quantities, representing the matter particles and the electro-

magnetic field, respectively. Quantities of the first kind are to be interpreted according to the scheme

described in Sect. 1. Quantities of the second kind, i.e. the electromagnetic potentials <pand

A = (Ax, Ay, Az), can be interpreted as classical quantities, and have to be quantized according to

the Heisenberg rule, based on the correspondence principle. The Maxwell and Dirac equations (with

the above mentioned restriction for the latter) can be obtained from a variational principle:

oJLdqdt,

L being the sum of three terms:

L = L' + L" + L'"

The first term refers to the matter wave:

he

I [

If)

]
L' = i - U* - - --'-(a, '"grad) + ,8'p. U

211: c at J

+ V* [~ :t - (a, grad) + ,8'p.]V \ '

(28)

while the second describes the radiation field, which we suppose to be quantized according to the

method of Fermj(4):

1 - 1

(

1 .

)

2
L" =_(E2_H2) - - -cp + divA

811: 811: c
(29)

We must therefore impose the auxiliary condition

1 .
-cp + div A = 0" (30)
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The expression given in (29) differs from the one used by Fermi, but for integrable terms only.

It leads to a definition of the momentum Po, conjugate to I.{J,such as to allow one to eliminate im-

mediately one of the two longitudinal waves, without having to go through the plane wave develop-

ment; in this respect, it is completely immaterial whether the second term in the expression (29) for

L" is multiplied by an arbitrary, non vanishing constant. As for L'" it must be so chosen

that ifJ =U + iV obeys the Dirac equation (8) completed with the external field, i. e. to the equation:

t: + : q> + (a, p + ; A )+ lime] q;= o.

In practice, this requirement leads to:

L'" = ieU*[q>+ (a, A) ] V - ie V* [<p + (a, A) ] U. (31)

Upon variation of the electromagnetic potentials we obtain the following expressions for the

charge and current densities:

P= -if (U*V - V*U) =- e 1xp - q;*ifj2 '
(32)

I = ie (U* av - V*au) = e ?Jaq; - q;*a(j)
2 '

These expressions differ from the usual ones for infinite constants only. The cancellation of such

infinite constants is required by the symmetry of the theory, which is already implicit in the form

chosen for the variational principle;.injact, the exchange of Ur and Vr, which appear symmetrically

in L', is equivalent to changing sign to the electric charge.

U and V obey the anticommutation relations:

Ur(q)Us(q')+Us(q')Ur(q) =~ {}(q- q')

Vr(q) Vs (q')+Vs(q') Vr(q) =~ {}(q- q')

Ur(q) Vs(q') + Vs(q')Ur(q) = 0,

which are equivalent to the usual Jordan-Wigner scheme, if we set cP =U + iV. The electromagnetic

potentials I.{J,Ax, Ay, Az, on the other side, obey to the usual commutation relations with their

conjugate momenta, e.g. Po(q)l.{J(q')-l.{J(q')Po(q) = 2~0 (q - q'), with:
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1

(
1 .

)Po = - - -q> + div A ,47rc C
(33)

1 1 1
P =- -E ; P =- -E ; P =--E.

x 47rc x y 47rc y Z 47rc Z

The energy is made up of three terms: H =H' + H" + H"'. H' is derived from L', according to

the rules already illustrated. The second term is obtained from the classical rules;

H"= f£Po<p+ (p,A) - L"] dq, where P = (Px, Py, Pz). As for Hili, it can be

b
.

d f L
"' f 11 . . h h d (

.
H'"

jL
'" d )

'
b

.
L

'" .
0 tame rom, 0 OWIng elt er met 0 s In our case =- q as It must e, SInce IS

a function of both the matt~r and the electromagnetic field variables. This, by the way, proves the

necessity of the ansatz (5). The continuity equation, (30), is obeyed at any time, if it holds initially

together with the divergence equation div E =41Tp. It follows from (33) that the kinematics defined

by the exchange rules has to be reduced by the use of the equations:

I Po(q)=O,

I divP+~P=O,
C

(34)

and therefore by assigning fixed values to two field quantities, with the corresponding indeterminacy

in the conjugate variables. The first of (34) implies therefore, the elimination of Po and II' from the

expression of H. The elimination is easily obtained by making use of (33), and one arrives, in this

way, to the expression:

J
{

- 2 2 1
1

2

}H = <P [- C (a, p.) - ~.:C] <P - (A, 1) + 2 uP + 8;1rot A dq.

As for relativistic invariance, 'wi note that <P = U + iV obeys the Dirac equations, and that the

(35)

Maxwell equations also hold, with a charge and current densities which obey the relativistic trans-

formation law. These two facts guarantee that the complete proof of the invariance of the theory is

already implicit in the results of Heisenberg and Pauli (5). We turn now to the interpretation of the

formalism.

4. Upon developing the U in the basis of the periodical functions considered before, and

similarly tOr the V, we find as the obvious extension of (22), and after cancellation of the rest energy

half quanta:

2

H' ="'£,c./ m2c2 + h2r2 ~ [ Br (r)Br( r) + B~(r)B;(r)],r=1
(36)
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where Br and Br' refer to the development of U and V, respectively; Br and Br' and their conjugate

variables obey the usual anticommutation relations. If, for each value of 'Y, we in traduce four

appropriate spin functions ~s('Y) (s = I, 2, 3, 4) assuming four complex values and forming a unitary

system, we can set:

1 --

\

u= ffL;r {B1(r)'1(r)+B2(r)'2(r)+B1 (-r)'3(r)+B2( -r)'4(r)}f/q),

1 -
V = nL;r {Bl (r), 1(r) + B2( r), 2(r) + Bl ( - r), 3 (r) + B2 ( - rH4 (r) }fr(q),

(37)

the following relations being, furthermore, satisfied:

- ,

J'3(r)=~(-r),
1 '4(r) = '2( - r).

(38)

It follows from the expression (32) for the electric charge density that the total charge is given

by:

LeIQ =- 2" [U* (q)V(q) - V* (q)U(q) J dq
(39)

. 2te - - - -
=- ZL:r r~ [Br(r)B;(r) + BT(r)B;(r) - B; (r)Br(r) - B;(r)Br(r) J.

If we set:
oJ

eel =
T

B - iB;T

e~os = .(2
(40)

we can transform the expressions (36) and (39) for the energy and charge into the form:

H'=L; rc./ m2c2+ h2r2t (c:le~l +cfse,f°S)
T=1

(41)

Q = e L: t
[
- (Ce1ee1 -~ )+ cposePos -~

Jr T=1 r r 2 T T 2

= " ~ ( _Celeel +cPosepOS).
e L.Jr /:::1 T T T T

(42)
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The elimination of the half-quanta of electricity is, therefore, automatic, provided we perform

the internal sum first. Eqs. (41) and (42) represent a set of oscillators which are equivalent to a

double system of particles obeying the Fermi statistic, with rest mass m and charge :f:e; the varia-

bles CrPos refer to positrons and the ere] to electrons.

The elimination of the longitudinal electric field by the second equation in (34) is somewhat

different in a symmetric theory because it is not possible to cast p, as it results from (32), in a

diagonal form. The result of the elimination is well known in ordinary electrodynamics (through

partially illusory because of convergence difficulties) where p = -e 7P cf;;but it is equally known if one

starts from p = erp*ifj because the latter position is fully equivalent to exchange the role of electron

and positron, considering the latter as a real particle and the former as a positron "hole". It seems

plausible that those matrix elements which mantain the same form in the two opposite theories

remain the same in the symmetric theory.

We thus assume to have already eliminated the irrotational part of A and P. The expression

(35) for H is modified in two ways: first by assuming that A and P in this expression represent only

the divergence free part of such vectors; secondly by adding a term which represents the electrostatic

energy. The latter term takes a different form in the ordinary theory (electron-electron hole) and in

the opposite theory. Keeping the interaction of each particle with itself, one has in the first theory:

e2 1 - -
Hels =2ffl q_q'Icf;(q)cf;(q)cf;(q')cf;(q')dqdq;

while in the second theory:

2

Hels =Tffl q ~ q'l cf;*(q)CP(q)cf;*(q')(f(q')dqdq~

.'"

Using (37) and (40) one 'can' express the electrostatic energy as a function of the C's. The only

terms which have given rise to physical applications are identical in the two theories: they are those

which can be interpreted, from the particle view-point, as repulsion or attraction between distinct

particles of the same or of the opposite type.

For what concerns the interaction with the radiation field, the only difference between the

symmetric and the ordinary theory lies in the cancellation of undetermined constants, relative to the

single oscillators, in the expression for the current density; again the formulae of interest for the

applications remain unchanged.
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fl) The physical application which will be illustrated later on suggests the more rigorous

restriction that, in any linear combination of qf' and <'If'to any given eigenvalue there

corresponds another one, equal in absolute value and opposite in sign.

f2) The behaviour of U under space reflection can be conveniently defined keeping into account

that a simultaneous change of sign of U2 has no physical significance, as already implied by

other reasons. In our scheme: U/(q) = RU(q) with R = ipt °y and R2 = -1. Similarly, for a

time reflection: U'(q,t) = ip2 U(q, -t)o

The Editorial Note

Luciano Maiani, one of my friends for many years, was among the participants in the J apan-

Italy Symposium on Fundamental Physics which was held on January 27-30, 1981 in Tokyo. After

the symposium he visited Kyoto, where we discussed the Majorana neutrino mass. As a byproduct,

we arrived at the idea of translating the famous but not-wen-known paper "Teoria symmetrica dell'

elettrone e del positrone" by Ettore Majorana for publication in "Soryushiron Kenkyu".

As the Editor I express my s1ncere"gratitude to Luciano for his excellent translation of this
'.J

Italian paper into English.

Michiji Konuma

Editor of the "Soryushiron Kenkyu"
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