PHYS 2380 Quantum Physics I Term Test March 5th, 2013, 19:00 - 21:00 hrs 519 Allen Bldg.

- 1. An electron bound to a hydrogen atom is in the n=5 energy level. Using the Bohr model:
 - a. Find the ionization energy for this ion. (3 marks)
 - b. What is the shortest wavelength that can be emitted by transitions as the electron goes to lower energy levels? (3 marks)
 - c. What is the longest wavelength that can be emitted as the electron goes to lower energy levels? (3 marks)
- 2. Two stars, A and B, radiate energy like black bodies. The wavelength (λ_A) where the radiation is a maximum for star A is twice the wavelength (λ_B) where the radiation is a maximum for star B.
 - a. What is the ratio of the temperatures of these stars, T_A/T_B ? (3 marks)
 - b. What is the ratio of their radii if they both radiate the same total amount of energy? (5 marks)
- 3. A neutron is confined to a region of space that is 2.0×10^{-12} m wide.
 - a. What is the minimum uncertainty in its momentum? (3 marks)
 - b. What is the minimum kinetic energy that this neutron could have? Express your answer in eV. (3 marks)
 - c. If the particle were an electron instead of a neutron what would its minimum kinetic energy be? (3 marks)
- 4. A particle is described by a wave function $\Psi(x,t) = A \sin\left(\frac{3\pi x}{L}\right) e^{-i\omega t}$ in the region $0 \le x \le L$. It is zero everywhere else.
 - a. Show that $A = \sqrt{\frac{2}{L}}$ is required to normalize the wave function. (5 marks)
 - b. The potential energy of the particle is zero in this region, use the S. equation to determine ω in terms of *L* and other constants. (5 marks)
 - c. What is the probability density as a function of position? (3 marks)
 - d. Sketch the probability density for the range $0 \le x \le L$. Clearly show the maxima and minima and their locations. (3 marks)
 - e. What is the probability of finding the particle in the range $\frac{L}{6} \le x \le \frac{L}{3}$ (3 marks)
 - f. Use the given wavefunction to determine the average position of the particle? (5 marks)

The End

Appendix: Some information from the text and lectures:

Special Relativity:

Relativistic momentum and energy:

 $\vec{p} = \gamma m \vec{v}$ $E = \gamma m c^2 = m c^2 + K$ $E^2 = c^2 p^2 + m^2 c^4$

Electromagnetic radiation:

Power received by a detector from a wave:

$$P = \left(\frac{1}{\mu_0 c}\right) E_0^2 A \sin^2(kz - \omega t + \phi)$$
$$P_{ave} = \frac{1}{T_0} \int_0^{T_0} P dt = \frac{E_0^2 A}{2\mu_0 c}, \quad I = \frac{P_{ave}}{A} = \frac{E_0^2}{2\mu_0 c}$$

Where P is the instantaneous power, P_{ave} is the average power delivered to a detector of area A and I is the intensity of the light.

Interference and diffraction:

Pattern Type	Bright Fringes	Dark Fringes
Single slit (width <i>w</i>)	$\frac{w}{2}\sin\theta = m\lambda$	$\frac{w}{2}\sin\theta = \left(m + \frac{1}{2}\right)\lambda$
Double slit (spacing <i>d</i>)	$\frac{2}{d\sin\theta} = m\lambda$	2
Grating (lines spaced <i>d</i> apart)	$d\sin\theta = m\lambda$	
Bragg (layers of atoms <i>d</i> apart)	$2d\sin\theta = m\lambda$	
Circular object		First fringe at $1.22\lambda/d$

Photons and light:

 $\lambda v = c$ $E_{ph} = hv = cp_{ph}$ $p_{ph} = \frac{h}{\lambda}$

Photoelectric effect: $K = hv - \phi = eV_s$

Where K is the kinetic energy of the emitted electrons, ϕ is the work function of the material and V_s is the stopping potential.

Black body radiation:

$$I = \sigma T^{4}$$

$$\lambda_{\max} T = 2.898 \times 10^{-3} \, m \bullet K$$

$$u(\lambda) = \frac{8\pi h c \lambda^{-5}}{e^{h c / \lambda k T} - 1}$$

$$R(\lambda) = \frac{c}{4} u(\lambda)$$

$$dI = R(\lambda) d\lambda$$

Compton Scattering: $\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$

Bremsstrahlung: $\lambda_{\min} = \frac{hc}{eV}$

Wavelike properties of particles:

De Broglie wavelength: $\lambda = \frac{h}{p}$ Heisenberg uncert. relationships:

 $\Delta E \Delta t \ge \frac{\hbar}{2}$ $\Delta p_x \Delta x \ge \frac{\hbar}{2}$

Wave packets:

$$p = h / \lambda = \hbar k$$
$$\hbar \omega = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$
$$v_{group} = \frac{d\omega}{dk}$$
$$v_{phase} = \frac{\omega}{k}$$

Schrödinger equation: $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$ Time independent: $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)$ Probability Current: $S(x,t) = \frac{i\hbar}{2m} \left\{ \Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right\}$ Normalization (1-D): $\int_{-\infty}^{+\infty} \Psi^* \Psi dx = 1$

Rutherford Scattering:	Bohr model:
$b = \frac{zZ}{2K} \frac{e^2}{4\pi\varepsilon_0} \cot \frac{1}{2}\theta$	$E_n = -\frac{Z_{eff}^2 m e^4}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{n^2} = -\frac{13.6 Z_{eff}^2}{n^2} eV$
$\frac{1}{2}mv^{2} = \frac{1}{2}\left(\frac{b^{2}v^{2}}{r_{\min}^{2}}\right) + \frac{e^{2}}{4\pi\varepsilon_{0}}\frac{zZ}{r_{\min}}$	$\frac{1}{\lambda} = R Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$
$d = \frac{1}{4\pi\varepsilon_0} \frac{zZe^2}{K}$	$R = R_{\infty} \left(\frac{1}{1 + m / M} \right)$
	$R_{\infty} = \frac{mk^2 e^4}{4\pi c\hbar^3}$
	- Where $R_{\infty} = 1.0973732 \times 10^7 \text{m}^2$
	¹ is the Rydberg constant

X-rays:

K-series:
$$E_{photon} = (13.6eV) \left(\frac{1}{1^2} - \frac{1}{n^2}\right) (Z-1)^2$$

L-series: $E_{photon} = (13.6eV) \left(\frac{1}{2^2} - \frac{1}{n^2}\right) (Z-3)^2$
M-series: $E_{photon} = (13.6eV) \left(\frac{1}{3^2} - \frac{1}{n^2}\right) (Z-5)^2$

Some useful mathematical relations:

$$\sqrt{\left(1 - \frac{u^2}{c^2}\right)} \approx 1 - \frac{1}{2} \frac{u^2}{c^2}$$

$$\frac{1}{\sqrt{\left(1 - \frac{u^2}{c^2}\right)}} \approx 1 + \frac{1}{2} \frac{u^2}{c^2}$$
For $\frac{u^2}{c^2} <<1$

 $\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$

$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\sin(2A) = 2\sin(A)\cos(A)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

Some useful Integrals:

$$\int \sin^{2}(u) \, du = \frac{1}{2} \left(u - \sin u \cos u \right)$$

$$\int \sin u \cos u \, du = \frac{1}{2} \sin^{2} u$$

$$\int \cos^{2} u \, du = \frac{1}{2} \left(u + \sin u \cos u \right)$$

$$\int u \sin^{2} u \, du = \frac{u^{2}}{4} - \frac{u \sin 2u}{4} - \frac{\cos 2u}{8}$$

$$\int u \cos^{2} u \, du = \frac{u^{2}}{4} + \frac{u \sin 2u}{4} + \frac{\cos 2u}{8}$$

$$\int u^{2} \sin^{2} u \, du = \frac{u^{3}}{6} - \left(\frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u - \frac{u \cos 2u}{4}$$

$$\int u^{2} \cos^{2} u \, du = \frac{u^{3}}{6} + \left(\frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u + \frac{u \cos 2u}{4}$$

$$\int 0^{\infty} u^{n} e^{-u} \, du = n! \quad for \ n > 0$$

$$\int \cos^{n} u \sin u \, du = -\frac{\cos^{n+1} u}{n+1} \quad for \ n > 0$$

Constants:

Constant	Standard value	Alternate units
Speed of light	$c = 2.998 \times 10^8 m / s$	
Electronic charge	$e = 1.602 \times 10^{-19} C$	
Boltzmann constant	$k = 1.381 \times 10^{-23} J / K$	$8.617 \times 10^{-5} eV / K$
Planck's constant	$h = 6.626 \times 10^{-34} J \cdot s$	$4.136 \times 10^{-15} eV \cdot s$
	$\hbar = 1.055 \times 10^{-34} J \cdot s$	$0.652 \times 10^{-15} eV \cdot s$
Avogadro's constant	$N_A = 6.022 \times 10^{23} mole^{-1}$	
Stefan-Boltzmann constant	$\sigma = 5.67 \times 10^{-8} W / m^2 \cdot K^4$	
Electron mass	$m_e = 5.49 \times 10^{-4} u \text{ or } 9.11 \times 10^{-31} kg$	$0.511 MeV/c^2$
Proton mass	$1.007276 \ u \ or \ 1.67262171 \times 10^{-27} \ kg$	938.3 <i>MeV</i> / c^2
Neutron mass	$1.008665 \ u \ or \ 1.67492728 \times 10^{-27} \ kg$	939.6 <i>MeV</i> / c^2
Mass of ⁴ He	4.002603 u	
Bohr radius	$a_0 = 4\pi\varepsilon_0 \hbar^2 / m_e e^2 = 0.0529 nm$	
Hydrogen ionization energy	13.6eV	
	$hc = 1240ev \cdot nm$	
	$1eV = 1.602 \times 10^{-19} J$	
Atomic mass unit (dalton)	$1u = 931.5 MeV / c^2$	$1.661 \times 10^{-27} kg$
	$kT = 0.02525 eV \approx \frac{1}{40} eV$	
	at T=293 K	
Coulomb constant	$\frac{1}{4\pi\varepsilon_0} = 8.988 \times 10^9 N \cdot m^2 \cdot C^{-2}$	
	$\frac{e^2}{4\pi\varepsilon_0} = 1.44eV \cdot nm$	