PHYS 2380 Quantum Physics I

Term Test March ${ }^{\text {th }}$, 2012, 19:00-21:00 hrs

519 Allen Bldg.

1. The probability distribution of energies for atoms of a gas at temperature T is given by:

$$
P(E)=C e^{-E / k T}
$$

Where k is Boltzmann's constant, E is the energy of the particle and T is the temperature in kelvin. The probability of finding a particle with an energy between E and $E+d E$ is given by $P(E) d E$.
a. Determine the constant C by normalizing $P(E)$. (5 marks)
b. Use $P(E)$ to find the average energy for the atoms in the gas. (5 marks)
2. A spherical object at a temperature of 1800 K and a radius of 10.0 cm radiates like a black body.
a. What is the total power radiated by this object? (5 marks)
b. If the radius of the object is reduced to 5.00 cm while keeping the power radiated by the object the same, what is the new temperature of the object? (5 marks)
c. At what wavelength does the new spectral distribution have its maximum value? (5 marks)
3. A neutron is confined to a region of space that is $2.0 \times 10^{-12} \mathrm{~m}$ wide.
a. What is the minimum uncertainty in its momentum? (5 marks)
b. What is the minimum kinetic energy that this electron could have? Express your answer in eV. (5 marks)
4. A particle is described by a wave function $\psi(x)=A \sin \left(\frac{4 \pi x}{L}\right) e^{-i \omega t}$ in the region $0 \leq x \leq L$. It is zero everywhere else.
a. Show that $A=\sqrt{\frac{2}{L}}$ is required to normalize the wave function. (5 marks)
b. Given that the potential energy of the particle is zero in this region, determine ω in terms of L and other constants. (2 marks)
c. What is the probability density as a function of position? (5 marks)
d. Sketch the probability density for the range $0 \leq x \leq L$. Clearly show the maxima and minima and their locations. (5 marks)
e. What is the probability of finding the particle in the range $\frac{3}{8} L \leq x \leq \frac{5}{8} L$ (5 marks)
f. What is the average position of the particle? (5 marks)

The End

Appendix: Some information from the text and lectures:

Special Relativity:

Relativistic momentum and energy:
$\vec{p}=\gamma m \vec{v}$
$E=\gamma m c^{2}=m c^{2}+K$
$E^{2}=c^{2} p^{2}+m^{2} c^{4}$

Electromagnetic radiation:

Power received by a detector from a wave:
$P=\left(\frac{1}{\mu_{0} c}\right) E_{0}^{2} A \sin ^{2}(k z-\omega t+\phi)$
Where P is the instantaneous power, $P_{\text {ave }}$ is the average power delivered to a detector of area A and I is the intensity of the light.
$P_{\text {ave }}=\frac{1}{T_{0}} \int_{0}^{T_{0}} P d t=\frac{E_{0}^{2} A}{2 \mu_{0} c}, \quad I=\frac{P_{\text {ave }}}{A}=\frac{E_{0}^{2}}{2 \mu_{0} c}$

Interference and diffraction:

Pattern Type	Bright Fringes	Dark Fringes
Single slit (width w)	$\frac{w}{2} \sin \theta=m \lambda$	$\frac{w}{2} \sin \theta=\left(m+\frac{1}{2}\right) \lambda$
Double slit (spacing d)	$d \sin \theta=m \lambda$	
Grating (lines spaced d apart)	$d \sin \theta=m \lambda$	
Bragg (layers of atoms d apart)	$2 d \sin \theta=m \lambda$	
Circular object		First fringe at $1.22 \lambda / d$

Photons and light:

$$
\begin{aligned}
& \lambda v=c \\
& E_{p h}=h v=c p_{p h} \\
& p_{p h}=h / \lambda
\end{aligned}
$$

Where K is the kinetic energy of the emitted electrons, ϕ is the work function of the material and V_{s} is the stopping potential.

Photoelectric effect: $K=h \nu-\phi=e V_{s}$
Black body radiation:
$I=\sigma T^{4}$
$\lambda_{\text {max }} T=2.898 \times 10^{-3} \mathrm{~m} \bullet K$
$u(\lambda)=\frac{8 \pi h c \lambda^{-5}}{e^{h c / \lambda k T}-1}$
$R(\lambda)=\frac{c}{4} u(\lambda)$
$d I=R(\lambda) d \lambda$
Compton Scattering:
$\lambda^{\prime}-\lambda=\frac{h}{m_{e} c}(1-\cos \theta)$
Bremsstrahlung: $\lambda_{\text {min }}=\frac{h c}{e V}$

PHYS 2380 Term Test March $6^{\text {th }}$, 2012 page 3of 6

Wavelike properties of particles:

De Broglie wavelength: $\lambda=h / p$
Heisenberg uncert. relationships:
$\Delta E \Delta t \geq \frac{\hbar}{2}$
$\Delta p_{x} \Delta x \geq \frac{\hbar}{2}$
Wave packets:
$p=h / \lambda=\hbar k$
$\hbar \omega=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}$
$v_{\text {group }}=\frac{d \omega}{d k}$
$v_{\text {phase }}=\frac{\omega}{k}$
Schrödinger equation: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$
Time independent: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)$
Probability Current: $S(x, t)=\frac{i \hbar}{2 m}\left\{\Psi \frac{\partial \Psi^{*}}{\partial x}-\Psi^{*} \frac{\partial \Psi}{\partial x}\right\}$
Normalization (1-D): $\int_{-\infty}^{+\infty} \Psi^{*} \Psi d x=1$

Nuclear Physics:

$R=R_{0} A^{1 / 3}=1.2 A^{1 / 3} \mathrm{fm}$
$B=\left[Z m\left({ }_{1}^{1} H\right)+N m_{n}-m\left({ }_{2}^{A} X\right)\right] c^{2}$
$Q=\left[M_{\text {parent }}-M_{\text {Daughter }}-M_{\text {emitted }}\right] c^{2}$
$N=N_{0} e^{-\lambda t}$
$A=\lambda N$
$t_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}$

PHYS 2380 Term Test March $6^{\text {th }}$, 2012 page 4of 6

Rutherford Scattering:

$b=\frac{z Z}{2 K} \frac{e^{2}}{4 \pi \varepsilon_{0}} \cot \frac{1}{2} \theta$
$\frac{1}{2} m v^{2}=\frac{1}{2}\left(\frac{b^{2} v^{2}}{r_{\text {min }}^{2}}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{z Z}{r_{\text {min }}}$
$d=\frac{1}{4 \pi \varepsilon_{0}} \frac{z Z e^{2}}{K}$

Bohr model:

$E_{n}=-\frac{Z_{\text {eff }}^{2} m e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}} \frac{1}{n^{2}}=-\frac{13.6 Z_{\text {eff }}^{2}}{n^{2}} e V$
$\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
$R=R_{\infty}\left(\frac{1}{1+m / M}\right)$
$R_{\infty}=\frac{m k^{2} e^{4}}{4 \pi c \hbar^{3}}$

- Where $R_{\infty}=1.0973732 \times 10^{7} \mathrm{~m}^{-1}$ is the Rydberg constant

X-rays:

K-series: $E_{\text {photon }}=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)(Z-1)^{2}$
L-series: $E_{\text {photon }}=(13.6 e V)\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)(Z-3)^{2}$
M-series: $E_{\text {photon }}=(13.6 \mathrm{eV})\left(\frac{1}{3^{2}}-\frac{1}{n^{2}}\right)(Z-5)^{2}$

Some useful mathematical relations:

$\sqrt{\left(1-u^{2} / c^{2}\right)} \approx 1-\frac{1}{2} \frac{u^{2}}{c^{2}}$
$\frac{1}{\sqrt{\left(1-u^{2} / c^{2}\right)}} \approx 1+\frac{1}{2} \frac{u^{2}}{c^{2}} \quad$ For $u^{2} / c^{2} \ll 1$

PHYS 2380 Term Test March $6^{\text {th }}$, 2012 page 5of 6

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$$
\sin (2 A)=2 \sin (A) \cos (A)
$$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Some useful Integrals:

$$
\begin{aligned}
& \int \sin ^{2}(u) d u=\frac{1}{2}(u-\sin u \cos u) \\
& \int \sin u \cos u d u=\frac{1}{2} \sin ^{2} u \\
& \int \cos ^{2} u d u=\frac{1}{2}(u+\sin u \cos u) \\
& \int u \sin ^{2} u d u=\frac{u^{2}}{4}-\frac{u \sin 2 u}{4}-\frac{\cos 2 u}{8} \\
& \int u \cos ^{2} u d u=\frac{u^{2}}{4}+\frac{u \sin 2 u}{4}+\frac{\cos 2 u}{8} \\
& \int u^{2} \sin ^{2} u d u=\frac{u^{3}}{6}-\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u-\frac{u \cos 2 u}{4} \\
& \int u^{2} \cos ^{2} u d u=\frac{u^{3}}{6}+\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u+\frac{u \cos 2 u}{4} \\
& \int_{0}^{\infty} u^{n} e^{-u} d u=n!\text { for } n>0 \\
& \int \cos ^{n} u \sin u d u=-\frac{\cos ^{n+1} u}{n+1} \text { for } n>0 \\
& \int \sin ^{n} u \cos u d u=\frac{\sin ^{n+1} u}{n+1} \text { for } n>0
\end{aligned}
$$

PHYS 2380 Term Test March $6^{\text {th }}$, 2012 page 6 of 6

Constants:

Constant	Standard value	Alternate units
Speed of light	$c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
Electronic charge	$e=1.602 \times 10^{-19} \mathrm{C}$	
Boltzmann constant	$k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Planck's constant	$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
	$\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$0.652 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Avogadro's constant	$N_{A}=6.022 \times 10^{23} \mathrm{~mole}^{-1}$	
Stefan-Boltzmann constant	$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$	
Electron mass	$m_{e}=5.49 \times 10^{-4} u$ or $9.11 \times 10^{-31} \mathrm{~kg}$	$0.511 \mathrm{MeV} / \mathrm{c}^{2}$
Proton mass	1.007276 u or $1.67262171 \times 10^{-27} \mathrm{~kg}$	$938.3 \mathrm{MeV} / \mathrm{c}^{2}$
Neutron mass	1.008665 u or $1.67492728 \times 10-27 \mathrm{~kg}$	$939.6 \mathrm{MeV} / \mathrm{c}^{2}$
Mass of ${ }^{4} \mathrm{He}$	4.002603 u	
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / m_{e} e^{2}=0.0529 \mathrm{~nm}$	
Hydrogen ionization energy	13.6 eV	
	$\mathrm{hc}=1240 \mathrm{ev} \cdot \mathrm{nm}$	
	$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$	
Atomic mass unit (dalton)	$1 u=931.5 \mathrm{MeV} / \mathrm{c}^{2}$	$1.661 \times 10^{-27} \mathrm{~kg}$
	$\begin{aligned} & k T=0.02525 \mathrm{eV} \approx \frac{1}{40} \mathrm{eV} \\ & \text { at } \mathrm{T}=293 \mathrm{~K} \end{aligned}$	
	$\frac{1}{4 \pi \varepsilon_{0}}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$	
	$\frac{e^{2}}{4 \pi \varepsilon_{0}}=1.44 \mathrm{eV} \cdot \mathrm{~nm}$	

