# April 16th, 2015Final ExamLOCATION: 402 Allen Bldg.NO. OF PAGES: 7DEPT. AND COURSE NO.: PHYS 2380TIME: 13:30 to 16:30 (3 hours)EXAMINATION: Quantum Physics 1Examiners: K.S. Sharma

UNIVERSITY OF MANITOBA

#### Instructions:

- Answer all questions.
- Start each question on a new page.
- Show all of your steps in arriving at the solution. Do not just state the answer. State your arguments clearly and indicate any assumptions you make.
- Include a sentence or two at the end of each problem summarizing your solution.
- Each part of a question carries equal weight.
- 1. A cavity is maintained at a temperature of 1650 K.
  - a) At what wavelength is the peak of the radiated energy?
  - b) What is the ratio of the radiance at twice the wavelength determined in part (a) to the radiance at the wavelength where the radiance is a maximum?
  - c) At what rate does energy escape from a hole in the walls of the cavity with a diameter of 1.00 *mm*?

(2+4+4 marks)

- 2. The de Broglie wavelength of a particle is defined to be:  $\lambda = h/p$ .
  - a) Show that for all energies large and small that :

$$\lambda = \frac{hc}{E_k \left(1 + 2mc^2/E_k\right)^{\frac{1}{2}}}$$

- b) Show that in the extreme relativistic limit that this expression approaches that for a photon of similar energy.
- c) Show that in the classical limit that this expression reduces to  $\lambda = h/(mv)$  as expected.

(3+4+4 Marks)

3. The wave function for the harmonic oscillator potential  $\left(V(x) = \frac{m\omega^2}{2}x^2\right)$  for n=1 is given by:

Where C is a constant and x is the position of the particle.

$$\Psi_{1}(x,t) = A_{1}ue^{-u^{2}/2}e^{-iEt/\hbar}$$
  
where  $u = \left(\sqrt{m\omega/\hbar}\right)x$  and  $E = \frac{3}{2}\hbar\omega$ 

- a) Show that  $A_1 = (4m\omega/\pi\hbar)^{\frac{1}{4}}$  by normalizing the wave function.
- b) Without computing the integrals, argue from the form of the integrand that  $\langle x \rangle$  and  $\langle p \rangle$  are zero.
- c) Show that the average value for position-squared:  $\langle x^2 \rangle$  for this state is  $\frac{3}{2} \left( \frac{\hbar}{ma} \right)$ .
- d) Show that the average value for momentum-squared:  $\langle p^2 \rangle$  for this state is  $\frac{3}{2}(\hbar m \omega)$
- e) Using the results from parts (c) and (d) obtain values for the average values for potential and kinetic energies and their sum. Express your answers in terms of  $\hbar$  and  $\omega$ .

# (4+3+4+4+3 marks)

- 4. A wave is incident from the left on the potential function, V(x), shown here:
  - a) Write down the "space-part" wave function for a particle with energy  $E > V_0$  in both regions. Identify the incident and reflected components in these wave functions. Do any of the components have a zero amplitude (explain)?



- b) What are the corresponding "time-parts" of the wave function?
- c) Given that  $V_0 = \frac{5}{9}E$  provide expressions for the wave number (*k*) in each region. Express of them in terms of the other. What is the ratio of  $k_1$  to  $k_2$ ?
- d) Apply the boundary conditions and determine the amplitudes for all the component waves in terms of one of them.
- e) From the coefficients determined in part (d) derive an expression for the probability density as a function of x.
- f) Sketch the probability density and locate the maxima, minima and constant levels if any. Assign relative values to maxima, minima and constant levels.
- g) <u>Directly</u> calculate the transmission coefficient T using your results from part (d).
- h) Directly calculate the reflection coefficient R using your results from part (d).

(3+3+3+3+3+3+3+3+3 marks)

5. The normalized wave functions for the n=2 state of the hydrogen atom are:

$$\psi_{nlm} = R_{nl}(r)\Theta_{lm}(\theta)\Theta(\phi) \text{ where}:$$

$$R_{20} = \frac{1}{\sqrt{2a_0^3}} \left(1 - \frac{r}{2a_0}\right)e^{-r/2a_0}$$

$$R_{21} = \frac{1}{2\sqrt{6a_0^3}} \left(\frac{r}{a_0}\right)e^{-r/2a_0}$$

and the angular dependence is given by:

$$\Theta_{11}\Phi_{1} = \sqrt{\frac{3}{8\pi}}\sin\theta e^{i\phi}$$
$$\Theta_{10}\Phi_{0} = \sqrt{\frac{3}{4\pi}}\cos\theta$$
$$\Theta_{11}\Phi_{-1} = \sqrt{\frac{3}{8\pi}}\sin\theta e^{-i\phi}$$

where  $a_0$  is the Bohr radius.

- a) For what value of *r* will the radial probability distribution corresponding to the state 210 have its maximum value? Express your answer in units of the Bohr radius,  $a_{0.}$
- b) Sketch a polar diagram representing the modulation factors that result from the 3 possibilities for the angular wave functions. Comment on the shapes of these diagrams and what they tell us about the orientation of the planes of the orbits.
- c) Show that R<sub>21</sub> normalized as given.
- d) Show that  $\Theta_{11}\Phi_1$  is normalized as given.

(4+4+4+4 marks)

# The End

# Appendix: Some information from the text and lectures:

# **Special Relativity:**

Relativistic momentum and energy:

 $\vec{p} = \gamma m \vec{v}$  $E = \gamma m c^2 = m c^2 + K$  $E^2 = c^2 p^2 + m^2 c^4$ 

# **Electromagnetic radiation:**

Power received by a detector from a wave:

$$P = \left(\frac{1}{\mu_0 c}\right) E_0^2 A \sin^2(kz - \omega t + \phi)$$
$$P_{ave} = \frac{1}{T_0} \int_0^{T_0} P dt = \frac{E_0^2 A}{2\mu_0 c}, \quad I = \frac{P_{ave}}{A} = \frac{E_0^2}{2\mu_0 c}$$

Where P is the instantaneous power,  $P_{ave}$  is the average power delivered to a detector of area A and I is the intensity of the light.

#### Interference and diffraction:

| Pattern Type                           | Bright Fringes                     | Dark Fringes                                                  |
|----------------------------------------|------------------------------------|---------------------------------------------------------------|
| Single slit (width <i>w</i> )          | $\frac{w}{2}\sin\theta = m\lambda$ | $\frac{w}{2}\sin\theta = \left(m + \frac{1}{2}\right)\lambda$ |
|                                        | 2                                  | 2                                                             |
| Double slit (spacing <i>d</i> )        | $d\sin\theta = m\lambda$           |                                                               |
| Grating (lines spaced d apart)         | $d\sin\theta = m\lambda$           |                                                               |
| Bragg (layers of atoms <i>d</i> apart) | $2d\sin\theta = m\lambda$          |                                                               |
| Circular object                        |                                    | First fringe at $1.22\lambda/d$                               |
|                                        |                                    |                                                               |

#### **Photons and light:**

 $\lambda v = c$   $E_{ph} = hv = cp_{ph}$   $p_{ph} = \frac{h}{\lambda}$ 

Photoelectric effect:  $K = hv - \phi = eV_s$ Where K is the kinetic energy of the emitted electrons,  $\phi$  is the work function of the material and  $V_s$  is the stopping potential.

Black body radiation:

 $I = \sigma T^{4}$  $\lambda_{\max} T = 2.898 \times 10^{-3} \, m \bullet K$  $u(\lambda) = \left(\frac{8\pi hc}{\lambda^{5}}\right) \left[\frac{1}{e^{hc_{\lambda kT}} - 1}\right]$  $dI = \frac{c}{4} u(\lambda) d\lambda$ 

Where  $u(\lambda)$  is the energy density, *h* is Planck's constant, *k* is the Botzmann constant and *c* is the speed of light.

#### Wavelike properties of particles:

De Broglie wavelength:  $\lambda = \frac{h}{p}$ Hiesenberg uncertainty relationships:  $\Delta E \Delta t \ge \frac{\hbar}{2}$   $\Delta p_x \Delta x \ge \frac{\hbar}{2}$  $\Delta p = \left(\left\langle p^2 \right\rangle - \left\langle p \right\rangle^2\right)^{\frac{1}{2}}$ 

Compton Scattering:  $\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$ Bremsstrahlung:  $\lambda_{\min} = \frac{hc}{eV}$  Wave packets:

р

Wave packets:  

$$p = h / \lambda = \hbar k$$
  
 $\hbar \omega = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$   
 $v_{phase} = \frac{\omega}{k}$ 

#### **Quantum Mechanics:**

Schrödinger equation:  
Complete: 
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$
  
Time independent:  $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)$   
Probability Current:  $S(x,t) = \frac{i\hbar}{2m} \left\{ \Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right\}$   
Normalization (1-D):  $\int_{-\infty}^{+\infty} \Psi^* \Psi dx = 1$   
Normalization (3-D):  $\int_{0}^{+\infty} \int_{0}^{\pi} \int_{0}^{2\pi} \Psi^* \Psi r^2 \sin \theta dr d\theta d\phi = 1$  or  $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Psi^* \Psi dx dy dz = 1$   
H-atom:  $\Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$  each of these components may be normalized individually.  
Radial probability distribution:  $P(r) = r^2 R^*(r) R(r)$   
Momentum operator:  $p_{op} = -i\hbar \frac{\partial}{\partial x}$ 

# **Nuclear Physics:**

$$R = R_0 A^{1/3} = 1.2 A^{1/3} fm$$
  

$$B = \left[ Zm \begin{pmatrix} 1 \\ 1 \end{pmatrix} + Nm_n - m \begin{pmatrix} A \\ z \end{pmatrix} \right] c^2$$
  

$$Q = \left[ M_{parent} - M_{Daughter} - M_{emitted} \right] c^2$$
  

$$N = N_0 e^{-\lambda t}$$
  

$$A = \lambda N$$
  
Nuclear Atom:

$$F = \frac{(ze)(Ze)}{4\pi\varepsilon_0 r^2}$$
$$U = \frac{(ze)(Ze)}{4\pi\varepsilon_0 r}$$
Rutherford Scattering:
$$h = \frac{zZ}{2} \frac{e^2}{2\pi cot^2} \cot^{\frac{1}{2}}\theta$$

$$b = \frac{1}{2K} \frac{1}{4\pi\varepsilon_0} \cot \frac{1}{2}\theta$$
$$\frac{1}{2}mv^2 = \frac{1}{2}\left(\frac{b^2v^2}{r_{\min}^2}\right) + \frac{e^2}{4\pi\varepsilon_0}\frac{zZ}{r_{\min}}$$
$$d = \frac{1}{4\pi\varepsilon_0}\frac{zZe^2}{K}$$

X-rays:

K-series: 
$$E_{photon} = (13.6eV) \left(\frac{1}{1^2} - \frac{1}{n^2}\right) (Z-1)^2$$

Bohr model: 
$$E_n = -\frac{me^4}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{n^2} = -\frac{13.6Z_{eff}^2}{n^2} eV$$
  
 $\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$   
 $R = R_{\infty}\left(\frac{1}{1+m/M}\right)$   
 $R_{\infty} = \frac{mk^2 e^4}{4\pi c \hbar^3} \text{ where } k = \frac{1}{4\pi \varepsilon_0}$   
Bohr radius:  $a_0 = \frac{\hbar^2}{4\pi \varepsilon_0 me^2}$   
 $r_n = n^2 a_0 / Z$   
L-series:  $E_{photon} = (13.6eV)\left(\frac{1}{2^2} - \frac{1}{n^2}\right)(Z-3)^2$ 

M-series:  $E_{photon} = (13.6eV) \left(\frac{1}{3^2} - \frac{1}{n^2}\right) (Z-5)^2$ 

# Some useful mathematical relations:

$$\sqrt{\left(1 - \frac{u^2}{c^2}\right)} \approx 1 - \frac{1}{2} \frac{u^2}{c^2}$$
$$\frac{1}{\sqrt{\left(1 - \frac{u^2}{c^2}\right)}} \approx 1 + \frac{1}{2} \frac{u^2}{c^2}$$

For  $u^2/c^2 << 1$ 

# Some useful trigonometric relations:

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
  

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
  

$$\sin(2A) = 2\sin(A)\cos(A)$$
  

$$\sin^{2}(A) = \frac{1 - \cos(2A)}{2}$$
  

$$\cos^{2}(A) = \frac{1 + \cos(2A)}{2}$$
  

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

# Some useful Integrals:

$$\int \sin^{2}(u) \, du = \frac{1}{2} \left( u - \sin u \cos u \right)$$
  
$$\int \sin u \cos u \, du = \frac{1}{2} \sin^{2} u$$
  
$$\int \cos^{2} u \, du = \frac{1}{2} \left( u + \sin u \cos u \right)$$
  
$$\int u \sin^{2} u \, du = \frac{u^{2}}{4} - \frac{u \sin 2u}{4} - \frac{\cos 2u}{8}$$
  
$$\int u \cos^{2} u \, du = \frac{u^{2}}{4} + \frac{u \sin 2u}{4} + \frac{\cos 2u}{8}$$
  
$$\int u^{2} \sin^{2} u \, du = \frac{u^{3}}{6} - \left( \frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u - \frac{u \cos 2u}{4}$$
  
$$\int u^{2} \cos^{2} u \, du = \frac{u^{3}}{6} + \left( \frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u + \frac{u \cos 2u}{4}$$

 $\int \sin^3 u \, du = -\frac{1}{3} \cos u \left[ \sin^2 u + 2 \right]$  $\int \cos^3 u \, du = \frac{1}{3} \sin u \left[ \cos^2 u + 2 \right]$  $\int_0^\infty u^n e^{-u} \, du = n! \quad for \ n > 0$  $\int \cos^n u \sin u \, du = -\frac{\cos^{n+1} u}{n+1} \quad for \ n > 0$  $\int \sin^n u \cos u \, du = \frac{\sin^{n+1} u}{n+1} \quad for \ n > 0$ 

Integrals forms involving  $e^{-\lambda x^2}$  (note the limits of integration):

| n | $I_n = \int_0^\infty x^n e^{-\lambda x^2} dx$        | n            | $I_n = \int_0^\infty x^n e^{-\lambda x^2} dx$            |
|---|------------------------------------------------------|--------------|----------------------------------------------------------|
| 0 | $\frac{1}{2}\pi^{1/2}\lambda^{-1/2}$                 | 4            | $\frac{3}{8}\pi^{1/2}\lambda^{-5/2}$                     |
| 1 | $\frac{1}{2}\lambda^{-1}$                            | 5            | $\lambda^{-3}$                                           |
| 2 | $\frac{1}{4}\pi^{\frac{1}{2}}\lambda^{-\frac{3}{2}}$ | lf n is even | $\int_{-\infty}^{\infty} x^n e^{-\lambda x^2} dx = 2I_n$ |
| 3 | $\frac{1}{2}\lambda^{-2}$                            | lf n is odd  | $\int_{-\infty}^{\infty} x^n e^{-\lambda x^2} dx = 0$    |

# Constants:

| Constant                   | Standard value                                                              | Alternate units                    |
|----------------------------|-----------------------------------------------------------------------------|------------------------------------|
| Speed of light             | $c = 2.998 \times 10^8 m / s$                                               |                                    |
| Electronic charge          | $e = 1.602 \times 10^{-19} C$                                               |                                    |
| Boltzmann constant         | $k = 1.381 \times 10^{-23} J / K$                                           | $8.617 \times 10^{-5} eV/K$        |
| Planck's constant          | $h = 6.626 \times 10^{-34} J \cdot s$                                       | $4.136 \times 10^{-15} eV \cdot s$ |
|                            | $\hbar = 1.055 \times 10^{-34} J \cdot s$                                   | $0.652 \times 10^{-15} eV \cdot s$ |
| Avogadro's constant        | $N_A = 6.022 \times 10^{23} mole^{-1}$                                      |                                    |
| Stefan-Boltzmann constant  | $\sigma = 5.67 \times 10^{-8} W / m^2 \cdot K^4$                            |                                    |
| Electron mass              | $m_e = 5.49 \times 10^{-4} u \text{ or } 9.109 \times 10^{-31} kg$          | $0.511 MeV/c^2$                    |
| Proton mass                | $1.007276 \ u \ or \ 1.673 \times 10^{-27} \ kg$                            | $938.3 MeV / c^2$                  |
| Neutron mass               | $1.008665 \ u \ or \ 1.675 \times 10^{-27} \ kg$                            | 939.6 <i>MeV</i> / c <sup>2</sup>  |
| Mass of <sup>4</sup> He    | 4.002603 u                                                                  |                                    |
| Bohr radius                | $a_0 = 4\pi\varepsilon_0 \hbar^2 / m_e e^2 = 0.0529 nm$                     |                                    |
| Hydrogen ionization energy | 13.6eV                                                                      |                                    |
|                            | $hc = 1240ev \cdot nm$                                                      |                                    |
|                            | $1eV = 1.602 \times 10^{-19} J$                                             |                                    |
| Atomic mass unit (dalton)  | $1u = 931.5 MeV / c^2$                                                      | $1.661 \times 10^{-27} kg$         |
|                            | $kT = 0.02525 eV \approx \frac{1}{40} eV$ at T=293 K                        |                                    |
|                            | $\frac{1}{4\pi\varepsilon_0} = 8.988 \times 10^9  N \cdot m^2 \cdot C^{-2}$ |                                    |
|                            | $\frac{e^2}{4\pi\varepsilon_0} = 1.44eV \cdot nm$                           |                                    |