April 14th, 2014Final ExamLOCATION: 402 Allen Bldg.NO. OF PAGES: 7DEPT. AND COURSE NO.: PHYS 2380TIME: 09:00 to 12:00 (3 hours)EXAMINATION: Quantum Physics 1Examiners: K.S. Sharma

UNIVERSITY OF MANITOBA

Instructions:

- Answer all questions.
- Start each question on a new page.
- Show all of your steps in arriving at the solution. Do not just state the answer. State your arguments clearly and indicate any assumptions you make.
- Include a sentence or two at the end of each problem summarizing your solution.
- Each part of a question carries equal weight.
- 1. The surface temperature of the sun is approximately 5800 K.
 - a) At what wavelength is the peak of the radiated energy?
 - b) If the radius of the sun is 6.96×10^8 m, what is the total power radiated by the sun?
 - c) The human eye is sensitive to a narrow range of wavelengths from 400 nm to 700 nm. Assuming that the intensity of emitted light is constant at a value near the wavelength in part (a) what fraction of the total energy emitted falls within this window.
 - (9 marks)
- 2. A photon with energy 2.00 MeV is scattered by an electron at 90° to its initial direction.
 - a) What is the wavelength of the scattered photon?
 - b) What is the momentum of the incident and scattered photons?
 - c) What is the kinetic energy of the scattered electron?
 - d) What is the momentum (magnitude and direction) of the scattered electron?

Express your answers in eV and nanometers.

(12 marks)

3. The wave function for the harmonic oscillator potential $\left(V(x) = \frac{C}{2}x^2\right)$ for n=0 is given by:

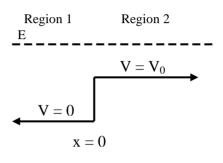
Where C is a constant and x is the position of the particle.

$$\Psi_0(x,t) = A_0 e^{-m\omega x^2/2\hbar} e^{-iEt/\hbar}$$

where $\omega = \sqrt{C/m}$
 $E = (n+1/2)\hbar\omega$

- a) Verify that this wave function is a solution to the Schrodinger Equation by directly substituting it into the equation.
- b) Determine A_0 by normalizing the wave function.

- c) Without computing the integrals, argue from the form of the integrand that $\langle x \rangle$ and $\langle p \rangle$ are zero.
- d) Evaluate the average values $\langle x^2 \rangle$ and $\langle p^2 \rangle$ for this state.
- e) Using the results from part (d) obtain values for the average values for potential and kinetic energies and their sum. Express your answers in terms of \hbar and ω .
- f) Use the results from part (c,d) to calculate the uncertainty in *x* and *p* and verify that the Heisenberg uncertainty principle is satisfied.
- (20 marks)
- 4. A wave is incident from the left on the potential function,
 - V(x), shown here:
 - a) Write down the "space-part" wave function for a particle with energy *E* > *V*₀ in both regions.
 Identify the incident and reflected components in these wave functions. Do any of the components of the wave functions have a zero amplitude (explain)?



- b) What are the corresponding "time-parts" of the wave function?
- c) Given that $V_0 = \frac{5}{9}E$ provide expressions for the wave number (k) in each region. Express of them in terms of the other. What is the ratio of k_1 to k_2 ?
- d) Apply the boundary conditions and determine the amplitudes for all the component waves in terms of one of them.
- e) From the coefficients determined in part (d) derive an expression for the probability density as a function of x.
- f) Sketch the probability density and locate the maxima, minima and constant levels if any. Assign relative values to maxima, minima and constant levels.
- g) Using the coefficients for the incident, reflected and transmitted waves from part (d), directly calculate the transmission coefficient *T*.
- h) Using the coefficients for the incident, reflected and transmitted waves from part (d), directly calculate the reflection coefficient *R*.
- i) From your results for parts (g) and (h), demonstrate that T + R = 1.

(20 marks)

5. The normalized wave function for the n = 3, l = 2, m = 0 state of the hydrogen atom has the form:

$$\psi_{320} = \frac{1}{81\sqrt{6\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(\frac{1}{a_0^2}\right) r^2 e^{-r/3a_0} \left(3\cos^2\theta - 1\right) e^{i\phi}$$

- a) Calculate the expectation value for r, <*r*>.
- b) Determine the radius at which the radial probability density function is a maximum.
- c) Compare your answers to parts (a) and (b) with the predictions of the Bohr theory and comment on any differences.
- d) For an l = 2 state, sketch all the allowed orientations of the angular momentum relative to the z-axis. Give values for the angles and magnitudes.

(20 marks)

The End

Appendix: Some information from the text and lectures:

Special Relativity:

Relativistic momentum and energy:

 $\vec{p} = \gamma m \vec{v}$ $E = \gamma m c^2 = m c^2 + K$ $E^2 = c^2 p^2 + m^2 c^4$

Electromagnetic radiation:

Power received by a detector from a wave:

$$P = \left(\frac{1}{\mu_0 c}\right) E_0^2 A \sin^2(kz - \omega t + \phi)$$
$$P_{ave} = \frac{1}{T_0} \int_0^{T_0} P dt = \frac{E_0^2 A}{2\mu_0 c}, \quad I = \frac{P_{ave}}{A} = \frac{E_0^2}{2\mu_0 c}$$

Where P is the instantaneous power, P_{ave} is the average power delivered to a detector of area A and I is the intensity of the light.

Interference and diffraction:

Pattern Type	Bright Fringes	Dark Fringes
Single slit (width w)	$\frac{w}{2}\sin\theta = m\lambda$	$\frac{w}{2}\sin\theta = \left(m + \frac{1}{2}\right)\lambda$
	$\frac{1}{2}$ sin $\theta = m\lambda$	$\frac{1}{2}\sin\theta = \left(m + \frac{1}{2}\right)\lambda$
Double slit (spacing <i>d</i>)	$d\sin\theta = m\lambda$	
Grating (lines spaced d apart)	$d\sin\theta = m\lambda$	
Bragg (layers of atoms <i>d</i> apart)	$2d\sin\theta = m\lambda$	
Circular object		First fringe at $1.22\lambda/d$

Photons and light:

 $\lambda v = c$ $E_{ph} = hv = cp_{ph}$ $p_{ph} = \frac{h}{\lambda}$

Photoelectric effect: $K = hv - \phi = eV_s$ Where K is the kinetic energy of the emitted electrons, ϕ is the work function of the material and V_s is the stopping potential.

Black body radiation:

 $I = \sigma T^{4}$ $\lambda_{\max} T = 2.898 \times 10^{-3} \, m \bullet K$ $u(\lambda) = \left(\frac{8\pi hc}{\lambda^{5}}\right) \left[\frac{1}{e^{hc_{\lambda kT}} - 1}\right]$ $dI = \frac{c}{4} u(\lambda) d\lambda$

Where $u(\lambda)$ is the energy density, *h* is Planck's constant, *k* is the Botzmann constant and *c* is the speed of light.

Wavelike properties of particles:

De Broglie wavelength: $\lambda = \frac{h}{p}$ Hiesenberg uncertainty relationships: $\Delta E \Delta t \ge \frac{\hbar}{2}$ $\Delta p_x \Delta x \ge \frac{\hbar}{2}$ $\Delta p = \left(\left\langle p^2 \right\rangle - \left\langle p \right\rangle^2\right)^{\frac{1}{2}}$

Compton Scattering:
$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

Bremsstrahlung: $\lambda_{\min} = \frac{hc}{eV}$

Wave packets:

р

Wave packets:

$$p = h / \lambda = \hbar k$$

 $\hbar \omega = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$
 $v_{group} = \frac{d\omega}{dk}$
 $v_{phase} = \frac{\omega}{k}$

Quantum Mechanics:

Schrödinger equation:
Complete:
$$-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x,t)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

Time independent: $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x)}{\partial x^2} + V(x)\Psi(x) = E\Psi(x)$
Probability Current: $S(x,t) = \frac{i\hbar}{2m} \left\{ \Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right\}$
Normalization (1-D): $\int_{-\infty}^{+\infty} \Psi^* \Psi dx = 1$
Normalization (3-D): $\int_{0}^{+\infty} \int_{0}^{\pi} \int_{0}^{2\pi} \Psi^* \Psi r^2 \sin \theta dr d\theta d\phi = 1$ or $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Psi^* \Psi dx dy dz = 1$
H-atom: $\Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$ each of these components may be normalized individually.
Radial probability distribution: $P(r) = r^2 R^*(r)R(r)$

Nuclear Physics:

$$R = R_0 A^{1/3} = 1.2 A^{1/3} fm$$

$$B = \left[Zm \begin{pmatrix} 1 \\ 1 \end{pmatrix} + Nm_n - m \begin{pmatrix} A \\ z \end{pmatrix} \right] c^2$$

$$Q = \left[M_{parent} - M_{Daughter} - M_{emitted} \right] c^2$$

$$N = N_0 e^{-\lambda t}$$

$$A = \lambda N$$

$$t_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$
Nuclear Atom:

$$F = \frac{(ze)(Ze)}{4\pi\varepsilon_0 r^2}$$

$$U = \frac{(ze)(Ze)}{4\pi\varepsilon_0 r}$$
Rutherford Scattering:

$$b = \frac{zZ}{2K} \frac{e^2}{4\pi\varepsilon_0} \cot \frac{1}{2}\theta$$

$$\frac{1}{2}mv^2 = \frac{1}{2} \left(\frac{b^2v^2}{r_{\min}^2}\right) + \frac{e^2}{4\pi\varepsilon_0} \frac{zZ}{r_{\min}}$$

$$d = \frac{1}{4\pi\varepsilon_0} \frac{zZe^2}{K}$$

X-rays:

K-series: $E_{photon} = (13.6eV) \left(\frac{1}{1^2} - \frac{1}{n^2}\right) (Z-1)^2$

Bohr model:
$$E_n = -\frac{me^4}{32\pi^2 \varepsilon_0^2 \hbar^2} \frac{1}{n^2} = -\frac{13.6Z_{eff}^2}{n^2} eV$$

 $\frac{1}{\lambda} = R\left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$
 $R = R_{\infty}\left(\frac{1}{1+m/M}\right)$
 $R_{\infty} = \frac{mk^2 e^4}{4\pi c \hbar^3} \text{ where } k = \frac{1}{4\pi \varepsilon_0}$
Bohr radius: $a_0 = \frac{\hbar^2}{4\pi \varepsilon_0 me^2}$
 $r_n = n^2 a_0 / Z$

L-series: $E_{photon} = (13.6eV) \left(\frac{1}{2^2} - \frac{1}{n^2}\right) (Z-3)^2$ M-series: $E_{photon} = (13.6eV) \left(\frac{1}{3^2} - \frac{1}{n^2}\right) (Z-5)^2$

Some useful mathematical relations:

$$\sqrt{\left(1 - \frac{u^2}{c^2}\right)} \approx 1 - \frac{1}{2} \frac{u^2}{c^2}$$
$$\frac{1}{\sqrt{\left(1 - \frac{u^2}{c^2}\right)}} \approx 1 + \frac{1}{2} \frac{u^2}{c^2}$$

For $u^2/c^2 <<1$

Some useful trigonometric relations:

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
$$\sin(2A) = 2\sin(A)\cos(A)$$
$$\sin^{2}(A) = \frac{1 - \cos(2A)}{2}$$
$$\cos^{2}(A) = \frac{1 + \cos(2A)}{2}$$
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

Some useful Integrals:

$$\int \sin^{2}(u) \, du = \frac{1}{2} \left(u - \sin u \cos u \right)$$

$$\int \sin u \cos u \, du = \frac{1}{2} \sin^{2} u$$

$$\int \cos^{2} u \, du = \frac{1}{2} \left(u + \sin u \cos u \right)$$

$$\int u \sin^{2} u \, du = \frac{u^{2}}{4} - \frac{u \sin 2u}{4} - \frac{\cos 2u}{8}$$

$$\int u \cos^{2} u \, du = \frac{u^{2}}{4} + \frac{u \sin 2u}{4} + \frac{\cos 2u}{8}$$

$$\int u^{2} \sin^{2} u \, du = \frac{u^{3}}{6} - \left(\frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u - \frac{u \cos 2u}{4}$$

$$\int u^{2} \cos^{2} u \, du = \frac{u^{3}}{6} + \left(\frac{u^{2}}{4} - \frac{1}{8} \right) \sin 2u + \frac{u \cos 2u}{4}$$

n	$I_n = \int_0^\infty x^n e^{-\lambda x^2} dx$
0	$\frac{1}{2}\pi^{\frac{1}{2}}\lambda^{-\frac{1}{2}}$
1	$\frac{1}{2}\lambda^{-1}$
2	$\frac{1}{4}\pi^{\frac{1}{2}}\lambda^{-\frac{3}{2}}$
3	$\frac{1}{2}\lambda^{-2}$

$$\int \sin^3 u \, du = -\frac{1}{3} \cos u \left[\sin^2 u + 2 \right]$$
$$\int \cos^3 u \, du = \frac{1}{3} \sin u \left[\cos^2 u + 2 \right]$$
$$\int_0^\infty u^n e^{-u} \, du = n! \quad for \ n > 0$$
$$\int \cos^n u \sin u \, du = -\frac{\cos^{n+1} u}{n+1} \quad for \ n > 0$$
$$\int \sin^n u \cos u \, du = \frac{\sin^{n+1} u}{n+1} \quad for \ n > 0$$

n	$I_n = \int_0^\infty x^n e^{-\lambda x^2} dx$
4	$\frac{3}{8}\pi^{\frac{1}{2}}\lambda^{-\frac{5}{2}}$
5	λ^{-3}
lf n is even	$\int_{-\infty}^{\infty} x^n e^{-\lambda x^2} dx = 2I_n$
lf n is odd	$\int_{-\infty}^{\infty} x^n e^{-\lambda x^2} dx = 0$

Constants:

Constant	Standard value	Alternate units
Speed of light	$c = 2.998 \times 10^8 m/s$	
Electronic charge	$e = 1.602 \times 10^{-19} C$	
Boltzmann constant	$k = 1.381 \times 10^{-23} J / K$	$8.617 \times 10^{-5} eV / K$
Planck's constant	$h = 6.626 \times 10^{-34} J \cdot s$	$4.136 \times 10^{-15} eV \cdot s$
	$\hbar = 1.055 \times 10^{-34} J \cdot s$	$0.652 \times 10^{-15} eV \cdot s$
Avogadro's constant	$N_A = 6.022 \times 10^{23} mole^{-1}$	
Stefan-Boltzmann constant	$\sigma = 5.67 \times 10^{-8} W / m^2 \cdot K^4$	
Electron mass	$m_e = 5.49 \times 10^{-4} u \text{ or } 9.109 \times 10^{-31} kg$	$0.511 MeV/c^2$
Proton mass	$1.007276 \ u \ or \ 1.673 \times 10^{-27} \ kg$	$938.3 MeV / c^2$
Neutron mass	$1.008665 \ u \ or \ 1.675 \times 10^{-27} \ kg$	$939.6 MeV / c^2$
Mass of ⁴ He	4.002603 u	
Bohr radius	$a_0 = 4\pi\varepsilon_0 \hbar^2 / m_e e^2 = 0.0529 nm$	
Hydrogen ionization energy	13.6eV	
	$hc = 1240ev \cdot nm$	
	$1eV = 1.602 \times 10^{-19} J$	
Atomic mass unit (dalton)	$1u = 931.5 MeV / c^2$	$1.661 \times 10^{-27} kg$
	$kT = 0.02525 eV \approx \frac{1}{40} eV$ at T=293 K	
	$\frac{1}{4\pi\varepsilon_0} = 8.988 \times 10^9 N \cdot m^2 \cdot C^{-2}$	
	$\frac{e^2}{4\pi\varepsilon_0} = 1.44eV \cdot nm$	