April 15, 2009

PAPER NO.: 272
DEPT. AND COURSE NO.: PHYS 2380
EXAMINATION: Quantum Mechanics 1

Final Exam
NO. OF PAGES: 6

TIME: 3 hours
Examiners: K.S. Sharma

Instructions:

- Answer all questions.
- Start each question on a new page.
- Show all of your steps in arriving at the solution. Do not just state the answer. State your arguments clearly and indicate any assumptions you make.
- Include a sentence or two at the end of each problem summarizing your solution.
- Each part of a question carries equal weight.

1. The spectral radiancy for a black body is given by $\rho_{T}(\lambda)=\frac{8 \pi h c}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}$. Derive the Wien displacement law: $\lambda_{\max } T \approx 0.20 h c / k$ (where k is the Boltzmann constant) by solving the equation $d \rho_{T}(\lambda) / d \lambda=0$ for the wavelength, $\lambda_{\text {max }}$, where the radiancy is a maximum. Explain any approximations you make. (10 marks)
2. A high energy electron beam is scattered by carbon $(A=12)$ nucleus. A measurement shows that the first minimum in the diffraction pattern occurs at an angle of 50°.
a) What is the diameter of the nucleus of the carbon atom?
b) What is the momentum of the electron?
c) What is the energy of the electron? Consider if this is a relativistic or non-relativistic problem.
(10 marks)
3. A particle is confined in a potential well such that:
$V(x)=0$ for $0<x<a$ and
$V(x)=\infty$ everywhere else.
a) Find the normalized eigenfunctions for the time-independent Schrödinger equation.
b) Find the energies for the allowed states.
c) Given that the expectation value for the momentum is given by $\langle p\rangle=0$, determine $\Delta p=\left(\left\langle p^{2}\right\rangle-\langle p\rangle^{2}\right)^{\frac{1}{2}}$.
d) Given that the expectation value for position is given by $\langle x\rangle=a / 2$,
determine $\Delta x=\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)^{\frac{1}{2}}$.
e) Does the product $\Delta x \Delta p$ satisfy the requirements of the Hiesenberg uncertainty principle?
(25 marks)
4. For the potential function shown :
a) Write down the wave function for a particle with energy $E>0$ in region $1(x<-a)$ and
 region $2(-a<x<0)$. Provide expressions for the wave number (k) in each region. Identify the incident and reflected components in these wave functions.
b) Apply the boundary conditions and determine the amplitudes for all the component waves in terms of one of them.
c) From the coefficients determined in part (b) show that the reflection coefficient in region $1(x<-a)$ is 1 (you should not have to do a painful algebraic exercise to do this).
(15 marks)
5. The normalized wave function for the $n=3, \mathrm{l}=2, \mathrm{~m}=0$ state of the hydrogen atom has the form:
$\psi_{320}=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{1}{a_{0}}\right)^{\frac{3}{2}}\left(\frac{1}{a_{0}^{2}}\right) r^{2} e^{-r / 3 a_{0}}\left(3 \cos ^{2} \theta-1\right) e^{i \phi}$
a) Calculate the expectation value for $r,<r>$
b) Differentiate the radial probability density function and determine the radius at which it is a maximum.
c) Explain why the answers to parts (a) and (b) are not the same?
(15 marks)

The End

Appendix: Some information from the text and lectures:

Special Relativity:

Relativistic momentum and energy:
$\vec{p}=\gamma m \vec{v}$
$E=\gamma m c^{2}=m c^{2}+K$
$E^{2}=c^{2} p^{2}+m^{2} c^{4}$

Electromagnetic radiation:

Power received by a detector from a wave:
$P=\left(\frac{1}{\mu_{0} c}\right) E_{0}^{2} A \sin ^{2}(k z-\omega t+\phi)$
Where P is the instantaneous power, $P_{\text {ave }}$ is the average power delivered to a detector of area A and I is the intensity of the light.
$P_{\text {ave }}=\frac{1}{T_{0}} \int_{0}^{T_{0}} P d t=\frac{E_{0}^{2} A}{2 \mu_{0} c}, \quad I=\frac{P_{\text {ave }}}{A}=\frac{E_{0}^{2}}{2 \mu_{0} c}$

Interference and diffraction:

Pattern Type	Bright Fringes	Dark Fringes
Single slit (width w)	$\frac{w}{2} \sin \theta=m \lambda$	$\frac{w}{2} \sin \theta=\left(m+\frac{1}{2}\right) \lambda$
Double slit (spacing d)	$d \sin \theta=m \lambda$	
Grating (lines spaced d apart)	$d \sin \theta=m \lambda$	
Bragg (layers of atoms d apart)	$2 d \sin \theta=m \lambda$	
Circular object		First fringe at $1.22 \lambda / d$

Photons and light:

$\lambda v=c$
$E_{p h}=h v=c p_{p h}$
$p_{p h}=h / \lambda$

Photoelectric effect: $K=h \nu-\phi=e V_{s}$ Where K is the kinetic energy of the emitted electrons, ϕ is the work function of the material and V_{s} is the stopping potential.

Compton Scattering: $\quad \lambda^{\prime}-\lambda=\frac{h}{m_{e} c}(1-\cos \theta)$
Bremsstrahlung: $\lambda_{\text {min }}=\frac{h c}{e V}$

Wavelike properties of particles:

De Broglie wavelength: $\lambda=h / p$
Hiesenberg uncertainty relationships:
$\Delta E \Delta t \geq \frac{\hbar}{2}$
$\Delta p_{x} \Delta x \geq \frac{\hbar}{2}$

Wave packets:

$$
p=h / \lambda=\hbar k
$$

$$
\hbar \omega=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}
$$

$$
\begin{aligned}
& v_{\text {group }}=\frac{d \omega}{d k} \\
& v_{\text {phase }}=\frac{\omega}{k}
\end{aligned}
$$

Quantum Mechanics:

Schrödinger equation:
Complete: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x, t) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}$
Time independent: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=E \psi(x)$
Probability Current: $S(x, t)=\frac{i \hbar}{2 m}\left\{\Psi \frac{\partial \Psi^{*}}{\partial x}-\Psi^{*} \frac{\partial \Psi}{\partial x}\right\}$
Normalization (1-D): $\int_{-\infty}^{+\infty} \Psi^{*} \Psi d x=1$
Normalization (3-D): $\int_{0}^{+\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \Psi^{*} \Psi r^{2} \sin \theta d r d \theta d \phi=1$ or $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Psi^{*} \Psi d x d y d z=1$

Nuclear Physics:

$$
\begin{aligned}
& R=R_{0} A^{1 / 3}=1.2 A^{1 / 3} \mathrm{fm} \\
& B=\left[\operatorname{Zm}\left({ }_{1}^{1} H\right)+N m_{n}-m\left({ }_{z}^{A} X\right)\right] c^{2} \\
& Q=\left[M_{\text {parent }}-M_{\text {Daughter }}-M_{\text {emitted }}\right] c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& N=N_{0} e^{-\lambda t} \\
& A=\lambda N \\
& t_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}
\end{aligned}
$$

Nuclear Atom:

$F=\frac{(z e)(Z e)}{4 \pi \varepsilon_{0} r^{2}} \quad \quad$ Bohr model: $E_{n}=-\frac{m e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}} \frac{1}{n^{2}}=-\frac{13.6 Z_{e f f}^{2}}{n^{2}} e V$
$U=\frac{(z e)(Z e)}{4 \pi \varepsilon_{0} r}$
Rutherford Scattering:
$b=\frac{z Z}{2 K} \frac{e^{2}}{4 \pi \varepsilon_{0}} \cot \frac{1}{2} \theta$
$\frac{1}{2} m v^{2}=\frac{1}{2}\left(\frac{b^{2} v^{2}}{r_{\text {min }}^{2}}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{z Z}{r_{\text {min }}}$
$d=\frac{1}{4 \pi \varepsilon_{0}} \frac{z Z e^{2}}{K}$

X-rays:

K-series: $E_{\text {photon }}=(13.6 \mathrm{eV})\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)(Z-1)^{2}$
L-series: $E_{\text {photon }}=(13.6 \mathrm{eV})\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)(Z-3)^{2}$
M-series: $E_{\text {photon }}=(13.6 \mathrm{eV})\left(\frac{1}{3^{2}}-\frac{1}{n^{2}}\right)(Z-5)^{2}$

Some useful mathematical relations:

$$
\sqrt{\left(1-u^{2} / c^{2}\right)} \approx 1-\frac{1}{2} \frac{u^{2}}{c^{2}}
$$

$\frac{1}{\sqrt{\left(1-u^{2} / c^{2}\right)}} \approx 1+\frac{1}{2} \frac{u^{2}}{c^{2}}$
For $u^{2} / c^{2} \ll 1$
$\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$
$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
$\sin (2 A)=2 \sin (A) \cos (A)$
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

Some useful Integrals:

$\int \sin ^{2}(u) d u=\frac{1}{2}(u-\sin u \cos u)$
$\int \sin u \cos u d u=\frac{1}{2} \sin ^{2} u$
$\int \cos ^{2} u d u=\frac{1}{2}(u+\sin u \cos u)$
$\int u \sin ^{2} u d u=\frac{u^{2}}{4}-\frac{u \sin 2 u}{4}-\frac{\cos 2 u}{8}$
$\int u \cos ^{2} u d u=\frac{u^{2}}{4}+\frac{u \sin 2 u}{4}+\frac{\cos 2 u}{8}$
$\int u^{2} \sin ^{2} u d u=\frac{u^{3}}{6}-\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u-\frac{u \cos 2 u}{4}$
$\int u^{2} \cos ^{2} u d u=\frac{u^{3}}{6}+\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u+\frac{u \cos 2 u}{4}$
$\int_{0}^{\infty} u^{n} e^{-u} d u=n$! for $n>0$
$\int \cos ^{n} u \sin u d u=-\frac{\cos ^{n+1} u}{n+1}$ for $n>0$
$\int \sin ^{n} u \cos u d u=\frac{\sin ^{n+1} u}{n+1}$ for $n>0$

Constants:

Constant	Standard value	Alternate units
Speed of light	$c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
Electronic charge	$e=1.602 \times 10^{-19} \mathrm{C}$	
Boltzmann constant	$k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Planck's constant	$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$4.136 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
	$\hbar=1.055 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$0.652 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Avogadro's constant	$N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mole} e^{-1}$	
Stefan-Boltzmann constant	$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$	
Electron mass	$m_{e}=5.49 \times 10^{-4} \mathrm{u}$	$0.511 \mathrm{MeV} / \mathrm{c}^{2}$
Proton mass	1.007276 u	$938.3 \mathrm{MeV} / \mathrm{c}^{2}$
Neutron mass	1.008665 u	$939.6 \mathrm{MeV} / \mathrm{c}^{2}$
Mass of ${ }^{4} \mathrm{He}$	4.002603 u	
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar^{2} / \mathrm{m}_{e} \mathrm{e}^{2}=0.0529 \mathrm{~nm}$	
Hydrogen ionization energy	13.6 eV	
	$\mathrm{hc}=1240 \mathrm{ev} \cdot \mathrm{nm}$	$1.661 \times 10^{-27} \mathrm{~kg}$
	$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$	
Atomic mass unit (dalton)	$1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$	
	$\mathrm{kT}=0.02525 \mathrm{eV} \approx \frac{1}{40} \mathrm{eV}$ at T=293 K	
	$\frac{1}{4 \pi \varepsilon_{0}}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$	
	$\frac{e^{2}}{4 \pi \varepsilon_{0}}=1.44 \mathrm{eV} \cdot \mathrm{nm}$	

