Pulsed Cold Neutron Beam Polarimetry for the NPDGamma Experiment

University of Manitoba

U of Manitoba Subatomic Physics Club November 2004

presented by Chad Gillis Shelley Page
J.D. Bowman (Spokesperson),
M. Gericke, G.S. Mitchell,
S.I. Penttilä, G. Peralta, P.-N. Seo,
W.S. Wilburn and V.W. Yuan
Los Alamos National Laboratory

M. Leuschner, B. Lozowski, H. Nann,
S. Santra and W.M. Snow
Indiana University

R.C. Gillis, S.A. Page, C. Mosquera,
W.D. Ramsay and T. Ries
University of Manitoba and TRIUMF

T.E. Chupp and K.P. Coulter
University of Michigan

M. Dabaghyan, F.W. Hersman and H. Zhu
University of New Hampshire

D. Desai and G.L. Greene
University of Tennessee and ORNL

R.D. Carlini
Thomas Jefferson National Accelerator Facility

S.J. Freedman and B. Lauss
University of California, Berkeley

T.B. Smith
University of Dayton

G.L. Jones
Hamilton College

E.I. Sharapov
Joint Institute for Nuclear Research, Dubna

T. Ino, Y. Masuda, and S. Muto
KEK National Laboratory, Japan

T.R. Gentile
National Institute of Standards and Technology
The meson exchange model of the weak interaction between nucleons:

\[(\pi, \rho, \omega) \]

\[\text{parity-violating weak vertex} \]

\[\text{parity-conserving strong vertex} \]

A full quantitative description of this model has not been completed.

NPDGamma: Measure the **parity-violating asymmetry** \(A_\gamma \) in order to determine the **pion-nucleon weak coupling constant** \(f_\pi \):

\[A_\gamma \approx -0.11 f_\pi \] \[[1] \]

The NPDGamma apparatus is tested and delivers the accuracy required to measure the cleanly interpretable but small \((A_\gamma \approx -5 \times 10^{-8} \) expected) effect from a two-body system.

The parity transformation (P):
\[x \rightarrow -x \ ; \ y \rightarrow -y \ ; \ z \rightarrow -z \]

For experimental purposes, a parity reversal is equivalent to a reversal of left and right, which includes a reversal of angular momentum.

The weak interaction is the only interaction known to violate parity.

To isolate the weak force use a polarized beam.
The NPDGamma reaction
\[\bar{n} + p \rightarrow d + \gamma \ (2.2 \text{ MeV}) \]

\[\gamma \text{ DETECTORS} \]

\[A_{\gamma} = \frac{1}{P_n} \frac{N_{\text{up}} - N_{\text{down}}}{N_{\text{up}} + N_{\text{down}}} \]

\[P_n = \text{neutron polarization} = \frac{n_{\text{up}} - n_{\text{down}}}{n_{\text{up}} + n_{\text{down}}} \]

\(N = \text{number of gammas} \)

\(n = \text{number of neutrons} \)
- LH$_2$ moderator slows neutrons (peak at 9 meV = 3 Å)
- Frame overlap chopper prevents pulse overlap
- Pulsed source provides correspondence between neutron energy and time of flight.
^3He has a strong affinity for neutrons.

\[\text{n} + ^3\text{He} \rightarrow \text{p} + ^3\text{H} + 764 \text{ keV of KE} \]

Cross Section

\[
\sigma \propto \frac{1}{\sqrt{E}} \propto \text{tof}
\]

energy range of interest
The NPDGamma Beam Monitors

Primary function: To provide a signal proportional to the rate of neutrons passing through.

Gas mixture:
- $\frac{1}{2}$ Atm (3He + 4He)
- $\frac{1}{2}$ Atm N_2

Amount of 3He depends on monitor’s purpose
Uses of the NPDGamma Beam Monitors

Until present:

• Monitor neutron flux.
• Measurement of beam polarization:

In the future:

• Measurement of the ortho-para ratio of the LH$_2$ target:
Beam Intensity Measurement

N neutrons

\[I = NP(E)Q \]

\(P(E) \): known neutron capture probability increases with neutron tof

\(Q \): charge liberated in the gas per neutron

\[\approx 10^4 \text{ e} \]

independent of neutron tof
voltage signal from upstream monitor preamp

\[I = N P(E) Q \]

Calibration of the monitors is a determination of \(Q \).

flux calculation normalized to monte carlo

Monitor efficiency increases with tof \((\sigma \propto \text{tof})\)

Calibration of the monitors is a determination of \(Q \).
Beam Polarizer Diagnostics

The probability of interaction for a neutron with ^3He is highly spin-dependent:

\[
\begin{align*}
&\text{n} + ^3\text{He} \quad \sigma_p \sim 3 \text{ barns} \\
&\text{n} + ^3\text{He} \quad \sigma_a \sim 17,000 \text{ barns} @ 10 \text{ meV} \\
&\quad \quad \quad \sigma_a \propto \frac{1}{v} \quad (v = \text{neutron speed})
\end{align*}
\]

A cell of polarized ^3He filters out neutrons of one spin state.

Beam monitors are used to measure that effect.
Relative transmission through the cell polarized and unpolarized is an **absolute measure** of **neutron polarization** P_n:

$$P_n = \sqrt{1 - \left(\frac{T_0}{T}\right)^2}$$

T_0 = transmission of unpolarized cell
T = transmission of polarized cell

Knowing P_n and the amount of 3He in the cell, it’s possible to calculate the 3He polarization:

$$P_n = \tanh(n_3\sigma l P_3)$$

P_3 = 3He polarization
n_3 = 3He number density
l = width of cell
M2 Signal With Cell Polarized and Unpolarized

Polarized +
Unpolarized ×

Preamp output (Volts)

Neutron time of flight at 21.4 meters

P_n from transmission measurements
Fit to $\tanh(n_3\sigma I P_3)$

Fit yields $n_3\sigma I P_3 = 0.0328 \text{ ms}^{-1} \text{ tof}$
\[T_0 = e^{-n\sigma l} \]

\[\ln(T_0) = -n\sigma l \propto \text{tof} \]

Unpolarized 3He Transmission
(corrected for glass cell wall transmission)

\[\ln(T_0) = -n\sigma l \]

best fit: \(n\sigma l = 0.0714 \text{ ms}^{-1} \text{ tof} \)

\[P_3 = \frac{n_3\sigma l P_3}{n_3\sigma l} = \frac{0.0328 \text{ ms}^{-1} \text{ tof}}{0.0714 \text{ ms}^{-1} \text{ tof}} = 0.46 \]
Spin Flipper Commissioning

Spin-dependent transmission of the analyzer cell can be seen in the third monitor:

Spin flipper performs an imperfect flip:

\[P_n \rightarrow -RP_n \quad ; \quad R < 1 \]

The ratio between spin flipper on and spin flipper off signals is dependent on polarizer and analyzer properties and \(R \).
Liquid H_2 target diagnostics

Two nuclear spin states of the H_2 molecule:

- ortho-hydrogen
- para-hydrogen

$\Delta E = 15 \text{ meV}$

Cross-section as a function of neutron KE$^{[1]}$

- ortho-H_2 has a high spin-incoherent cross-section for neutron scattering.
- para-H_2 below 15 meV does not.

Concluding Remarks

- Neutron polarization for the NPDGamma experiment is provided by a polarized ^3He spin filter.

- Pulse-by-pulse spin flips are performed by an RF neutron spin rotator.

- ^3He ion chambers provide the ability to perform neutron flux and neutron transmission measurements.

- Knowledge of neutron polarization and spin flip efficiency is provided by performing neutron transmission measurements of polarized ^3He.

- The polarization of the ^3He in the polarizer and analyzer cells can similarly be determined.

- Beam monitors will also be used to monitor the ortho-para ratio of our liquid hydrogen target during the $\bar{n} + p \rightarrow d + \gamma$ asymmetry measurement.