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ABSTRACT

New Elements of Analysis on the Levi-Civita Field

By

Khodr Mahmoud Shamseddine

New elements of analysis on the Levi-Civita field R are presented. First we prove

general results about skeleton groups and field automorphisms that will enhance the

understanding of the structure of the field. We show that while the identity map is

the only field automorphism on R, there can be nontrivial automorphisms on non-

Archimedean field extensions of R like R. We also show that every automorphism on

R is order preserving and that if P is such an automorphism and r a real number then

P (r) is approximately equal to r; moreover, if q is a rational number, then P (q) = q.

After reviewing the algebraic, order, and topological structures of the field R [3, 5,

7], we review two types of convergence and prove new results about the convergence of

the sums and products of sequences and infinite series. A weak convergence criterion

[5] for power series is then enhanced and proved, and we show that power series

can be reexpanded around any point of their domain of convergence. Knowledge

of weak convergence of power series allows the extension to the new field and the

study of all transcendental functions. This also will allow the extension of all the real

functions that can be represented on a computer and is thus of great importance for

the implementation of the R calculus on computers [38, 39, 40, 42].

We review two different definitions of continuity and differentiability [5, 10]. We
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show that these smoothness criteria are preserved under addition, multiplication and

composition of functions. We show with several examples that topological continuity

and differentiability are not sufficient to assure that a function be bounded or satisfy

any of the common theorems of real calculus on a closed interval of R. We derive a

result which allows for an easy check of the differentiability of functions. Then, based

on the stronger concept of differentiability, we present a detailed study of a large class

of functions for which we generalize the intermediate value theorem in [5] and prove

an inverse function theorem.

Based on our knowledge of convergence of power series, we study a large class

of functions which are given locally by power series with R coefficients and which

generalize the normal functions discussed in [5]. We show that the so-called expand-

able functions [41, 43] form an algebra and have all the nice properties of real power

series. In particular, they satisfy the intermediate value theorem, the maximum the-

orem and the mean value theorem. Moreover, they are infinitely often differentiable

and integrable; and the derivative functions of all orders are themselves expandable

functions.

The existence of infinitely small numbers in the non-Archimedean field R allows

the use of the old numerical algorithm for computing derivatives of real functions,

but now with an error that in a rigorous way can be shown to become infinitely small

(and hence irrelevant). Using calculus on R, we formulate a necessary and sufficient

condition for the derivatives of real functions representable on a computer to exist

at any given real point, and we show how to accurately compute the derivatives up

to very high orders if they exist, even when the coding exhibits branch points or

nondifferentiable pieces [38, 39, 40, 42].
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Chapter 1

Introduction

1.1 Motivation

The real numbers owe their fundamental role in Mathematics and the sciences to

certain special properties. To begin, like all fields, they allow arithmetic calculation.

Furthermore, they allow measurement; any result of even the finest measurement

can be expressed as a real number. Additionally, they allow expression of geometric

concepts, which (for example because of Pythagoras) requires the existence of roots,

a property that at the same time is beneficial for algebra. Furthermore, they allow

the introduction of certain transcendental functions such as exp, which are important

in the sciences and arise from the concept of power series. In addition, they allow the

formulation of an analysis involving differentiation and integration, a requirement for

the expression of even simple laws of nature.

While the first two properties are readily satisfied by the rational numbers, the

geometric requirements demand using at least the set of algebraic numbers. Transcen-

dental functions, being the result of limiting processes, require Cauchy completeness,

and it is easily shown that the field of real numbers is the smallest totally ordered

field having this property. Because it is at such a basic level of our scientific language,

hardly any thought is spent on the fundamental question of whether there may be

1



2

other useful number systems having the required properties.

This question is perhaps even more intriguing in light of the observation that,

while the field of real numbers R and its algebraic completion C as well as the vector

space Rn have certainly proven extremely successful for the expression and rigorous

mathematical formulation of many physical concepts, they have two shortcomings in

interpreting intuitive scientific concepts. First, they do not permit a direct represen-

tation of improper functions such as those used for the description of point charges; of

course, within the framework of distributions, these concepts can be accounted for in

a rigorous fashion, but at the expense of the intuitive interpretation. Second, another

intuitive concept of the fathers of analysis, and for that matter quite a number of

modern scientists sacrificing rigor for intuition, the idea of derivatives as differential

quotients, that is slopes of secants with infinitely small abscissa and ordinate differ-

ences cannot be formulated rigorously within the real numbers. Especially for the

purpose of computational differentiation, the concept of “derivatives are differential

quotients” would of course be a remedy to many problems, since it would replace

any attempted limiting process involving the unavoidable cancellation of digits by

computer-friendly algebra in a new number system.

The problems mentioned in the preceding paragraphs might be solved if, in ad-

dition to the real numbers, there were also “infinitely small” and “infinitely large”

numbers; that is if the number system were non-Archimedean. Since any Archimedean

Cauchy complete field is isomorphic to R, it is indeed the absence of such numbers

that makes the real numbers unique. However, since the “fine structure” of the con-

tinuum is not observable by means of science, Archimedicity is not required by nature,

and leaving it behind would possibly allow the treatment of the above two concepts.

So it appears on the one hand legitimate and on the other hand intriguing to study

such number systems, as long as the above mentioned essential properties of the real
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numbers are preserved.

There are simple ways to construct non-Archimedean extensions of the real num-

bers (see for example the books of Rudin [36], Hewitt and Stromberg [19], or Stromberg

[44], or at a deeper level the works of Fuchs [16], Ebbinghaus et al. [15] or Lightstone

and Robinson [29]), but such extensions usually quickly fail to satisfy one or several

of the above criteria of a “useful” field, often already regarding the universal existence

of roots.

An important idea for the problem of the infinite came from Schmieden and Laug-

witz [37], which was then quickly applied to delta functions [21, 23] and distributions

[22]. Certain equivalence classes of sequences of real numbers become the new number

set, and, perhaps most interesting, logical statements are considered proved if they

hold for “most” of the elements of the sequences. This approach lends itself to the

introduction of a general scheme that allows the transfer of many properties of the

real numbers to the new structure. This method supplies an elegant tool that, in

particular, permits the determination of derivatives as differential quotients.

Unfortunately, the resulting structure has two shortcomings. On the one hand,

while very large, it is not a field; there are zero divisors, and the ring is not totally

ordered. On the other hand, the structure is already so large that individual numbers

can never be represented by only a finite amount of information and are thus out of

reach for computational problems. Robinson [34] recognized that the intuitive method

can be generalized [25] by a nonconstructive process based on model theory to obtain

a totally ordered field, and initiated the branch of Nonstandard Analysis. Some of the

standard works describing this field are from Robinson [35], Stroyan and Luxemburg

[45], and Davis [14]. In this discipline, the transfer of theorems about real numbers is

extremely simple, although at the expense of a nonconstructive process invoking the
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axiom of choice, leading to an exceedingly large structure of numbers and theorems.

The nonconstructiveness makes practical use difficult and leads to several oddities;

for example, the fact that the sign of certain elements, although assured to be either

positive or negative, can not be decided.

Another approach to a theory of infinitely small numbers originated in game theory

and was pioneered by John Conway in his marvel “On Numbers and Games” [13].

A humorous and totally nonstandard yet at the same time very insightful account of

these numbers can also be found in Donald Knuth’s mathematical novelette “Surreal

Numbers: How Two Ex-Students Turned to Pure Mathematics and Found Total

Happiness” [20]. Other important accounts on surreal numbers are by Alling [1] and

Gonshor [17].

1.2 Outline

In this dissertation, new elements of analysis on a different non-Archimedean exten-

sion of the real numbers are discussed. The numbers R were first discovered by the

brilliant young Levi-Civita [27, 28] who succeeded in showing that they form a totally

ordered field that is Cauchy complete. He concluded by showing that any power series

with real coefficients converges for infinitely small arguments and used this to extend

real differentiable functions to the field. His number system has subsequently been

rediscovered independently by a handful of people, including M. Berz [3, 5, 7], and

the subject appeared in the work of Ostrowski [32], Neder [30], and later in the work

of Laugwitz [24]. Two modern and rather complete accounts of Levi-Civita’s work

can be found in the book by Lightstone and Robinson [29], which ends with the proof

of Cauchy completeness, and in Laugwitz’s account on Levi-Civita’s work [26], which

also contains a summary of properties of Levi-Civita fields.
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In Chapter 2, we prove general results about skeleton groups and field automor-

phisms, which will serve as an introduction to the field R and will help in understand-

ing more its structure reviewed in Chapter 3. We show that if a non-Archimedean

field extension of R has roots of positive elements, then its skeleton group must con-

tain the rational numbers Q and we show that the skeleton group of R is Q. This

already says something about the uniqueness of R as a non-Archimedean field exten-

sion of R, which is reviewed in Chapter 3 below. We show that every automorphism

onR is order preserving and that, contrary to the real case, there exist nontrivial field

automorphisms; however, we show that if P is an automorphism on R and if q is a

rational number and r a real number then P (q) = q and P (r) is approximately equal

to r. The results mentioned above are not unique to R and hold in the same way for

any non-Archimedean field extension of R which has roots of positive elements.

In Chapter 3, we review some of the work done by M. Berz in [3, 5, 7, 9]. We

begin with questions about the algebraic, order and topological structures of the field

and show that R admits nth roots of positive elements; more so, the field obtained by

adjoining the imaginary unit is algebraically closed. It is shown that R is the smallest

totally ordered non-Archimedean field extension of R which is Cauchy complete in

the order topology, in which positive elements have roots and in which there exists

an infinitely small positive number d such that the sequence (dn) is null in the order

topology. A new topology, complementing the order topology, is introduced, which is

useful for the study of power series in Chapter 4.

In the following chapters, we extend the previous work and formulate new aspects

of analysis on the Levi-Civita field R. We start in Chapter 4 with a review of

convergence of sequences and series with respect to the order and weak topologies

which leads to the proof that R is Cauchy complete in the order topology while it

is not in the weak topology [5, 7]. We prove new results on convergence; especially
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those dealing with the sums and products of sequences and series. We then review

and enhance a weak convergence criterion for power series. This allows the extension

to R and a detailed study of all transcendental functions in Section 4.4. This also will

allow for the direct use of a large class of functions in Chapters 6 and 7, in particular

all the functional dependencies that can be formulated on a von Neuman computer

[38, 39, 40, 42].

In Chapter 5, we start by extending and generalizing the calculus developed in

[5, 7]. After reviewing topological continuity and topological differentiability, we show

that like in any metric space, the family of topologically continuous or differentiable

functions at a point or on a domain is closed under addition, multiplication and

composition of functions and that if the derivative exists, it must vanish at a local

maximum or minimum. Unlike in R, however, we show with examples that these

smoothness criteria are not strong enough to guarantee that a function topologically

continuous or differentiable on a closed interval of R satisfy the common theorems

of real calculus or even be bounded.

We then review stronger definitions of continuity and differentiability based on the

concept of the derivate [10]. We show that these are preserved under operations on

functions; and we derive a chain rule and a tool for easily checking the differentiability

of functions on intervals of R. Also in this chapter, we generalize the central result in

[3, 5, 7, 10] that derivatives are differential quotients after all. This offers a pretty way

of doing computational differentiation; see Chapter 7 and [38, 39, 40, 42]. We then

review the definition of high order differentiability, the remainder formulas and the

domain of strong convergence of the Taylor series for infinitely often differentiable

functions [10]. We also study weak convergence of the Taylor series and use that

to prove more results about power series; in particular, we show that they can be

reexpanded around any point of their domain of convergence. This entails that the
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functions studied in Chapter 6 are translation invariant. Finally, based on the concept

of differentiability mentioned above, we present a detailed study of a large class of

functions which will be shown to satisfy an intermediate value theorem and an inverse

function theorem.

Using the properties of the weak convergence discussed in Chapter 4 and the

smoothness criteria discussed in Chapter 5, we study in Chapter 6 a large class of

functions on R that contains all the continuations of power series from R to R. We

show that these expandable functions [41, 43] are closed under composition and arith-

metic operations. We also show that for these functions, all the common theorems

from real calculus including the intermediate value theorem, the maximum theorem,

Rolle’s theorem and the mean value theorem hold. Moreover, the expandable func-

tions are infinitely often differentiable and integrable; and the derivative functions of

any orders are again expandable functions.

Finally, in Chapter 7, we discuss one of the important applications of the field

R; namely, the computation of derivatives of functions representable on a computer

[38, 39, 40, 42]. We show that using the calculus on the non-Archimedean field R,

it is possible to rigorously decide whether a function representable on a computer

is differentiable or not at any given point, and if it is, to accurately determine its

derivative, even if the coding exhibits nondifferentiable pieces. Details of an imple-

mentation of the method and examples for its use for typical pathological problems

are given. Execution times for both standard problems as well as exceptions where

conventional methods fail are compared with those obtained using the conventional

algorithms.
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1.3 Intuitive Remarks

In this section, we present general remarks about the Levi-Civita field R that will

enhance the intuitive understanding of the structure of the field discussed in Chapter

3. Motivated by the need for differentials for applications in Physics (see Section 1.4),

we will obtain the differential d in Definition 3.5 and show that every element x of R
can be written as a formal power series of d

x =
∑

q∈Q

xqd
q, (1.1)

in which the powers of d, also called the support points of x, form a left-finite set of

rational numbers; that is, below any given rational number t only finitely many powers

smaller than t appear in the series in Equation (1.1). We remark here that Equation

(1.1) is directly connected to the Hahn theorem [18] which holds for a general totally

ordered non-Archimedean field F and which states that every element of F can be

written as a formal power series in which the exponents form a well-ordered subset

of the skeleton group SF of the field F ; see Chapter 2 for the definition of skeleton

groups. That is, every subset of that set of exponents has a minimum. As we will see

in Chapter 2, the skeleton group of R is SR = Q, the field of rational numbers.

Because of left-finiteness, the set of rational powers in Equation (1.1) can be

arranged as an ascending divergent sequence, and we can rewrite Equation (1.1) as

x =
∞∑

n=1

xnd
qn with qj1 < qj2 if j1 < j2, (1.2)

where convergence occurs with respect to the order topology of R. We remark here

that Equation (1.2) is proved directly in Chapter 3 without reference to the Hahn

theorem, but using the left-finiteness of the support points and the properties of the

order topology. John Conway also proved directly a similar result for his surreal

numbers [13].
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The fact that the powers of d are rational numbers, rather than integers, is neces-

sary for the positive elements of R to have roots in R; and this is used to show that

R is algebraically closed [5]. The left-finiteness of the supports of the R numbers

allows us to define multiplication of two given numbers x and y by multiplying, term

by term, the corresponding rational power series of x and y and obtain a new element

of R. In the rational power series representation of the product, the coefficient of dq

for any given rational number q is obtained as the sum of finitely many terms: Let

x =
∑

r∈Q xrd
r and y =

∑
s∈Q ysd

s be given in R, and let z = x · y; then according to

Definition 3.6, we have that z =
∑

q∈Q zqd
q where for each q

zq =
∑

r+s=q

xrys. (1.3)

Because of the left-finiteness of the supports of x and y, the sum in Equation (1.3)

is finite for each q. Moreover, the left-finiteness is a necessary condition for the

implementation of these numbers on a computer as we will discuss in Section 1.5; this

also follows directly from the Hahn theorem [18].

1.4 Applications in Physics

As we have mentioned in Section 1.1, the existence of infinitely small and infinitely

large numbers in R allows us to have well-behaved delta functions; for example the

functions δ1, δ2 : R → R, given by

δ1(x) =

{
d−1 if |x| ≤ d/2
0 if |x| > d/2

and

δ2(x) =

{
0 if |x| is infinitely larger than d

1√
πd

exp(−x2/d2) otherwise
,

where d is again the differential introduced in Definition 3.5, are piecewise expandable

(see Chapter 6) delta functions; they both assume infinitely large values at 0, they
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vanish at all other real points and their integrals are equal to one. We also note

that we can replace d in the definitions of δ1 and δ2 with any other infinitely small

number a ∈ R+, and obtain delta functions that behave in a similar way as δ1 and

δ2. Thus, each of the two delta functions defined here generates a whole family of

delta functions.

The major motivation for this work is the application of the existence of differen-

tials in R to the computation of derivatives of complicated real functions up to very

high orders. Using the calculus on R developed in Chapter 5, we derive in Chapter

7 a necessary and sufficient condition for the derivatives of real functions to exist

at any given real point and show how to find the derivatives whenever they exist.

Given a real-valued function f that is obtained from the intrinsic functions and the

step function through a finite number of arithmetic operations and compositions, and

given a real point r, we show that we can extend f to R and define it at r ± d.

Then representing f(r±d) as expansions in powers of d allows us to isolate the (real)

derivatives of f at r as coefficients in the expansions. We show that for a given pos-

itive integer m, f is m-times differentiable (in the real sense) at the real point r if

and only if there exist real numbers α1, . . . , αm such that, up to the power m of d,

f(r − d) and f(r + d) are given by

f(r − d) =m f(r) +
m∑

j=1

(−1)jαjd
j and

f(r + d) =m f(r) +
m∑

j=1

αjd
j, (1.4)

in which case the derivatives of f at r are given by

f (j)(r) = j!αj for all j ∈ {1, . . . ,m}.

Remark 1.1 Another necessary and sufficient condition for f to be m-times dif-

ferentiable (again in the real sense) at r is that for all n ∈ {1, . . . , m}, we have
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that d−n

(
∑n

j=0(−1)n−j

(
n
j

)
f (r + jd)

)
and d−n

(
∑n

j=0(−1)j

(
n
j

)
f (r − jd)

)
are

both at most finite in absolute value, and their real parts agree. In this case, the real

derivatives are given by the respective real parts of the difference quotients. That is,

f (n)(r) = <




∑n
j=0(−1)n−j

(
n
j

)
f (r + jd)

dn




for all n ∈ {1, . . . , m}. In particular, if f is differentiable at r, then

f ′(r) = <
(

f(r + d)− f(r)

d

)
.

Equation (1.4) or Remark 1.1 allow us to compute the real derivatives of a real-valued

function at a real point to full machine precision and with no numerical penalties,

because d is infinitely small. The proof of Remark 1.1 and of all the statements made

in this section are found in Chapter 7.

The ability to calculate derivatives to high orders is important in many areas of

Physics, e.g. in Beam Physics [9], non-linear Dynamics and Celestial Mechanics. In

order to be able to use the theory developed in Chapter 7, the arithmetic operations

and all the transcendental functions which are extended to R in Section 4.4 were im-

plemented in COSY INFINITY [6, 8, 12]. Because of the theoretical work in Chapter

7, COSY INFINITY can now compute derivatives of very complicated functions to

very high orders even if the coding contains if-else or other nondifferentiable pieces

that do not affect the final result. Formula manipulators such as Mathematica, Au-

tomatic Differentiation methods [11] and even previous versions of COSY INFINITY

[4] were not able to handle such cases. Even when Mathematica works, our method

is much faster since no symbolic differentiation is required before the numerical eval-

uation of the derivatives. Moreover, the results obtained are accurate up to machine



12

precision; this represents a clear advantage over traditional numerical differentiation

methods in which case finite errors result from digit cancellation in the floating point

representation and for high orders the errors usually become too large for the results

to be of any practical use.

The practical usefulness of the existence of differentials is obtained at the cost that

the field is disconnected in the order topology. The disconnection occurs because

if x and y are any two positive elements of R and if x is infinitely smaller than

y, then for all positive integers n we still have that nx is infinitely smaller than

y. This disconnection between the different orders of magnitude makes it hard to

extend the real calculus to R and explains the need for all the mathematical work in

Chapters 2 through 6 before we get to the applications in Chapter 7. In particular,

there are topologically continuous functions on closed intervals that do not satisfy

the intermediate value theorem, the maximum theorem, or have multiple primitive

functions that do not differ by a constant. For example consider the simple function

f : [0, 1] →R, given by

f(x) =

{
0 if x is infinitely small
1 if x is finite

.

Then f is topologically continuous and differentiable on [0, 1], but f does not assume

the value d on [0, 1] even though f(0) < d < f(1). Moreover, even though f ′(x) = 0

for all x ∈ [0, 1], f is not constant on [0, 1]. This is due to the fact that the behavior

of f in the infinitely small part of the domain, where it is constant and equal to zero,

is totally disconnected from its behavior in the finite part of the domain, where it is

constant and equal to 1. More examples are found at the end of Section 5.1.

The difficulties mentioned in the previous paragraph are not specific to R and

are common to all non-Archimedean structures, which explains the previously rather

limited results that could be derived in Non-Archimedean Analysis. In Chapter 5
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and Chapter 6, we provide elegant solutions to the problems mentioned above; and

we use that together with the results developed in the previous chapters to show

the practical usefulness of the Levi-Civita field in Chapter 7. We first enhance the

definitions of continuity and differentiability in Section 5.2 and obtain in Section 5.4

an intermediate value theorem and an inverse function theorem based on the new

stronger definitions of continuity and differentiability. We then show in Chapter 6

that all the common theorems of real calculus hold for a large class of functions

which are given locally by power series with R coefficients. In particular, we show

that they satisfy the intermediate value theorem even though they do not satisfy

the requirements of the general intermediate value theorem discussed in Section 5.4.

Moreover, they satisfy the maximum theorem, Rolle’s theorem and the mean value

theorem; and they are infinitely often differentiable and integrable.

1.5 Implementation

Besides allowing illuminating theoretical conclusions, the strength of the R numbers

is that they can be used in practice, and even in a computer environment. In this

respect, they differ from the nonconstructive structures in Nonstandard Analysis [25,

35].

An implementation of the R numbers is not as direct as one of the Differential Al-

gebras [2, 9] since R is infinite dimensional. However, it is still possible to implement

the structure in a very useful way. Since there are only finitely many support points

below every bound, it is possible to pick any such bound and store all the support

points to the left of it together with the respective coefficients of the corresponding

powers of d. Each R number is represented by its support points, the respective co-

efficients of the powers of d, and finally the value of the upper bound of the support
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points. That is, if we limit ourselves to n terms in the expansion, we can represent

the series expansion of a given R number x by n pairs of numbers, the first n powers

of d in the expansion and the n corresponding coefficients in the following way

x =M

{
x1 x2 · · · xn

q1 q2 · · · qn

}

=M x1d
q1 + x2d

q2 + · · ·+ xndqn ,

where M is the upper bound below which all the support points q1, q2, · · · , qn of x are

to be stored. In particular, a real number r will be represented as follows

r =M

{
r
0

}

=M rd0

if M ≥ 0 and r + d is represented as follows

r + d =M

{
r 1
0 1

}

=M rd0 + 1d1

if M ≥ 1.

The sum of two such numbers can then be computed for all values to the left of

the minimum of the two upper bounds; so the minimum of the upper bounds is the

upper bound of the support points of the sum. In a similar way it is possible to find

a bound below which the product of two such numbers can be computed from the

bounds of the two numbers. Altogether, the bound to which each individual number

is known is carried along through all arithmetic.

For the purpose of the implementation of the elementary functions, we make use

of the addition theorems, e.g. Theorem 4.13 and Theorem 4.14, proved in Section 4.4

to truncate the series at a certain depth M . The elementary functions are defined

for any number x ∈ R that is at most finite in absolute value. Any such x can be
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written as x = r + s, where r = <(x) and where |s| is infinitely small. Thus using the

addition theorems for the elementary functions, we separate the function value at x

into a real part and an infinitely small part which can be represented by a power series

in s with positive exponents. This power series in s can be rewritten as a power series

in d which converges fast and is truncated at the desired depth M . The following

examples illustrate how the truncation is done for the division and the sine function;

similar schemes are followed for the other transcendental functions.

Example 1.1 Let x = r + d, where r is real and let M = 10.

Then

1

x
=

1

r + d

=
1

r

∞∑

j=0

(−1)j

(
d

r

)j

=10
1

r
− 1

r2
d +

1

r3
d2 − · · ·+ 1

r11
d10.

Example 1.2 Let x = r + d, where r is real and let M = 10.

Then

sin(x) = sin(r + d)

= sin(r) cos(d) + cos(r) sin(d)

=10 sin(r)
(
1− 1

2!
d2 +

1

4!
d4 − 1

6!
d6 +

1

8!
d8 − 1

10!
d10

)

+ cos(r)
(
d− 1

3!
d3 +

1

5!
d5 − 1

7!
d7 +

1

9!
d9

)

= sin(r) + cos(r)d− sin(r)

2!
d2 − cos(r)

3!
d3 + · · · − sin(r)

10!
d10.
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The real functions sin and cos already exist on the computer; and since the power

series expansions of cos(d) and sin(d) converge very fast for the infinitely small d, the

truncation is done easily as shown in the example above. Similar arguments hold for

the other transcendental functions.

Using the rules outlined above, all the arithmetic operations and all the transcen-

dental functions have been implemented in COSY INFINITY [6, 8, 12]. This allows

us to apply the theoretical results of Chapter 7 for the computation of derivatives

of real functions, in which case the upper bound of the support points in the final

result must be greater than or equal to the order m of differentiability we would like

to check. This final upper bound is calculated in terms of the upper bounds of the

intermediate calculations, which we may have to change to get the desired final up-

per bound of the support points and hence obtain the desired information up to that

depth. The number of support points of f(r + d) or f(r− d) smaller than or equal to

m may depend on the complexity of the function f ; however, using Equation (1.4),

we can decide the differentiability of f at r up to order m and obtain the derivatives

up to machine precision just by looking at the first m + 1 support points of f(r− d),

the first m+1 support points of f(r + d) and the corresponding coefficients. We give

three simple examples here and refer the reader to the examples and the details of

the method discussed in Chapter 7.

Example 1.3 Let f1 : [−1, 1] → R be given by f1(x) = exp(x)

Then evaluating f1(±d) up to the power m of d, where m is a positive integer, yields

f1(−d) =m 1 +
m∑

j=1

(−1)j 1

j!
dj and

f1(d) =m 1 +
m∑

j=1

1

j!
dj.
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Since f1(0) = 1, we obtain that f1 is m-times differentiable at 0 with derivatives

f
(j)
1 (0) = 1 for all j ≤ m.

Example 1.4 Let f2 : [−1, 1] → R be given by

f2(x) = |x|7/2 sin(x).

Then, evaluating f(±d) up to the power 8 of d gives

f2(−d) =8 −d9/2 +
d13/2

6
and

f2(d) =8 d9/2 − d13/2

6
.

Since f2(0) = 0, we obtain using Equation (1.4) that f2 is four-times differentiable at

0 with derivatives equal to 0; but f2 is not m-times differentiable at 0 for any m ≥ 5.

Example 1.5 Let f3 : [−1, 1] → R be given by

f3(x) =

{
|x|−1/2 sin3(x) if x 6= 0
0 if x = 0

.

Then, evaluating f3(±d) up to the power 2 of d yields

f3(±d) =2 0 = f(0),

from which we obtain that f3 is twice differentiable at 0 with derivatives

f ′3(0) = f
(2)
3 (0) = 0.

To check whether f3 is three-times differentiable at 0, we need to evaluate f3(±d) up

to the power 3 of d; if we do so, we obtain that

f3(−d) =3 −d5/2

f3(d) =3 d5/2,
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from which we infer, using Equation (1.4), that f3 is not three-times differentiable at

0 since 5/2 is a noninteger number smaller than 3 and the coefficient of d5/2 in the

expansion of f3(d) is not zero. The same conclusion follows also from Remark 1.1,

since the difference quotient of order 3,

f3(3d)− 3f3(2d) + 3f3(d)− f3(0)

d3
,

is of the same order of magnitude as d−1/2 and hence it is infinitely large in absolute

value.

1.6 Notations

Throughout this dissertation, we will adopt the following notations:

Z, Z+, Z−: the set of all integers, the set of positive integers and the set of negative

integers, respectively;

Q, Q+, Q−: the field of rational numbers, the set of positive rational numbers and

the set of negative rational numbers, respectively;

R, R+, R−: the field of real numbers, the set of positive real numbers and the set

of negative real numbers, respectively;

L: the field of the formal Laurent series; and

R (read R-script): the Levi-Civita field.



Chapter 2

Skeleton Groups and Field
Automorphisms

In this chapter, we prove general results about skeleton groups and field automor-

phisms which will be useful for understanding the structure of the Levi-Civita field

R, which will be introduced in Chapter 3.

2.1 Skeleton Groups

Let F be a totally ordered field, and let a, b ∈ F ∗ = F \ {0} be given. We say that

a ∼ b if and only if there exist n,m ∈ Z+ such that n|a| > |b| and m|b| > |a|, where

| · | is the usual absolute value on F , defined by

|x| =
{

x if x ≥ 0
−x if x < 0

.

Then ∼ is an equivalence relation.

Let SF denote the set of all equivalence classes. Then

SF = {[a] : a ∈ F ∗}.

Let a, a1, b, b1 ∈ F ∗ be such that a ∼ a1 and b ∼ b1. Then a · b ∼ a1 · b1. Define

⊕ : SF × SF → SF by

[a]⊕ [b] = [a · b].
19
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Then it is easy to verify that (SF ,⊕) is an abelian group whose additive neutral

element is denoted by 0 and is given by 0 = [1], where 1 is the multiplicative neutral

element of F . The additive inverse of an element [a] ∈ SF is denoted by ª[a] and is

given by ª[a] = [a−1].

Let a, a1, b, b1 ∈ F ∗ be such that a ∼ a1 and b ∼ b1. Assume that, for all n ∈ Z+,

n|a| < |b|. Then n|a1| < |b1| for all n ∈ Z+. Define <,≤: SF → SF by

[a] < [b] if and only if n · |a| < |b| for all n ∈ Z+

[a] ≤ [b] if and only if [a] = [b] or [a] < [b].

Then the relation ≤ defines a total ordering on (SF ,⊕). Thus (SF ,⊕,≤) is a totally

ordered abelian group; that is,

1. for all [a], [b] ∈ (SF ,⊕), [a] ≤ [b] or [b] ≤ [a], and [a] = [b] if and only if [a] ≤ [b]

and [b] ≤ [a],

2. for all [a], [b], [c] ∈ SF , [a] ≤ [b] ⇒ [a]⊕ [c] ≤ [b]⊕ [c].

In the following, the totally ordered group (SF ,⊕,≤) will be simply denoted by SF

and will be referred to as the skeleton group of F .

One can easily verify that the skeleton group of R is given by

SR = {0} = {[1]};

and the skeleton group of L is given by

SL = Z,

where L is the field of the formal Laurent series. After having introduced the totally

ordered field R in Section 3.1 and Section 3.3, one can also verify that the skeleton

group of R is

SR = Q.
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Definition 2.1 Let F be a totally ordered field. Then we say that F is non-Archimedean

if and only if the skeleton group SF of F contains more than one element.

Theorem 2.1 Let F be a totally ordered non-Archimedean field. Then Z ⊂ SF .

Proof. Since F is non-Archimedean, there exists an element d ∈ F ∗ such that

[d] 6= 0 = [1]. Since [d] = [−d], we may assume that d > 0, where 0 is the additive

neutral element of F . Since ª[d] = [d−1] ∈ SF , we may assume that [d] < 0, i.e. that

d is infinitely small. Consider the subset ZF = {[dn] : n ∈ Z} of SF . For m > n, we

have that

ª[dn]⊕ [dm] = [d−n · dm] = [dm−n] = [d · d · . . . · d︸ ︷︷ ︸
(m−n) times

]

= [d]⊕ [d]⊕ · · · ⊕ [d]︸ ︷︷ ︸
(m−n) times

< [d]⊕ [d]⊕ · · · ⊕ [d]︸ ︷︷ ︸
(m−n−1) times

...

< [d] < 0.

Thus, m 6= n ⇒ [dm] 6= [dn] for all m,n ∈ Z. The map P : ZF → Z given by

P ([dn]) = −n

is an order preserving isomorphism; that is,

1. P is bijective,
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2. P is compatible with the groups’ operations, i.e. for all m,n ∈ Z,

P ([dm]⊕ [dn]) = P ([dm]) + P ([dn]),

and

3. P is compatible with the groups’ order relations, i.e. for all m,n ∈ Z,

[dm] < [dn] ⇔ P ([dm]) < P ([dn]).

Thus Z is isomorphic to a subset of SF , or simply Z ⊂ SF .

Theorem 2.2 Let F be a totally ordered non-Archimedean field which admits roots

of positive elements. Then Q ⊂ SF .

Proof. Since F is non-Archimedean, there exists an element d ∈ F ∗ such that [d] < 0.

Let q > 0 in Q be given; write q = m/n where m,n ∈ Z+. As in the proof of Theorem

2.1, [dm] < 0. Using the fact that [dm] = [dn·q] = [dq]⊕ [dq]⊕ · · · ⊕ [dq]︸ ︷︷ ︸
n times

, we obtain

that [dq] < 0. In particular, [dq] 6= 0.

Now let q1 6= q2 be given in Q. We may assume that q2 > q1. Then q2 − q1 > 0,

and hence

ª[dq1 ]⊕ [dq2 ] = [dq2−q1 ] < 0.

Thus, q1 6= q2 ⇒ [dq1 ] 6= [dq2 ].

Let QF = {[dq] : q ∈ Q}. Then QF is a subgroup of SF , and the map P : QF → Q,

given by

P ([dq]) = −q, (2.1)

is an order preserving group isomorphism from QF onto Q.
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Remark 2.1 Define ⊗ : QF ×QF → QF by

[dq1 ]⊗ [dq2 ] = [dq1·q2 ].

Then (QF ,⊕,⊗,≤) is a totally ordered field, and the map P given in Equation (2.1)

becomes a field isomorphism of QF onto Q.

2.2 Field Automorphisms

Definition 2.2 Let F be a set, and let P : F → F be given. Then we say that P is

an automorphism on F if and only if P is an isomorphism from F onto itself.

Lemma 2.1 Let S and T be fields, and let P : S → T be a field isomorphism. Then

P has an inverse P−1 : T → S which is itself a field isomorphism from T onto S.

Proof. Since P is bijective, P−1 exists and it is bijective. Let +S and +T denote

the addition operations in S and T , respectively; and let ×S and ×T denote the

operations of multiplication in S and T , respectively. Now let y1, y2 ∈ T be given,

and let x1 = P−1(y1) and x2 = P−1(y2). Then

P−1(y1 +T y2) = P−1 (P (x1) +T P (x2))

= P−1 (P (x1 +S x2)) since P is an isomorphism

= x1 +S x2 = P−1(y1) +S P−1(y2),

and

P−1(y1 ×T y2) = P−1 (P (x1)×T P (x2))

= P−1 (P (x1 ×S x2)) since P is an isomorphism

= x1 ×S x2 = P−1(y1)×S P−1(y2).

Thus P−1 is a field isomorphism from T onto S.
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Theorem 2.3 Let S and T be totally ordered fields, and let P : S → T be an order

preserving field isomorphism. Then P−1 is an order preserving field isomorphism

from T onto S.

Proof. Using Lemma 2.1, it remains to show that P−1 : T → S is order preserving.

So let y1, y2 ∈ T be such that y1 ≤T y2, and let x1 = P−1(y1) and x2 = P−1(y2). We

need to show that x1 ≤S x2. Suppose not; then x2 <S x1. Since P is order preserving,

we obtain that y2 = P (x2) <T P (x1) = y1, a contradiction.

Theorem 2.4 Let F be a totally ordered field, and let P : F → F be an automor-

phism on F . Then P (q) = q for all q ∈ Q.

Proof. Since F is a totally ordered field, Q ⊂ F . For any x ∈ F , we have that

P (x) = P (0 + x) = P (0) + P (x); and hence

P (0) = 0.

Also for any x ∈ F , we have that P (x) = P (1 · x) = P (1) · P (x); and hence

P (1) = 1. (2.2)

Now let q > 0 in Q be given; write q = m/n where m,n ∈ Z+. Then m = n · q.
Thus

P (m) = P (n) · P (q). (2.3)

Using Equation (2.2), we obtain that for all l ∈ Z+,

P (l) = P (1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

)

= P (1) + P (1) + · · ·+ (1)︸ ︷︷ ︸
l times



25

= 1 + 1 + · · ·+ 1︸ ︷︷ ︸
l times

= l.

Thus, P (m) = m and P (n) = n. Substituting into Equation (2.3), we obtain that

P (q) = q. Finally, let q < 0 in Q be given; then −q > 0. Thus P (−q) = −q. Since

0 = P (0) = P (−q + q) = P (−q) + P (q), we have that P (q) = −P (−q) = q. Hence

P (q) = q for all q ∈ Q.

Corollary 2.1 The identity map I : Q → Q is the only field automorphism on Q.

Theorem 2.5 Let F be a totally ordered Archimedean field. Then the identity map

I : F → F is the only order preserving field automorphism on F .

Proof. Assume not. Then there exists a nontrivial order preserving field auto-

morphism P on F . Thus there exists x ∈ F \ Q such that P (x) 6= x. Since

P (−x) = −P (x) 6= −x, we may assume without loss of generality that x > 0.

Since P (x−1) = (P (x))−1 6= x−1, we may assume that x > 1.

By Theorem 2.3, P−1 is also an order preserving field automorphism on F , and

P−1(x) 6= P−1(P (x)) = x. If P (x) < x, then x = P−1(P (x)) < P−1(x). So we may

assume without loss of generality that

1 < x < P (x).

Since F is Archimedean, there exist n,N ∈ Z+ such that

0 <
1

P (x)− x
< N and n ≤ Nx < n + 1.

Then

n + 1 ≤ Nx + 1 < Nx + N(P (x)− x) = NP (x).
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Thus,

Nx < n + 1 < NP (x),

and since N > 0, we finally obtain that

x <
n + 1

N
< P (x). (2.4)

Applying P to the first part of Equation (2.4), we obtain that

P (x) < P
(

n + 1

N

)
=

n + 1

N
,

which contradicts Equation (2.4) itself. Hence the identity map is the only order

preserving field automorphism on F .

Lemma 2.2 Let F be a totally ordered field which admits roots of positive elements,

and let P be a field automorphism on F . Then P is order preserving.

Proof. It suffices to show that P (a) > 0 for all a > 0 in F ; so let a > 0 in F be

given. Let b > 0 in F be such that b2 = a. Hence

P (a) = P (b2) = (P (b))2 ≥ 0.

Since a 6= 0 and since P is one to one on F , we obtain that P (a) 6= 0. Thus, P (a) > 0.

Combining the results of Theorem 2.5 and Lemma 2.2, we obtain the following

result.

Corollary 2.2 The identity map is the only field automorphism on R.

Theorem 2.6 Let F be a totally ordered non-Archimedean field, let SF be the skeleton

group of F , and let P be an order preserving field automorphism on F . Then the

map Γ : SF → SF , given by Γ([x]) = [P (x)], is a well-defined order preserving group

automorphism on SF .
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Proof. Let x ∈ F ∗ be given; then P (x) 6= 0. If x < 0, then P (x) < 0 and hence

P (|x|) = P (−x) = −P (x) = |P (x)|. On the other hand, if 0 < x, then 0 < P (x) and

hence P (|x|) = P (x) = |P (x)|. So for all x ∈ F ∗, P (|x|) = |P (x)|.

To show that Γ is a well-defined map, we need to show that

[x] = [y] ⇒ [P (x)] = [P (y)].

So let x, y ∈ F ∗ be such that [x] = [y]. Then there exist m,n ∈ Z+ such that

|y| < m · |x| and |x| < n · |y|. Thus,

|P (y)| = P (|y|) < P (m · |x|) = P (m) · P (|x|) = m · |P (x)|

and |P (x)| < n · |P (y)|. Hence [P (x)] = [P (y)].

Now we show that Γ is one to one. So let [x], [y] ∈ SF be such that Γ([x]) = Γ([y]).

We need to show that [x] = [y]. Since [P (x)] = [P (y)], there exist k, l ∈ Z+ such that

|P (y)| < k · |P (x)| and |P (x)| < l · |P (y)|. From |P (y)| < k · |P (x)| we obtain that

P (|y|) < P (k) · P (|x|) = P (k · |x|); and hence |y| < k · |x|.

Similarly, |P (x)| < l · |P (y)| entails that |x| < l · |y|. Hence [x] = [y].

To show that Γ is surjective, let [y] ∈ SF be given. We need to find [x] ∈ SF such

that [y] = Γ([x]). Since P is surjective, there exists x ∈ F such that y = P (x). Since

y 6= 0, we have also that x 6= 0. Hence

[x] ∈ SF and Γ([x]) = [P (x)] = [y].

For any [x], [y] ∈ SF , we have that

Γ([x]⊕ [y]) = Γ([x · y]) = [P (x · y)]

= [P (x) · P (y)] = [P (x)]⊕ [P (y)]

= Γ([x])⊕ Γ([y])
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It remains to show that Γ preserves order in SF . So let [x], [y] ∈ SF be such that

[x] ≤ [y]; we need to show that Γ([x]) ≤ Γ([y]). If [x] = [y], then Γ([x]) = Γ([y]).

Suppose [x] < [y]; then for all n ∈ Z+, n · |x| < |y|. It follows that

n · |P (x)| = P (n) · P (|x|) = P (n · |x|) < P (|y|) = |P (y)| for all n ∈ Z+.

Thus [P (x)] < [P (y)]; i.e. Γ([x]) < Γ([y]).

Corollary 2.3 Let F , P , and Γ be as in Theorem 2.6. Define Λ : SF → SF by

Λ([x]) = [P−1(x)]. Then Λ is an order preserving group automorphism on SF , and

Λ = Γ−1.

Corollary 2.4 Let F be a totally ordered non-Archimedean field extension of R, and

let P be an order preserving field automorphism on F . Then, for all r ∈ R∗, [P (r)] = 0

i.e P (r) ∼ 1.

Proof. Let r ∈ R∗ be given; then [r] = [1] = 0. Hence, by Theorem 2.6, we have

that [P (r)] = [P (1)] = [1] = 0.

Corollary 2.5 Let P be an order preserving field automorphism on L. Then, for all

x ∈ L∗, [P (x)] = [x] i.e. P (x) ∼ x.

Proof. By Theorem 2.6, the map Γ : SL = Z → Z, given by Γ([x]) = [P (x)], is an

order preserving group automorphism on Z = SL. We need to show that Γ = I, the

identity map on Z. By Theorem 2.6, we have that

[x] = [y] ⇒ [P (x)] = [P (y)] and [P−1(x)] = [P−1(y)] (2.5)

[x] < [y] ⇒ [P (x)] < [P (y)] and [P−1(x)] < [P−1(y)]. (2.6)

We have that

Γ(0) = Γ([1]) = [P (1)] = [1] = 0. (2.7)
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Let d be the L number representing the formal Laurent series x. Since [d] = −1 <

0 = [1], we have by Equation (2.6) that

[P (d)] < [P (1)] = [1] = 0 and [P−1(d)] < [P−1(1)] = [1] = 0.

Since d > 0, we have that P (d) > 0 and P−1(d) > 0. If P (d) = d, then [P (d)] = [d].

If d < P (d), then [d] ≤ [P (d)], and hence −1 ≤ [P (d)] < 0. Since [P (d)] is an integer,

[P (d)] = −1 = [d]. If P (d) < d, then d < P−1(d). Thus −1 = [d] ≤ [P−1(d)] < 0

and hence [P−1(d)] = −1 = [d]. Using Equation (2.5), we obtain that [P (P−1(d))] =

[P (d)], and hence [P (d)] = [d] = −1. Thus,

Γ(−1) = −1.

Now let n ∈ Z− be given. Then

Γ(n) = Γ([d−n]), where −n ∈ Z+

= Γ([d] + [d] + · · ·+ [d]︸ ︷︷ ︸
−n times

)

= Γ([d]) + Γ([d]) + · · ·+ Γ([d])︸ ︷︷ ︸
−n times

= −1− 1− . . .− 1︸ ︷︷ ︸
−n times

= −n · (−1)

= n.

Finally, let n ∈ Z+ be given; then −n ∈ Z−. Since Γ(−n) + Γ(n) = Γ(−n + n) =

Γ(0) = 0,

Γ(n) = −Γ(−n) = −(−n) = n.

Therefore,

Γ(n) = n for all n ∈ Z; and hence Γ = I.

Corollary 2.6 Let P be an order preserving field automorphism on L. Then P (r) =

r +
∑∞

k=1 rkd
k for all r ∈ R, where rk ∈ R for all k ∈ Z+.
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Proof. Let r > 1 be given in R. Then 1 = P (1) < P (r). If P (r) = r, we are

done. Assume P (r) 6= r; then P (r) − r 6= 0. Since [P (r)] = [r] = 0, we have

that [P (r) − r] ≤ 0. Assume [P (r) − r] = 0; then [P (r) − r] = [1], and hence

[P−1(P (r) − r)] = [P−1(1)] = [1]. Thus [P−1(r) − r] = 0. If P (r) < r, then

r < P−1(r); so we may assume without loss of generality that r < P (r). Therefore

1 < r < P (r). Since [P (r)] = 0, there exists N ∈ Z+ such that P (r) < N . Hence

1 < r < P (r) < N < N · r < N · P (r). (2.8)

Since r < P (r) and [P (r)− r] = 0, we have that

P (r)− r = t · r +
∞∑

k=1

rkd
k, with t > 0 in R.

Let ε be a rational number satisfying 0 < ε < t. There exists k ∈ Z+ such that

N < k · ε. Thus ε · r < P (r)− r, and hence (1 + ε) · r < P (r). It follows that

(1 + ε)2 · r < (1 + ε) · P (r) = P ((1 + ε)) · P (r) = P ((1 + ε) · r) < P (P (r)) = P 2(r).

Using induction, we obtain that

(1 + ε)m < Pm(r) for all m ∈ Z+.

In particular,

(1 + N) · r < (1 + k · ε) · r < (1 + ε)k · r < P k(r),

from which we obtain that

N · r < P k(r). (2.9)

By Equation (2.8), P (r) < N . Hence P 2(r) < P (N) = N . Using induction, it follows

that Pm(r) < N for all m ∈ Z+. In particular, P k(r) < N < N · r, which contradicts

Equation (2.9). So if r > 1 and P (r) 6= r, then [P (r)− r] < 0. It follows that

P (r) = r +
∞∑

k=1

rkd
k.
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Hence the result is true for all r > 1 in R.

Now let r ∈ R be such that 0 < r < 1; then r−1 > 1. Thus,

P (r−1) = r−1 +
∞∑

k=1

skd
k = r−1 ·

(
1 + r ·

∞∑

k=1

skd
k

)
= r−1 · (1 + s),

where |s| is infinitely small. Thus (1 + s)−1 = (1 + s′) where |s′| is also infinitely

small. It follows that

P (r) =
(
P

(
r−1

))−1
= r · (1 + s)−1 = r + r · s′,

which proves the result for 0 < r < 1.

Since P (0) = 0 and P (1) = 1, the result is true for all r ≥ 0 in R. To show it is

true for r < 0 in R, we make use of the fact that P (r) = −P (−r).

Example 2.1 Define P : L → L as follows: for x ∈ L, write x =
∑

k≥kx
akd

k and

set P (x) =
∑

k≥kx
2kakd

k, where kx = −[x]. Then P is an order preserving field

automorphism on L.

After this study of the properties of skeleton groups and field automorphisms, we

will now move on to introduce the Levi-Civita field R; and we will prove more results

about order preserving field automorphisms on R in Section 3.3.



Chapter 3

The Non-Archimedean Field R

In this chapter, we review the algebraic structure, the order structure and the topolog-

ical structure of the non-Archimedean Levi-Civita field R, which are found in [3, 5, 7].

We also review the differential algebraic structure of the field, which is useful for the

concept of differentiability [42].

3.1 Algebraic Structure

We begin the discussion by introducing a specific family of sets.

Definition 3.1 (The Family of Left-Finite Sets) A subset M of Q is called left-

finite if and only if for every number r ∈ Q there are only finitely many elements of

M that are smaller than r. The set of all left-finite subsets of Q will be denoted by

F .

The next lemma gives some insight into the structure of left-finite sets.

Lemma 3.1 Let M ∈ F be given. If M 6= ∅, the elements of M can be arranged

in ascending order, and there exists a minimum of M . If M is infinite, the resulting

strictly increasing sequence is divergent.

32
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Proof. A finite totally ordered set can always be arranged in ascending order; so we

may assume that M is infinite.

For each n ∈ Z+, set Mn = {x ∈ M : x ≤ n}. Then, for all n, Mn is finite by

the left-finiteness of M , and we have that M = ∪nMn. Hence, we first arrange the

finitely many elements of M0 in ascending order, append the finitely many elements

of M1 not in M0 in ascending order, and continue inductively.

If the resulting strictly increasing sequence were bounded, there would also be a

rational bound below which there would be infinitely many elements of M , contrary

to the assumption that M is left-finite. Therefore, we conclude that the sequence is

divergent.

Lemma 3.2 Let M, N ∈ F . Then the following are true.

• X ⊂ M ⇒ X ∈ F .

• M ∪N ∈ F .

• M ∩N ∈ F .

• M + N = {x + y : x ∈ M and y ∈ N} ∈ F , and for every x ∈ M + N , there

are only finitely many pairs (a, b) ∈ M ×N such that x = a + b.

Proof. The first three statements follow directly from the definition. For the proof

of the fourth statement, let xM , xN denote the smallest elements in M and N respec-

tively; these exist by Lemma 3.1. Let r ∈ Q be given. Set

Mu = {x ∈ M |x < r − xN}, Nu = {x ∈ N |x < r − xM},

M o = M \Mu, N o = N \Nu.
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Then we have that

M + N = (Mu ∪M o) + (Nu ∪N o)

= (Mu + Nu) ∪ (M o + Nu) ∪ (Mu + N o) ∪ (M o + N o)

= (Mu + Nu) ∪ (M o + N) ∪ (M + N o).

By definition of M o and N o, we have that (M o + N) and (M + N o) do not contain

any elements smaller than r. Thus all elements of M + N that are smaller than r

must actually be contained in Mu + Nu. Since both Mu and Nu are finite because

of the left-finiteness of M and N , we obtain that Mu + Nu is also finite. Thus there

are only finitely many elements in M + N that are smaller than r.

Finally, let x ∈ M + N be given. Set r = x + 1 and define Mu, Nu as in the

preceding paragraph. Then we have that x /∈ (M o + N) and x /∈ (M + N o). Hence

all pairs (a, b) ∈ M ×N that satisfy x = a + b lie in the finite set Mu ×Nu.

Having discussed the family of left-finite sets, we introduce the following set of

functions from Q into R.

Definition 3.2 (The Set R) We define

R = {f : Q → R : {x|f(x) 6= 0} ∈ F}.

Hence, the elements of R are those real-valued functions on Q that are nonzero only

on a left-finite set, that is, they have left-finite support.

Remark 3.1 Since the desired field R is to be non-Archimedean and have roots of

positive elements (see Chapter 1), we infer using Theorem 2.2 that Q is the minimal

domain of definition of the elements of R in Definition 3.2. This already tells us

something about the uniqueness of R; see Theorem 3.11.
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In the following, we denote elements of R by x, y, etc. and identify their values

at q ∈ Q with brackets, like in x[q]. This avoids confusion when we later consider

functions on R. Since the elements of R are functions with left-finite support, it is

convenient to use the properties of left-finite sets in Lemma 3.1 for their description.

Definition 3.3 (Notation for Elements of R) An element x ofR is uniquely char-

acterized by an ascending (finite or infinite) sequence (qn) of support points and a

corresponding sequence (x[qn]) of function values. We refer to the pair of sequences

((qn), (x[qn])) as the table of x.

Already at this point it is worth noting that for questions of implementation, it

is usually sufficient to store only the first few of the support points and remember

carefully up to what “depth” a given number in R is known.

For subsequent discussion, it is convenient to introduce the following terminology.

Definition 3.4 (supp, λ, ∼, ≈, =r) For x, y ∈ R, we define

supp(x) = {q ∈ Q : x[q] 6= 0} and call it the support of x.

λ(x) = min(supp(x)) for x 6= 0 (which exists because of left-finiteness) and

λ(0) = +∞.

Comparing two elements, we say

x ∼ y if and only if λ(x) = λ(y);

x ≈ y if and only if λ(x) = λ(y) and x[λ(x)] = y[λ(y)];

x =r y if and only if x[q] = y[q] for all q ≤ r.

At this point, these definitions may feel somewhat arbitrary; but after having

introduced the concept of ordering onR, we will see that λ describes “orders of infinite
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largeness or smallness”, the relation “≈” corresponds to agreement up to infinitely

small relative error, while “∼” corresponds to agreement of order of magnitude and

is thus the same as the ∼ introduced in Section 2.1.

Lemma 3.3 The relations ∼, ≈ and =r are equivalence relations. They satisfy

x ≈ y ⇒ x ∼ y;

and

if a > b in Q, then x =a y ⇒ x =b y.

Definition 3.5 (The Number d) We define the number d ∈ R as follows.

d[q] =

{
1 if q = 1
0 else

.

Apparently, the number d admits an n-th root for all n ∈ Z+, denoted by d1/n

and given by

d1/n[q] =

{
1 if q = 1

n

0 else
.

Also d has a multiplicative inverse denoted by d−1 and given by

d−1[q] =

{
1 if q = −1
0 else

.

As we shall see, d plays the role of an infinitesimal and thus satisfies what Rall

suspected about the number (0, 1) in his arithmetic of differentiation [33].

We now define arithmetic on R.

Definition 3.6 (Addition and Multiplication on R) We define addition on R
componentwise:

(x + y)[q] = x[q] + y[q] for all q ∈ Q.
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Multiplication is defined as follows. For q ∈ Q, we set

(x · y)[q] =
∑

qx, qy ∈ Q,
qx + qy = q

x[qx] · y[qy].

We remark that R is closed under addition since supp(x + y) ⊂ supp (x) ∪
supp (y), so by Lemma 3.2, we have that supp(x + y) is left-finite. Lemma 3.2 also

shows that only finitely many terms contribute to the sum in the definition of the

product. Furthermore, the product defined above is itself an element of R since the

sets of support points satisfy supp(x · y) ⊂ supp (x) + supp (y); so that application

of Lemma 3.2 shows that supp(x · y) ∈ F .

It turns out that the operations + and · we just defined on R make (R,+,·) into

a field (see Theorem 3.4 below).

Theorem 3.1 (R,+,·) is a commutative ring with a unit.

Proof. The proof is straightforward, and we leave it as an exercise for the reader to

fill in the details.

As it turns out, R can be viewed as an extension of R.

Theorem 3.2 (Embedding of R into R) R can be embedded into R under the

preservation of its arithmetic structure.

Proof. Let x ∈ R. Define Π : R →R by

Π(x)[q] =

{
x if q = 0
0 if q 6= 0

.

Then Π is one to one, and direct calculation shows that

Π(x + y) = Π(x) + Π(y) and

Π(x · y) = Π(x) · Π(y).
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So R is embedded as a subfield in the ring R. However, the embedding is not surjec-

tive, since only elements with support {0} are actually reached.

Remark 3.2 In the following, we identify an element x ∈ R with its image Π(x) ∈ R
under the embedding.

We also make the following observation.

Remark 3.3 Let x1 and x2 be real numbers. Then if both x1 and x2 are nonzero, we

have that x1 ∼ x2. Furthermore, x1 ≈ x2 is equivalent to x1 = x2.

The only nontrivial step toward the proof that R is a field is the existence of

multiplicative inverses of nonzero elements. For this purpose, we prove a new theorem

that will be of key importance for a variety of proofs and applications.

Theorem 3.3 (Fixed Point Theorem) Let qM ∈ Q be given. Define M ⊂ R to

be the set of all elements x of R such that λ(x) ≥ qM . Let f : M → R satisfy

f(M) ⊂ M . Suppose there exists k > 0 in Q such that for all x1, x2 ∈ M and for all

q ∈ Q, we have that

x1 =q x2 ⇒ f(x1) =q+k f(x2).

Then there exists a unique solution x ∈ M of the fixed point equation

x = f(x).

Proof. We choose an arbitrary a0 ∈ M and define recursively

an = f(an−1), for n = 1, 2, ....

Since f maps M into itself, this generates a sequence of elements of M . First we

show that for all n ∈ Z+, we have that

an[p] = an−1[p] for all p < (n− 1)k + qM . (3.1)
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Since a0, a1 ∈ M, we have that a1[p] = 0 = a0[p] for all p < qM . So Equation (3.1)

holds for n = 1. Assume it is true for n = m; we show it is true for n = m + 1. Thus,

we have that

am[p] = am−1[p] for all p < (m− 1)k + qM . (3.2)

Let t < mk + qM be given. Then t − k < (m − 1)k + qM ; and hence Equation (3.2)

entails that

am =t−k am−1.

Hence

am+1 = f(am) =t f(am−1) = am,

which entails that

am+1[p] = am[p] for all p ≤ t.

This is true for all t < mk + qM ; hence

am+1[p] = am[p] for all p < mk + qM .

Thus, Equation (3.1) is true for n = m + 1, and hence it is true for all n ∈ Z+.

Next we define a function x : Q → R in the following way. For q ∈ Q choose

n ≥ 1 such that (n−1)k + qM > q. Set x[q] := an[q]; note that, by virtue of Equation

(3.1), this is independent of the choice of n. Furthermore, we have that x =q an.

So in particular x is an element of R since for every q ∈ Q, the set of its support

points smaller than q agrees with the set of support points smaller than q of one of

the an ∈ M . Also, since x[p] = 0 for all p < qM , we obtain that x ∈ M .

Now we show that x defined as above is a solution of the fixed point equation.

For q ∈ Q choose again n ≥ 1 such that (n− 1)k + qM > q. Then it follows that x =q

an =q an+1. By the contraction property of f, we thus obtain that f(x) =q+k f(an),
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which in turn implies that

x[q] = an+1[q] = f(an)[q] = f(x)[q].

Since this holds for all q ∈ Q, we have that x is a fixed point of f .

It remains to show that x is a unique fixed point of f in M . Assume that y ∈ M

is a fixed point of f . The contraction property of f is equivalent to

λ(f(x1)− f(x2)) ≥ λ(x1 − x2) + k for all x1, x2 ∈ M.

This implies that

λ(x− y) = λ(f(x)− f(y)) ≥ λ(x− y) + k,

which is possible only if y = x, since k > 0.

Remark 3.4 Without further knowledge about R, the requirements and meaning of

the fixed point theorem are not very intuitive. However, as we will see later, the

assumption about f means that f is a contracting function with an infinitely small

contraction factor. Furthermore, the sequence (an) that is constructed in the proof is

indeed a Cauchy sequence, which is assured convergence because of the Cauchy com-

pleteness of R with respect to its order topology, as discussed in Chapter 4. However,

while making the situation more transparent, the properties of ordering and Cauchy

completeness are not required to formulate and prove the fixed point theorem, and so

we refrained from invoking them here.

It is also worthwhile to point out that, in spite of the iterative character of the fixed

point theorem, for every q ∈ Q the value of the fixed point x at q can be calculated in

finitely many steps. This is of significant importance especially for practical purposes.

Using the fixed point theorem, we can now easily show the existence of multiplica-

tive inverses.
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Theorem 3.4 (R,+,·) is a field.

Proof. It remains to show the existence of multiplicative inverses of nonzero elements.

So let x ∈ R \ {0} be given. Set q = λ(x), a = x[q] and x∗ = 1/a · d−q · x. Then

λ(x∗) = 0 and x∗[0] = 1. If an inverse of x∗ exists, then 1/a · d−q · (x∗)−1 is an inverse

of x; so without loss of generality, we may assume that λ(x) = 0 and x[0] = 1.

If x = 1, there exists an inverse. Otherwise, x is of the form x = 1 + y with

0 < k = λ(y) < +∞. It suffices to find z ∈ R such that (1 + z) · (1 + y) = 1. This is

equivalent to

z = −y · z − y.

Setting f(z) = −y · z − y reduces the problem to finding a fixed point of f . Let

M = {z ∈ R : λ(z) ≥ k}. Let z ∈ M be given; then

λ(y · z) > λ(y); and hence λ(f(z)) = λ(y) = k.

Hence f(M) ⊂ M . Now let z1, z2 ∈ M satisfying z1 =q z2 be given. Since λ(y) = k,

we obtain that y · z1 =q+k y · z2, and hence

−y · z1 − y =q+k −y · z2 − y.

Thus f satisfies the hypothesis of the fixed point theorem (Theorem 3.3), and conse-

quently a fixed point of f exists. This finishes the proof of Theorem 3.4.

Now we examine the existence of roots in R. Using the fixed point theorem, we

show that, regarding this important property, the new field behaves just like R.

Theorem 3.5 Let x ∈ R be nonzero, and set q = λ(x). If n is even and x[q] is

positive, then x has two nth roots in R. If n is even and x[q] is negative, then x has

no nth roots in R. If n is odd, then x has a unique nth root in R.
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Proof. Let x be a nonzero number and write x = a · dq · (1+ y), where a ∈ R, q ∈ Q,

and λ(y) > 0. Assume that w is an nth root of x. Since q = λ(x) = λ(wn) = nλ(w),

we can write w = b · dq/n · (1 + z), where b ∈ R and λ(z) > 0. Raising to the nth

power, we see that bn = a and (1+ z)n = 1+ y have to hold simultaneously. The first

of these equations has a solution if and only if the corresponding roots exist in R. So

it suffices to show that the equation

(1 + z)n = 1 + y (3.3)

has a unique solution with λ(z) > 0. But this equation is equivalent to nz+z2 ·P (z) =

y, where P (z) is a polynomial with integer coefficients. The equation can be rewritten

as a fixed point problem z = f(z), where

f(z) =
y

n
− z2 · P (z)

n
.

Let

M = {z ∈ R : λ(z) ≥ λ(y)} .

For all z ∈ M , we have that λ(z) ≥ λ(y) > 0. Thus, λ(P (z)) ≥ 0, and hence

λ(z2 · P (z)) = 2λ(z) + λ(P (z)) > λ(z) ≥ λ(y).

Hence we obtain that f(z) ≈ y/n; so f(z) ∈ M . Hence

f(M) ⊂ M.

Now let z1, z2 ∈ M satisfying z1 =q z2 be given. Then λ(z1) ≥ λ(y), λ(z2) ≥
λ(y), and the definition of multiplication shows that we obtain z2

1 =q+λ(y) z2
2 . By

induction on m, we obtain that zm
1 =q+λ(y) zm

2 for all m > 1. In particular, this

implies z2
1 · P (z1) =q+λ(y) z2

2 · P (z2) and finally f(z1) =q+λ(y) f(z2). So f and M

satisfy the hypothesis of the fixed point theorem which provides a unique solution of

(1 + z)n = 1 + y in M and hence in R.
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We remark that a crucial point to the proof was the existence of roots of the

numbers dq; hence we could not have chosen anything smaller than Q as the domain

of the functions that are the elements of our new field.

We end this section by remarking that the field C, obtained by adjoining the

imaginary number i to R, is algebraically closed. Although a rather deep result, it

is obtained with limited effort using the fixed point theorem as well as the algebraic

completeness of C (see [5]).

3.2 Differential Algebraic Structure

We introduce an operator ∂ on R and show that it is a derivation.

Definition 3.7 Define ∂ : R→ R by

(∂x)[q] = (q + 1)x[q + 1].

Lemma 3.4 ∂ is a derivation on R; that is

∂(x + y) = ∂x + ∂y and ∂(x · y) = (∂x) · y + x · (∂y) for all x, y ∈ R.

Thus, (R, +, ·, ∂) is a differential algebraic field. Furthermore, we have that

λ(∂x) = λ(x)− 1if λ(x) 6= 0,∞ and

∂0 = 0;

but if λ(x) = 0, then λ(∂x) can be either greater than, equal to, or smaller than λ(x).

Proof. Let x, y ∈ R and let q ∈ Q be given. Then

(∂(x + y)) [q] = (q + 1)(x + y)[q + 1] = (q + 1)x[q + 1] + (q + 1)y[q + 1]

= (∂x)[q] + (∂y)[q].
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This is true for all q ∈ Q; hence ∂(x + y) = ∂x + ∂y.

For all q ∈ Q, we also have that

(∂(x · y)) [q] = (q + 1)(x · y)[q + 1]

= (q + 1)
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

x[q1]y[q2]

=
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

(q + 1)x[q1]y[q2]

=
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

(q1x[q1]y[q2] + x[q1]q2x[q2])

=
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

q1x[q1]y[q2] +
∑

q1 + q2 = q + 1
q1 ∈ supp(x), q2 ∈ supp(y)

x[q1]q2y[q2]

=
∑

s + t = q
s + 1 ∈ supp(x), t ∈ supp(y)

(s + 1)x[s + 1]y[t] +

∑

s + t = q
s ∈ supp(x), t + 1 ∈ supp(y)

x[s](t + 1)y[t + 1]

=
∑

s + t = q
s ∈ supp(∂x), t ∈ supp(y)

(∂x)[s]y[t] +
∑

s + t = q
s ∈ supp(x), t ∈ supp(∂y)

x[s](∂y)[t]

= ((∂x) · y) [q] + (x · (∂y)) [q]

= ((∂x) · y + x · (∂y)) [q].

This is true for all q ∈ Q; and hence ∂(x · y) = (∂x) · y + x · (∂y).

Now let x ∈ R be given such that λ(x) 6= 0,∞. Then for all q < λ(x) − 1, we

have that q + 1 < λ(x); and hence

(∂x)[q] = (q + 1)x[q + 1] = 0.

Hence λ(∂x) ≥ λ(x)− 1; but

(∂x)[λ(x)− 1] = λ(x)x[λ(x)] 6= 0.
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Hence, λ(∂x) = λ(x)− 1.

On the other hand, we have that

(∂0)[q] = (q + 1)0[q + 1] = 0 for all q ∈ Q.

Thus,

∂0 = 0; and hence λ(∂0) = λ(0) = ∞.

To prove the last statement, let

x1 = 1, x2 = 1 + d, and x3 = 1 + d1/2; then λ(xj) = 0 for j = 1, 2, 3.

We have that

∂x1 = 0, and hence λ(∂x1) > λ(x1);

∂x2 = 1, and hence λ(∂x2) = λ(x2);

∂x3 =
1

2
d−1/2, and hence λ(∂x3) < λ(x3).

3.3 Order Structure

In the previous section we showed that R does not differ significantly from R as far

as its algebraic properties are concerned. In this section we discuss the ordering.

The simplest way of introducing an order is to define a set of “positive” numbers.

Definition 3.8 (The Set R+) Let R+ be the set of all nonvanishing elements x of

R that satisfy x[λ(x)] > 0.

Lemma 3.5 (Properties of R+) The set R+ has the following properties.

R+ ∩ (−R+) = ∅, R+ ∩ {0} = ∅, and R+ ∪ {0} ∪ (−R+) = R;

x, y ∈ R+ ⇒ x + y ∈ R+ and x · y ∈ R+.
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The proofs follow rather directly from the respective definitions.

Having defined R+, we can now easily introduce an order in R.

Definition 3.9 (Ordering in R) Let x, y ∈ R be distinct. We say x > y if and

only if x− y ∈ R+. Furthermore, we say x < y if and only if y > x.

With this definition of the order relation, R is a totally ordered field.

Theorem 3.6 (Properties of the Order) With the order relation defined in Def-

inition 3.9, (R,+,·) becomes a totally ordered field.

Furthermore, the order is compatible with the algebraic structure of R, that is, for

any x, y, z ∈ R, we have that

x > y ⇒ x + z > y + z; and

x > y ⇒ x · z > y · z if z > 0.

Since the proof follows the same arguments as the corresponding ones for R, the

details are omitted here. We immediately obtain that the embedding Π in Theorem

3.2 is compatible with the ordering, that is

x < y ⇒ Π(x) < Π(y).

Furthermore C, like C, cannot be ordered.

Thus R, like C, is a proper field extension of R. Note that this is not a contra-

diction of the well-known uniqueness of C as a field extension of R. The respective

theorem of Frobenius asserts only the nonexistence of any (commutative) field on Rn

for n > 2. However, regarded as an R-vector space, R is infinite dimensional.

Besides the usual order relations, some other notations are convenient.
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Definition 3.10 (¿,À) Let a, b ∈ R be nonnegative. We say that a is infinitely

smaller than b (and write a ¿ b) if and only if n · a < b for all n ∈ Z+; we say

that a is infinitely larger than b (and write a À b) if and only if b ¿ a. If a ¿ 1,

we say that a is infinitely small; if 1 ¿ a, we say that a is infinitely large. Infinitely

small numbers are also called infinitesimals or differentials. Infinitely large numbers

are also called infinite. Nonnegative numbers that are neither infinitely small nor

infinitely large are also called finite.

Corollary 3.1 For all a, b, c ∈ R+, we have that

a ¿ b ⇒ a < b, and

a ¿ b and b ¿ c ⇒ a ¿ c.

Moreover, we observe that

dq ¿ 1 if and only if q > 0, and dq À 1 if and only if q < 0.

Corollary 3.2 The field R is non-Archimedean.

Proof. We have that n · d < 1 for all n ∈ Z+; and hence d 6∼ 1.

By Lemma 2.2, every field automorphism on R is order preserving. The following

example shows that, while the identity map is the only field automorphism on R

by Corollary 2.2, there are nontrivial field automorphisms on R. However, Theorem

3.7 below shows that the image of a real number under a field automorphism is

approximately equal to the number itself.

Example 3.1 Define P : R → R as follows: For x ∈ R, write x =
∑

q∈supp(x) aqd
q

and set P (x) =
∑

q∈supp(x) aqd
3q. Then P is a field automorphism on R.
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Remark 3.5 Note that, in Example 3.1, P (d) = d3 6∼ d, in contrast with Corollary

2.5 and Example 2.1.

Theorem 3.7 Let P be a field automorphism on R. Then P (r) ≈ r for all r ∈ R.

Proof. By Lemma 2.2, we have that P is order preserving. Then the proof is exactly

the same as that of Corollary 2.6.

It is a crucial property of the field R that the differentials, especially the formerly

defined number d, satisfy Leibniz’s intuitive idea of derivatives as differential quo-

tients. This will be discussed in great detail in Chapter 5; but already here we want

to give a simple example.

Example 3.2 (Calculation of Derivatives with Differentials) Let f : R → R

be given by f(x) = x2 − 2x.

Obviously, f is differentiable on R, and we have that f ′(x) = 2x − 2 for all x ∈ R.

As we know, we can obtain certain approximations to the derivative at the position

x by calculating the difference quotient

f(x + ∆x)− f(x)

∆x

at x. Roughly speaking, the accuracy increases if ∆x gets smaller. In our enlarged

field R, infinitely small quantities are available, and thus it is natural to calculate the

difference quotient for such infinitely small numbers. For example, if we let ∆x = d

and let f̄ denote the continuation of f to R, then we obtain that

f̄(x + d)− f(x)

d
=

(x2 + 2xd + d2 − 2x− 2d)− (x2 − 2x)

d
= 2x− 2 + d.

We realize that the difference quotient differs from the exact value of the derivative

by only an infinitely small error. If all we are interested in is the usual real derivative
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of the real function f , then this is given exactly by the “real part” of the difference

quotient.

3.4 Topological Structure

In this section we examine the topological structures of R and the related sets. We

will see that on R, in contrast to R, several different nontrivial topologies can be

defined, all of which have certain advantages.

We begin with the introduction of an absolute value; this is done as in any totally

ordered field.

Definition 3.11 (Absolute Value on R) Let x ∈ R be given. We define the ab-

solute value of x as follows.

|x| =
{

x if x ≥ 0
−x if x < 0

.

Lemma 3.6 (Properties of the Absolute Value) The mapping | · | : R→ R has

the following properties.

|x| = 0 if and only if x = 0.

|x · y| = |x| · |y| for all x, y ∈ R.

|x + y| ≤ |x|+ |y| for all x, y ∈ R.

||x| − |y|| ≤ |x− y| for all x, y ∈ R.

Proof. The proof follows the same lines as the proof of the corresponding result in

R.

Just as in any totally ordered set, we can now introduce the so-called order topol-

ogy.
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Definition 3.12 (Order Topology) We call a subset M of R open if and only if

for any x0 ∈ M there exists an ε > 0 in R such that O(x0, ε), the set of points x with

|x− x0| < ε, is a subset of M .

Thus all ε-balls form a basis of the topology. We obtain the following theorem.

Theorem 3.8 (Properties of the Order Topology) With the above topology, R
is a nonconnected topological space. It is Hausdorff. There are no countable bases.

The topology induced to R is the discrete topology. The topology is not locally compact.

Proof. We first observe that for all x0 ∈ R and for all ε > 0 in R, the balls O(x0, ε)

are open; and so is the whole space. Furthermore, all unions and finite intersections

of open sets are obviously open. To show that R is not connected, let

M1 = {x ∈ R : x ≤ 0 or (x > 0 and x ¿ 1)}; and

M2 = {x ∈ R : x > 0 and x 6¿ 1}.

Then M1 and M2 are open and disjoint; moreover, we have that M1 ∪M2 = R.

For all x, y ∈ R, O(x, |x − y|/2) and O(y, |x − y|/2) are open and disjoint, and

they contain x and y, respectively. Hence R is Hausdorff.

There can not be any countable bases because the uncountably many open sets

MX = O(X, d), with X ∈ R, are disjoint. The open sets induced on R by the sets

MX are just the single points. Thus, in the induced topology, all sets are open and

the topology is therefore discrete.

To prove that the space is not locally compact, let x ∈ R be given and let U be

a neighborhood of x. We show that the closure Ū of U is not compact. Let ε > 0 in

R be such that O(x, ε) ⊂ U and consider the sets

M−1 = {y ∈ R : y < x or y − x À d · ε};
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Mn = (x + (n− 1)d · ε, x + (n + 1)d · ε) for n = 0, 1, 2, . . . .

Then it is easy to check that Mn is open for all n ≥ −1 and

∪∞n=−1Mn = R; in particular, Ū ⊂ ∪∞n=−1Mn.

But it is impossible to select finitely many of the Mn’s to cover Ū because each of the

infinitely many elements x + nd · ε of Ū , n = −1, 0, 1, 2, . . ., is contained only in the

set Mn.

Remark 3.6 A detailed study of the properties in Theorem 3.8 reveals that they hold

in an identical way on any other non-Archimedean structure, and thus the above

unusual properties are not specific to R.

Besides the absolute value, it is useful to introduce a semi-norm that is not based

on the order. For this purpose, we regardR as a space of functions as in the beginning,

and define the semi-norm as a mapping from R into R.

Definition 3.13 Given r ∈ Q, we define a mapping ‖ · ‖r : R→ R as follows.

‖x‖r = sup{|x[q]| : q ≤ r}. (3.4)

Remark 3.7 The supremum in Equation (3.4) is finite and it is even a maximum

since, for any r, only finitely many of the x[q]’s considered do not vanish.

Lemma 3.7 For any r ∈ Q, the mapping ‖ · ‖r : R→ R satisfies the following.

‖0‖r = 0 = ‖dt‖r for all t > r in Q. (3.5)

‖x‖r = ‖ − x‖r for all x ∈ R. (3.6)

‖x‖r ≥ 0 for all x ∈ R. (3.7)

‖x + y‖r ≤ ‖x‖r + ‖y‖r for all x, y ∈ R. (3.8)

|‖x‖r − ‖y‖r| ≤ ‖x− y‖r for all x, y ∈ R. (3.9)
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Proof. Equations (3.5), (3.6), and (3.7) follow readily from the definition. To prove

Equation (3.8), let x, y ∈ R and r ∈ Q be given. Then

‖x‖r = sup{|x[q]| : q ≤ r},

‖y‖r = sup{|y[q]| : q ≤ r}, and

‖x + y‖r = sup{|(x + y)[q]| : q ≤ r}.

Let q0 ∈ Q be such that q0 ≤ r and |(x + y)[q0]| = ‖x + y‖r. Then

‖x + y‖r = |(x + y)[q0]| = |x[q0] + y[q0]|

≤ |x[q0]|+ |y[q0]|

≤ ‖x‖r + ‖y‖r.

We finally prove Equation (3.9): Let x, y ∈ R and r ∈ Q be given. Then, using

Equation (3.8), we have that ‖x‖r ≤ ‖x− y‖r + ‖y‖r, from which we obtain that

‖x‖r − ‖y‖r ≤ ‖x− y‖r. (3.10)

Interchanging x and y in Equation (3.10) and using Equation (3.6), we obtain that

‖y‖r − ‖x‖r ≤ ‖y − x‖r = ‖x− y‖r. (3.11)

combining Equation (3.10) and Equation (3.11), we obtain Equation (3.9) and finish

the proof of the lemma.

Remark 3.8 From Equations (3.5), (3.6), (3.7), and (3.8), we infer that ‖ · ‖r is a

semi-norm but not a norm, for any r ∈ Q.

The topology induced by the family of these semi-norms will be called weak topol-

ogy.
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Definition 3.14 (Weak Topology) We call a subset M of R open with respect to

the weak topology if and only if for any x0 ∈ M there exists ε > 0 in R such that

S(x0, ε) = {x ∈ R : ||x− x0||1/ε < ε} ⊂ M .

We will see that the weak topology is the most useful topology for considering

convergence in general; see Chapters 4, 5, 6, and 7. Moreover, it is of great importance

for the implementation of the R calculus on computers; see Chapter 7.

Theorem 3.9 (Properties of the Weak Topology) With the above definition of

the weak topology, R is a topological space. It is Hausdorff with countable bases. The

topology induced on R by the weak topology is the usual order topology on R.

Proof. It is easy to check that for all x0 ∈ R and for all ε > 0 in R, the balls S(x0, ε)

are open; and so is the whole space. Furthermore, all unions and finite intersections

of open sets are open. The balls S(r, q) with r, q ∈ Q form a countable basis of the

topology. We obtain a Hausdorff space: Let x, y ∈ R be given, let r = λ(x− y), and

let

ε = min

{ |(x− y)[r]|
2

,
1

2|r|

}
.

Then S(x, ε) and S(y, ε) are disjoint and open, and they contain x and y, respectively.

Finally, considering elements of R, their supports are all equal to {0}. Therefore, the

open subsets of R in the weak topology correspond to the open subsets of R in its

order topology.

In Chapter 4, we will study in details convergence of sequences and series in the

strong and weak topologies, and we will show that R is Cauchy complete with respect

to the strong topology while it is not with respect to the weak topology.

In addition to the two topologies discussed above, there is another topology which

takes into account that, in any practical scenario, it will not be possible to detect
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infinitely small errors, nor will it possible to measure infinitely large quantities. We

obtain this topology by a suitable continuation of the order topology on R.

Definition 3.15 (Measure Topology) Given any open subset of R, we form a sub-

set of R containing the elements of the original set as well as all the elements infinitely

close to them. To the family of sets obtained this way, we add one more set, namely

the one containing every element with infinitely large absolute value.

Thus a basis of this topology consists of all ε-balls with real ε and the set of

numbers with infinitely large absolute value.

Theorem 3.10 (Properties of the Measure Topology) With the above topology,

R is a nonconnected topological space with countable bases. It is not Hausdorff. The

topology is locally compact and induces the usual order topology on R.

Proof. We can directly show that the whole space as well as unions and finite

intersections of open sets are open. Obviously, elements with infinitely small difference

can not be separated; they are always simultaneously inside or outside of any given

open set. Hence the space is not Hausdorff with respect to the measure topology.

The rest follows by transferring the properties of the order topology on R.

Remark 3.9 (Comparison of the Topologies) The order topology is a refinement

of both the weak topology and the measure topology.

To finish this section, we will show that the field R is indeed the smallest non-

Archimedean extension of R satisfying the basic requirements demanded in Chapter

1, which gives it a unique position among all other field extensions.
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Theorem 3.11 (Uniqueness of R) The field R is the smallest totally ordered non-

Archimedean field extension of R that is complete with respect to the order topology, in

which every positive number has an nth root, and in which there is a positive infinitely

small element a such that (an) is a null sequence with respect to the order topology.

Proof. Obviously, R satisfies the conditions above. So it remains to show that R
can be embedded in any other field extension of R that has the properties mentioned

above. So let S be such a field.

Let δ ∈ S be positive and infinitely small such that (δn) is a null sequence with

respect to the order topology in S. Let δ1/n be an n-th root of δ. Such a root exists

according to the requirements. Now observe that

(
δ1/n

)m
=

(
δ1/(np)

)mp
, for all p ∈ Z+.

So let q = m/n be given in Q, and let

δq =
(
δ1/n

)m
.

This element is unique. Furthermore, δq is infinitely small for q > 0. Let q1 < q2 be

given in Q. Then we clearly have that δq1 > δq2 . Now let a ∈ R be given. Then we

also have that a ∈ S, and hence a · δq ∈ S.

Now let ((qi), x[qi]) be the table of an element x of R. Consider the sequence

sj =
j∑

i=1

x[qi]δ
qi .

Then the sequence (sj) converges in S: Let ε > 0 be given in S. Since the sequence

(δn) is a null sequence in S, there exists N ∈ Z+ such that

|δν | < ε for all ν ≥ N.

Since the sequence (qi) is strictly divergent, there exists N1 ∈ Z+ such that

qi ≥ N for all i ≥ N1.
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But then we have for arbitrary j1 > j2 ≥ N1 that

|sj1 − sj2| = |
j1∑

i=j2

x[qi]δ
qi| ≤

j1∑

i=j2

|x[qi]|δqi ≤



j1∑

i=j2

|x[qi]|

 δqj2+1

≤



j1∑

i=j2

|x[qi]|

 δN+1 < δN < ε.

Thus the sequence (sj) is Cauchy, and hence it converges in S because of the Cauchy

completeness of S. We now assign to every element
∑∞

i=1 x[qi] · dqi of R the element

∑∞
i=1 x[qi] · δqi of S. The mapping is one to one. Furthermore, we can easily verify

that it is compatible with the algebraic operations and the order on R.

Remark 3.10 A field with the properties of R could also be obtained by successively

extending a simpler non-Archimedean field, e.g. the well-known field of rational func-

tions. To do this, we first would have to Cauchy complete the field. After that, the

algebraic closure has to be done, for example by the method of Kronecker-Steinitz.

This method, however, is nonconstructive, whereas the direct path followed here is

entirely constructive.

Remark 3.11 In the proof of the uniqueness, we noted that δ was only required to

be positive, infinitely small and such that (δn) is a null sequence in S. But besides

that, its actual magnitude was irrelevant. Thus, none of the infinitely small quantities

is significantly different from the others. In particular, there exists a nontrivial field

automorphism on S. This remarkable property has no analogy in R where the identity

map is the only field automorphism; see Corollary 2.2.



Chapter 4

Sequences and Series

In this chapter, we review convergence of sequences and series with respect to the

order and weak topologies following [3, 5, 7]. We also prove new results; in particular,

those dealing with the convergence of sums and products of sequences and series. We

then enhance and prove a weak convergence criterion for power series, Theorem 4.12,

and use that to extend the transcendental functions to R and study their properties

in Section 4.4.

4.1 Strong Convergence

We begin this section by studying a special property of sequences.

Definition 4.1 (Regularity) A sequence (sn) in R is called regular if and only if

the union of the supports of all members of the sequence is a left-finite set, that is if

and only if ∪∞n=0supp(sn) ∈ F .

This property is not automatically assured, as becomes apparent from consider-

ing the sequence (d−n). As the next theorem shows, the property of regularity is

compatible with the common operations of sequences.

57
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Lemma 4.1 (Properties of Regularity) Let (sn) and (tn) be regular sequences in

R. Then the sequence of the sums, the sequence of the products, any rearrangement,

as well as any subsequence of one of the sequences, and the merged sequence r2n = sn,

r2n+1 = tn are regular.

Proof. Let A = ∪∞n=0supp(sn) and B = ∪∞n=0supp(tn). Then, according to the

requirements, we have that A ∈ F and B ∈ F .

Every support point of the sequence of the sums is a support point of either one

of the sn or one of the tn and is thus contained in (A ∪ B) ∈ F , using Lemma 3.2.

Every support point of the sequence of the products is contained in (A + B) ∈ F ,

again using Lemma 3.2.

The support points of any subsequence of (sn) are contained in A , and the support

points of the joined sequence (rn) are contained in A ∪B.

Definition 4.2 (Strong Convergence) Let (sn) be a sequence in R. We say that

(sn) is strongly convergent to the limit s ∈ R if and only if for every ε > 0 in R there

exists N ∈ Z+ such that

|sn − s| < ε for all n ≥ N.

Remark 4.1 Like in any other metric space, it is easy to show that if the limit of a

sequence exists then it is unique.

Using the idea of strong convergence allows a simple representation of the elements

of R that is indeed strongly reminiscent of the familiar expansion of real numbers in

powers of ten, and that enjoys a similar usefulness for practical calculations.
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Theorem 4.1 (Expansion in Powers of Differentials) Let ((qn), (x[qn])) be the

table of x ∈ R (see Definition 3.3). Then the sequence (xn), given by xn =
∑n

i=1 x[qi] ·
dqi for all n ∈ Z+, converges strongly to the limit x. Hence we can write

x =
∞∑

n=1

x[qn] · dqn .

Proof. Without loss of generality, we may assume that the set {qn} is infinite. Let

ε > 0 in R be given. Choose N1 ∈ Z+ such that dN1 < ε. Since (qn) diverges strictly

according to Lemma 3.1, there exists N ∈ Z+ such that

qn > N1 for all n ≥ N.

Hence we have that

(xn − x)[t] = 0 for all t ≤ N1 and for all n ≥ N.

Thus

|xn − x| < ε for all n ≥ N.

Therefore, (xn) converges strongly to x.

Lemma 4.2 Let (sn) be a sequence converging strongly in R to s. Then (|sn|) con-

verges strongly in R to |s|.

Proof. Let ε > 0 in R be given. Then there exists N ∈ Z+ such that |sm − s| < ε

for all m ≥ N . Therefore,

||sm| − |s|| ≤ |sm − s| < ε for all m ≥ N.

Hence, (|sn|) converges strongly to |s|.

Remark 4.2 The converse of Lemma 4.2 is not true.
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Proof. Consider the sequence (sn) in R, where, for k = 0, 1, . . ., s2k = −1 and

s2k+1 = 1. Then |sn| = 1 for all n ≥ 0. Hence (|sn|) converges strongly to 1 in R.

However, (sn) does not converge strongly in R.

Definition 4.3 Let (sn) be a sequence in R. Then we say that (sn) is strongly Cauchy

if and only if for all ε > 0 in R, there exists N ∈ Z+ such that

|sm − sl| < ε for all m, l ≥ N.

Like R, the new field R is Cauchy complete with respect to the order topology.

That is, a sequence (sn) in R converges strongly if and only if (sn) is strongly Cauchy.

Theorem 4.2 R is Cauchy complete with respect to the order topology.

Proof. Let (sn) be a sequence in R that converges strongly to s ∈ R. We show that

(sn) is strongly Cauchy. So let ε > 0 be given in R. Then there exists N ∈ Z+ such

that

|sn − s| < ε

2
for all n ≥ N.

For all m, l ≥ N , we have that

|sm − sl| = |sm − s− (sl − s)| ≤ |sm − s|+ |sl − s| < ε

2
+

ε

2
= ε.

Hence (sn) is strongly Cauchy.

Now let (sn) be a strongly Cauchy sequence in R. We show that (sn) converges

strongly in R. For all r ∈ Q, there exists Nr ∈ Z+ such that

|sm − sl| < dr+1 for all m, l ≥ Nr. (4.1)
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Thus,

sm[q] = sNr [q] for all m ≥ Nr and for all q ≤ r. (4.2)

By Equation (4.1), we may assume that

Nr1 ≤ Nr2 if r1 < r2. (4.3)

Define s : Q → R by s[q] = sNq [q]. First we show that s ∈ R; that is, we show that

supp(s) is left-finite. So let r ∈ Q be given. Combining Equation (4.2) and Equation

(4.3), we obtain that

s[q] = sNq [q] = sNr [q] for all q ≤ r.

Thus there are only finitely many q ≤ r such that s[q] 6= 0, and hence supp(s) is

left-finite. Finally, we show that (sn) converges strongly to s. So let ε > 0 be given

in R. There exists r ∈ Q such that dr < ε. Then

sm[q] = sNr [q] = s[q] for all m ≥ Nr and for all q ≤ r.

Hence

|sm − s| ¿ dr < ε for all m ≥ Nr.

Thus, (sn) converges strongly to s in R.

Like in any other metric space, every Cauchy sequence is bounded.

Lemma 4.3 Let (sn) be a strongly Cauchy sequence in R. Then (sn) is bounded.

Corollary 4.1 Every strongly convergent sequence in R is bounded.

Theorem 4.3 (Strong Convergence Criterion for sequences) Let (sn) be a se-

quence in R. Then (sn) converges strongly in R if and only if for all r ∈ Q there

exists N ∈ Z+ such that

sm =r sl for all m, l ≥ N.
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Proof. Let (sn) be a strongly convergent sequence in R, and let r ∈ Q be given.

Then there exists N ∈ Z+ such that

|sm − sl| < dr+1 for all m, l ≥ N.

Hence sm =r sl for all m, l ≥ N .

Now let (sn) be a sequence in R such that for all r ∈ Q there exists N ∈ Z+ such

that sm =r sl for all m, l ≥ N . Let ε > 0 in R be given; and let

r = λ(ε).

Then there exists N ∈ Z+ such that sm =r sl for all m, l ≥ N ; and hence

|sm − sl| ¿ dr for all m, l ≥ N.

Since dr ∼ ε, we obtain that

|sm − sl| ¿ ε for all m, l ≥ N.

Hence (sn) is a strongly Cauchy sequence; so by Theorem 4.2, the sequence (sn)

converges strongly in R.

Lemma 4.4 Let (sn) be a strongly convergent sequence in R. Then (sn) is regular.

Proof. Let s be the limit of (sn) in R; and let r ∈ Q be given. Then there exists

N ∈ Z+ such that

|sm − s| < dr+1 for all m ≥ N.

It follows that

sm[q] = s[q] for all m ≥ N and for all q ≤ r.

Thus,

(−∞, r] ∩ (∪∞n=0supp(sn)) = (−∞, r] ∩
(
∪N−1

n=0 supp(sn)
)
∪ ((−∞, r] ∩ supp(s))
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is finite, it being the union of two finite sets. So ∪∞n=0supp(sn) is left-finite, and hence

the sequence (sn) is regular.

The following results: Theorem 4.4, Corollary 4.2, Corollary 4.3 and Corollary 4.4

do not hold in R; the non-Archimedicity of R is the key to their proofs.

Theorem 4.4 Let (sn) be a sequence in R. Then (sn) is strongly Cauchy if and only

if (sn+1 − sn) is a null sequence.

Proof. Let (sn) be a Cauchy sequence in R, and let ε > 0 in R be given. Then there

exists N ∈ Z+ such that |sl− sm| < ε for all l,m ≥ N . In particular, |sm+1− sm| < ε

for all m ≥ N . Hence, limn→∞(sn+1 − sn) = 0.

Now assume that (sn+1− sn) is a null sequence in R, and let ε > 0 in R be given.

Then there exists N ∈ Z+ such that

|sm+1 − sm| < dε for all m ≥ N.

Let k, l ≥ N be given. Without loss of generality, we may assume that k > l. Then

we have that

|sk − sl| = |sk − sk−1 + sk−1 − sk−2 + · · ·+ sl+1 − sl|

≤ |sk − sk−1|+ |sk−1 − sk−2|+ · · ·+ |sl+1 − sl|

< (k − l)dε

< ε since (k − l)d is infinitely small.

Thus, (sn) is strongly Cauchy in R.

Corollary 4.2 Let (sn) be a sequence in R. Then, (sn) converges strongly if and

only if (sn+1 − sn) is a null sequence with respect to the order topology.
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Corollary 4.3 The infinite series
∑∞

n=0 an converges strongly in R if and only if the

sequence (an) is a null sequence in R.

Corollary 4.4 The series
∑∞

n=0 an converges strongly if and only if it converges ab-

solutely strongly, that is if and only if
∑∞

n=0 |an| converges strongly.

Proof. We have, using Corollary 4.3, that

∞∑

n=0

an converges strongly ⇔ lim
n→∞ an = 0

⇔ lim
n→∞ |an| = 0

⇔
∞∑

n=0

|an| converges strongly.

The proofs of Lemma 4.5, Corollary 4.5 and Lemma 4.6 follow the same lines as

the those of the corresponding results in R; so we omit these proofs here.

Lemma 4.5 Let (sn) and (tn) be two sequences converging strongly in R to s and t,

respectively. Then, the sequence (sn + tn) converges strongly to s + t.

Corollary 4.5 Let
∑∞

n=0 an and
∑∞

n=0 bn be two infinite series converging strongly in

R to a and b, respectively. Then, the series
∑∞

n=0(an + bn) converges strongly to a+ b.

Lemma 4.6 Let (sn) and (tn) be two sequences in R converging strongly to s and t,

respectively. Then the sequence (sntn) converges strongly to st.

Again the non-Archimedicity of R gives us a nice result in Theorem 4.5, which

does not hold in R without the additional requirement that one of the series converge

absolutely.
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Theorem 4.5 Let
∑∞

n=0 an and
∑∞

n=0 bn be two infinite series converging strongly

in R to a and b, respectively. Then, the series
∑∞

n=0 cn, where cn =
∑n

j=0 ajbn−j,

converges strongly to ab in R.

Proof. First, we show that
∑∞

n=0 cn converges strongly in R. By Corollary 4.3,

it suffices to show that limn→∞ cn = 0. Since
∑∞

n=0 an and
∑∞

n=0 bn converge strongly

in R, the sequences (an) and (bn) are both strongly null in R. Hence, by Corollary

4.1, (an) and (bn) are both bounded. Therefore, there exists B > 0 in R such that

|an| < B and |bn| < B for all n ≥ 0.

Let ε > 0 in R be given. Then, there exists M ∈ Z+ such that

|am| < dε

B
and |bm| < dε

B
for all m ≥ M.

Let N = 2M . Then, for all m ≥ N , we have that

|cm| = |a0bm + a1bm−1 + · · ·+ am−1b1 + amb0|

≤ |a0bm|+ |a1bm−1|+ · · ·+ |am−1b1|+ |amb0|

= |a0||bm|+ |a1||bm−1|+ · · ·+ |am−1||b1|+ |am||b0|

< B
dε

B
+ B

dε

B
+ · · ·+ dε

B
B +

dε

B
B

= (m + 1)dε

< ε.

So, for all ε > 0 in R, we can find N ∈ Z+ such that |cm| < ε for all m ≥ N . Hence,

limn→∞ cn = 0 and thus
∑∞

n=0 cn converges strongly in R. It remains to show that

∑∞
n=0 cn = ab.

Consider the sequence of partial sums (s2n), where

s2n = c0 + c1 + · · ·+ c2n
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=
2n∑

i+j=0

aibj

= (a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn)

+a0(bn+1 + · · ·+ b2n) + a1(bn+1 + · · ·+ b2n−1) + · · ·+ an−1bn+1

+b0(an+1 + · · ·+ a2n) + b1(an+1 + · · ·+ a2n−1) + · · ·+ bn−1an+1.

Note that

|a0(bn+1 + · · ·+ b2n) + a1(bn+1 + · · ·+ b2n−1) + · · ·+ an−1bn+1|

≤ |a0||bn+1 + · · ·+ b2n|+ |a1||bn+1 + · · ·+ b2n−1|+ · · ·+ |an−1||bn+1|

≤ B(|bn+1 + · · ·+ b2n|+ |bn+1 + · · ·+ b2n−1|+ · · ·+ |bn+1|).

Let ε > 0 in R be given. Since (bn) is a null sequence, there exists N ∈ Z+ such that

|bn| < dε

B
for all n ≥ N.

Hence, for all n ≥ N and for all p ∈ Z+, we have that

|bn+1 + · · ·+ bn+p| ≤ |bn+1|+ · · ·+ |bn+p|

<
dε

B
+ · · ·+ dε

B

= (pd) · ε

B
= (pnd)

ε

nB

<
ε

nB
,

where, in the last step, we made use of the fact that d is infinitely small and pn is an

integer, so that pnd < 1. Therefore, for all n ≥ N , we have that

|a0(bn+1 + · · ·+ b2n) + a1(bn+1 + · · ·+ b2n−1) + · · ·+ an−1bn+1|

< B(
ε

nB
+

ε

nB
+ · · ·+ ε

nB︸ ︷︷ ︸
n times

) = ε.

Therefore,

lim
n→∞ (a0(bn+1 + · · ·+ b2n) + a1(bn+1 + · · ·+ b2n−1) + · · ·+ an−1bn+1) = 0.
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Similarly, we can show that

lim
n→∞ (b0(an+1 + · · ·+ a2n) + b1(an+1 + · · ·+ a2n−1) + · · ·+ bn−1an+1) = 0.

Hence

lim
n→∞ s2n = lim

n→∞ ((a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn)) +

lim
n→∞ (a0(bn+1 + · · ·+ b2n) + a1(bn+1 + · · ·+ b2n−1) + · · ·+ an−1bn+1) +

lim
n→∞ (b0(an+1 + · · ·+ a2n) + b1(an+1 + · · ·+ a2n−1) + · · ·+ bn−1an+1)

= lim
n→∞ ((a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn)) .

Let (An) and (Bn) denote the sequences of partial sums of
∑∞

n=0 an and
∑∞

n=0 bn,

respectively. Then An = a0 + a1 + · · ·+ an, limn→∞ An = a; Bn = b0 + b1 + · · ·+ bn,

and limn→∞ Bn = b. Therefore,

lim
n→∞ s2n = lim

n→∞ (AnBn)

=
(

lim
n→∞An

) (
lim

n→∞Bn

)
using Lemma 4.6

= ab.

Since
∑∞

n=0 cn converges strongly, it has one and only one limit. Hence

lim
n→∞ s2n = lim

n→∞ s2n+1 = ab = lim
n→∞ sn;

so
∞∑

n=0

cn = ab =

( ∞∑

n=0

an

) ( ∞∑

n=0

bn

)
.

Lemma 4.7 Let (sn) be a sequence in R converging strongly to s. Assume there exist

j ∈ Z+ and t ∈ Q such that λ(sm) = t for all m ≥ j. Then λ(s) = t; in particular,

s 6= 0.
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Proof. Let ε = dt+1. Then there exists M ∈ Z+ such that |sm−s| < ε for all m ≥ M .

Let N = max{j, M}. Then we have that |sm − s| < ε and λ(sm) = t for all m ≥ N .

From |sN − s| < ε, we have that

λ(sN − s) ≥ λ(ε) = t + 1 > t. (4.4)

But we know that

λ(sN − s) = min{λ(sN), λ(s)} ≤ t if λ(s) 6= λ(sN). (4.5)

From Equation (4.4) and Equation (4.5), we infer that λ(s) = λ(sN) = t.

Lemma 4.8 Let (sn) be a sequence in R. Assume there exists j ∈ Z+ such that

sm = 0 for all m ≥ j. Then (sn) converges strongly to 0.

Proof. Let ε > 0 in R be given. Then

|sm − 0| = |sm| = 0 < ε for all m ≥ j;

so limn→∞ sn = 0.

Combining the results of Lemma 4.7 and Lemma 4.8, we obtain the following

result.

Corollary 4.6 Let (sn) be a sequence in R converging strongly to s. Assume there

exists j ∈ Z+ such that λ(sm) = t for all m ≥ j, where t can be either finite or

infinite. Then λ(s) = t.

Proof. If t is finite, then we are done, by Lemma 4.7. Otherwise, sm = 0 for all

m ≥ j. Then, using Lemma 4.8, we have that (sn) converges strongly to s = 0. Hence

λ(s) = ∞ = t.

The following lemma is a consequence of the fact that the topology induced on R

by the order topology in R is the discrete topology in R (see Theorem 3.8).
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Lemma 4.9 Let (sn) be a sequence in R whose members are purely real. Then (sn)

is strongly Cauchy if and only if there exists j ∈ Z+ such that sm = sj for all m ≥ j.

Proof. Let (sn) be a strongly Cauchy sequence in R with purely real members. Then

there exists j ∈ Z+ such that

|sm − sl| < d for all m, l ≥ j. (4.6)

Since the members of (sn) are purely real, we obtain from Equation (4.6) that |sm −
sl| = 0 for all m, l ≥ j. Hence, sm = sj for all m ≥ j.

Conversely, let (sn) be a sequence inR whose members are purely real, and assume

there exists j ∈ Z+ such that sm = sj for all m ≥ j. Then, given ε > 0 in R, we have

that

|sm − sl| = 0 < ε for all m, l ≥ j,

and hence (sn) is strongly Cauchy.

Corollary 4.7 Let (sn) be a sequence in R whose members are purely real. Then

(sn) converges strongly if and only if there exists j ∈ Z+ such that sm = sj for all

m ≥ j.

As we see, the concept of strong convergence provides very nice properties, and

moreover strong convergence can be checked easily by virtue of Theorem 4.3 and

Corollary 4.3. However, for some applications it is not sufficient, and it is advanta-

geous to study a new kind of convergence.
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4.2 Weak Convergence

Definition 4.4 A sequence (sn) in R is said to be weakly convergent if and only if

there exists s ∈ R such that for all ε > 0 in R, there exists N ∈ Z+ such that

‖sm − s‖1/ε < ε for all m ≥ N.

If that is the case, we call s the weak limit of the sequence (sn), and we write

s = wk- lim
n→∞ sn.

Lemma 4.10 Let (sn) be a sequence in R that is weakly convergent. Then (sn) has

exactly one weak limit in R.

Proof. Let s and t be two weak limits of (sn) in R. We need to show that s = t.

Let ε > 0 in R be given. There exists N ∈ Z+ such that

‖sm − s‖2/ε < ε/2 and ‖sm − t‖2/ε < ε/2 for all m ≥ N.

It follows that

‖s− t‖2/ε = ‖s− sN + sN − t‖2/ε

≤ ‖sN − s‖2/ε + ‖sN − t‖2/ε (4.7)

< ε/2 + ε/2 = ε.

Let r ∈ Q be given. Choose ε > 0 in R, small enough such that r < 2/ε. Then, using

Equation (4.7), we have that

|(s− t)[r]| < ε.

Since ε can be chosen arbitrarily small in R, we deduce that |(s−t)[r]| = 0. Therefore,

(s− t)[r] = 0.

Since r was an arbitrary rational number, we have that s− t = 0 and hence s = t.
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Lemma 4.11 Let r1, r2 ∈ Q be such that r1 < r2. Then

‖x‖r1 ≤ ‖x‖r2 for all x ∈ R.

Proof. Let x ∈ R be given. Then

‖x‖r2 = sup{|x[q]| : q ≤ r2} = max{|x[q]| : q ≤ r2}

= max {max{|x[q]| : q ≤ r1}, max{|x[q]| : r1 < q ≤ r2}}

= max {‖x‖r1 , max{|x[q]| : r1 < q ≤ r2}}

≥ ‖x‖r1 .

Lemma 4.12 Let (sn) be a sequence in R converging weakly to s. Then, for all

r ∈ Q, the sequence (‖sn‖r) converges in R to ‖s‖r.

Proof. Let r ∈ Q and ε > 0 in R be given. Let ε1 > 0 in R be such that

ε1 < min

{
1

1 + |r| , ε
}

.

Since (sn) converges weakly to s in R, there exists N ∈ Z+ such that

‖sm − s‖1/ε1 < ε1 for all m ≥ N.

Since r < 1 + |r| < 1/ε1, we have, using Lemma 4.11, that

‖sm − s‖r ≤ ‖sm − s‖1/ε1 < ε1 < ε for all m ≥ N.

Finally, using Equation (3.9), we obtain that

|‖sm‖r − ‖s‖r| < ε for all m ≥ N,

which shows that (‖sn‖r) converges in R to ‖s‖r.

Remark 4.3 The converse of Lemma 4.12 is not true.
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Proof. Let (sn) be the sequence in R whose terms are given by s2k = 1 and s2k+1 =

−1. Then, for all n, we have that

‖sn‖r = ‖1‖r =

{
1 if r ≥ 0
0 otherwise

.

Hence, for all r ∈ Q, ‖sn‖r = ‖1‖r for all n; so the sequence (‖sn‖r) converges in R

to ‖1‖r, for all r ∈ Q. However, the sequence (sn) does not converge weakly in R.

Theorem 4.6 (Convergence Criterion for Weak Convergence) Let the sequence

(sn) converge weakly to the limit s. Then, the sequence (sn[q]) converges to s[q] in R,

for all q ∈ Q, and the convergence is uniform on every subset of Q bounded above.

Let on the other hand (sn) be regular, and let the sequence (sn[q]) converge in R to

s[q] for all q ∈ Q. Then (sn) converges weakly in R to s.

Proof. Let (sn) be a sequence in R converging weakly to s. Let r ∈ Q and ε > 0 in

R be given. Let

ε1 < min

{
1

1 + |r| , ε
}

be given. Then

1/ε1 > 1/ε and 1/ε1 > 1 + |r| > r.

Choose N ∈ Z+ such that

‖sm − s‖1/ε1 < ε1 for all m ≥ N. (4.8)

Since r < 1/ε1, we have, using Lemma 4.11, that

‖sm − s‖r ≤ ‖sm − s‖1/ε1 for all m. (4.9)

It then follows from Equation (4.8) and Equation (4.9) that

‖sm − s‖r < ε1 < ε for all m ≥ N.
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Hence

|sm[q]− s[q]| = |(sm − s)[q]| < ε for all q ≤ r and for all m ≥ N, (4.10)

which entails that, for all r ∈ Q, and for all ε > 0 in R, there exists N ∈ Z+ such

that |sm[r] − s[r]| < ε for all m ≥ N . Therefore, for all r ∈ Q, the sequence (sn[r])

converges in R to s[r]. Moreover, from Equation (4.10), we see that the convergence

is uniform on the subset {q ∈ Q, q ≤ r} bounded above by r.

On the other hand, let (sn) be a regular sequence in R and let (sn[q]) converge

in R to s[q] for all q in Q, where s : Q → R is a real-valued function on Q. We need

to show that s ∈ R and that (sn) converges weakly to s. Let q ∈ Q be given. Since

(sn[q]) converges to s[q], we have that s[q] = 0 if sn[q] = 0 for all n. Thus, s[q] 6= 0

only if there exists m ∈ Z+ such that sm[q] 6= 0. Therefore, every support point of

s agrees at least with one support point of one member of the sequence, and hence

is contained in S = ∪∞n=0supp(sn), which is left-finite since (sn) is regular. Hence

supp(s) is a subset of S and is itself left-finite. So s ∈ R.

Now let ε > 0 in R be given, and let r in Q be such that r > 1/ε. We first show

that the sequence (sn[q]) converges uniformly to s[q] on {q ∈ Q, q ≤ r}. Since (sn) is

regular, any point at which s can differ from any sn has to be in S. Thus, there are

only finitely many points to be studied below r, say q1, . . . , qk. For j = 1, . . . , k, find

Nj ∈ Z+ such that

|sm[qj]− s[qj]| < ε for all m ≥ Nj.

Let N = max{Nj : j = 1, . . . , k}. Then |sm[q] − s[q]| < ε for all m ≥ N and for

all q ≤ r. In particular, |(sm − s)[q]| = |sm[q] − s[q]| < ε for all m ≥ N and for all

q ≤ 1/ε. It follows that

‖sm − s‖1/ε = max {|(sm − s)[q]| : q ≤ 1/ε} < ε for all m ≥ N,

which shows that (sn) converges weakly to s.
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Definition 4.5 Let (sn) be a sequence in R. Then we say that (sn) is weakly Cauchy

in R if and only if for all ε > 0 in R, there exists N ∈ Z+ such that

‖sm − sl‖1/ε < ε for all m, l ≥ N.

Lemma 4.13 Let (sn) be a sequence in R that converges weakly. Then (sn) is weakly

Cauchy.

Proof. Let s be the weak limit of (sn) in R, and let ε > 0 in R be given. Then there

exists N ∈ Z+ such that ‖sm − s‖2/ε < ε/2 forall m ≥ N . Let m, l ≥ N be given.

Then,

‖sm − sl‖2/ε = ‖sm + s− s− sl‖2/ε

≤ ‖sm − s‖2/ε + ‖sl − s‖2/ε

< ε/2 + ε/2 = ε.

Using Lemma 4.11, we have that

‖sm − sl‖1/ε ≤ ‖sm − sl‖2/ε < ε forall m, l ≥ N,

from which we infer that (sn) is weakly Cauchy.

The converse of Lemma 4.13 is not true, as the following theorem will show.

Theorem 4.7 R is not Cauchy complete with respect to the weak topology.

Proof. It suffices to find a sequence (sn) in R that is weakly Cauchy but not weakly

convergent. Consider the sequence (sn), where

sn =
n∑

j=1

d−j

j
.

For all n ∈ Z+, we have that supp(sn) = {−j : 1 ≤ j ≤ n} ∈ F . Hence sn ∈ R for

all n.
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Let ε in R be given. Choose N ∈ Z+ such that N > 1/ε. Then ε > 1/N ≥ 1/n

for all n ≥ N . Let m > l ≥ N be given. Then,

sm − sl =
m∑

j=l+1

d−j

j
.

Hence,

‖sm − sl‖1/ε =
1

l + 1
< ε.

So, for all m, l ≥ N , ‖sm − sl‖1/ε < ε. Hence (sn) is weakly Cauchy.

Assume that (sn) converges weakly to s inR. Then, by Theorem 4.6, the sequence

(sn[q]) converges in R to s[q] for all q ∈ Q. Let q ∈ Z− be given. Then q = −k for

some k ∈ Z+. Therefore,

sn[q] = sn[−k] =

{
1
k

= −1
q

if n ≥ k

0 if n < k
.

Hence, the sequence (sn[q]) converges in R to −1
q
. So

s[q] = −1

q
6= 0 for all q ∈ Z−,

from which we infer that supp(s) is not left-finite. This contradicts the assumption

that s ∈ R. Hence (sn) does not converge weakly in R.

Lemma 4.14 Let (sn) be a sequence in R that is weakly Cauchy. Then (sn) is weakly

bounded , that is there exists B > 0 in R such that ‖sn‖1/B < B for all n.

Proof. Since (sn) is weakly Cauchy, there exists N ∈ Z+ such that

‖sn − sm‖1 < 1 for all n,m ≥ N.

In particular, we have that ‖sn − sN‖1 < 1 for all n ≥ N , from which we obtain, us-

ing Equation (3.8), that ‖sn‖1 < 1 + ‖sN‖1 for all n ≥ N . Let B1 = 1 + ‖sN‖1.

Then 1/B1 ≤ 1, and hence ‖sn‖1/B1 ≤ ‖sn‖1 < B1 for all n ≥ N . Let B2 =
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max
{
‖sn‖1/B1 : n ≤ N − 1

}
+ 1, and let B = max{B1, B2}. Then, for all n ≥ N , we

have that

‖sn‖1/B ≤ ‖sn‖1/B1 < B1 ≤ B. (4.11)

Moreover, for all n ≤ N − 1, we have that

‖sn‖1/B ≤ ‖sn‖1/B1 < B2 ≤ B. (4.12)

Combining Equation (4.11) and Equation (4.12), we finally obtain that ‖sn‖1/B < B

for all n.

Lemma 4.15 Let (sn) be a sequence in R that is weakly Cauchy. Then for all r ∈ Q,

there exists Br ∈ R+ such that ‖sn‖r < Br for all n.

Proof. Let r ∈ Q be given. Then there exists N ∈ Z+ such that

‖sn − sm‖1+|r| <
1

1 + |r| for all n,m ≥ N.

In particular,

‖sn − sN‖1+|r| <
1

1 + |r| ≤ 1 for all n ≥ N.

Using Equation (3.8), we have that ‖sn‖1+|r| < 1+‖sN‖1+|r| for all n ≥ N . Therefore,

using Lemma 4.11, we have that ‖sn‖r < 1 + ‖sN‖1+|r| for all n ≥ N . Let

B1,r = 1 + ‖sN‖1+|r| and B2,r = max
{
‖sn‖1+|r| : n ≤ N − 1

}
+ 1,

and let Br = max{B1,r, B2,r}. Then

‖sn‖r < 1 + ‖sN‖1+|r| = B1,r ≤ Br for all n ≥ N, and (4.13)

‖sn‖r < B2,r ≤ Br for all n ≤ N − 1. (4.14)

Combining Equation (4.13) and Equation (4.14), we finally obtain that ‖sn‖r < Br

for all n. This finishes the proof of the theorem.
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The following lemma is a direct result of the fact that the topology induced on R

by the weak topology in R is the usual order topology in R (see Theorem 3.9).

Lemma 4.16 Let (sn) be a purely real sequence converging to s in R. Then, regarded

as a sequence in R, (sn) converges weakly to s. On the other hand, let (sn) be a

sequence in R with purely real members, converging weakly to s. Then s is purely

real, and the sequence (sn) converges in R to s.

Proof. Let (sn) be a purely real sequence converging to s in R. We now view (sn)

as a sequence in R. Let ε > 0 in R be given. There exists N ∈ Z+ such that

|sn − s| < ε for all n ≥ N. (4.15)

Since, for all n, sn and s are purely real, we have that

‖sn − s‖1/ε = |(sn − s)[0]|

= |sn − s|. (4.16)

Combining Equation (4.15) and Equation (4.16), we have that ‖sn − s‖1/ε < ε for all

n ≥ N . Hence (sn) converges weakly to s in R.

Now, let (sn) be a sequence in R with purely real members, converging weakly to

s ∈ R. By Theorem 4.6, the sequence (sn[q]) converges to s[q] for all q ∈ Q. Since

sn[q] = 0 for all q 6= 0 and for all n, we have that s[q] = 0 for all q 6= 0 and hence s

is purely real. To show that (sn) converges to s in R, let ε > 0 in R be given. Then

there exists N ∈ Z+ such that |sn− s| = ‖sn− s‖1/ε < ε for all n ≥ N , which finishes

the proof of the theorem.

Lemma 4.17 Let (sn) and (tn) be two sequences in R converging weakly to s and t,

respectively. Then the sequence (sn + tn) converges weakly to s + t.
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Proof. Let ε > 0 be given in R. Then there exists N ∈ Z+ such that

‖sn − s‖2/ε < ε/2 and ‖tn − t‖2/ε < ε/2 for all n ≥ N.

Therefore, for all n ≥ N , we have that

‖(sn + tn)− (s + t)‖1/ε ≤ ‖(sn + tn)− (s + t)‖2/ε

≤ ‖sn − s‖2/ε + ‖tn − t‖2/ε

< ε/2 + ε/2 = ε.

Hence (sn + tn) converges weakly to s + t.

Corollary 4.8 Let
∑∞

n=0 an and
∑∞

n=0 bn be two infinite series in R converging weakly

to a and b, respectively. Then the infinite series
∑∞

n=0(an + bn) converges weakly to

a + b.

Proof. Let (An) and (Bn) be the sequences of partial sums of
∑∞

n=0 an and
∑∞

n=0 bn,

respectively. Then (An) and (Bn) converge weakly to a and b, respectively. Therefore,

by Lemma 4.17, (An + Bn) converges weakly to a + b. But (An + Bn) is the sequence

of partial sums of
∑∞

n=0(an + bn). Hence
∑∞

n=0(an + bn) converges weakly to a + b.

We can thus write
∞∑

n=0

(an + bn) = a + b =
∞∑

n=0

an +
∞∑

n=0

bn.

Theorem 4.8 Let (sn) and (tn) be two regular sequences in R converging weakly to

s and t, respectively. Then the sequence (sntn) converges weakly to st.

Proof. Since (sn) and (tn) are both regular, so is (sntn), by Lemma 4.1. To show

that (sntn) converges weakly to st, it remains to show that the sequence ((sntn)[q])

converges in R to (st)[q] for all q ∈ Q, using Theorem 4.6. Let A = ∪∞n=0supp(an)
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and B = ∪∞n=0supp(bn). Then A, B ∈ F . Let q ∈ Q be given. Then, for all n, we

have that

(sntn)[q] =
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

sn[q1]tn[q2]. (4.17)

Since A and B are left-finite, only finitely many terms contribute to the sum in

Equation (4.17); and we have that

lim
n→∞(sntn)[q] = lim

n→∞




∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

sn[q1]tn[q2]




=
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

(
lim

n→∞ (sn[q1]tn[q2])
)

=
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

((
lim

n→∞ sn[q1]
) (

lim
n→∞ tn[q2]

))

=
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

(s[q1]t[q2])

= (st)[q].

This finishes the proof of the theorem.

Theorem 4.9 If the series
∑∞

n=0 an and
∑∞

n=0 bn are regular,
∑∞

n=0 an converges ab-

solutely weakly to a, and
∑∞

n=0 bn converges weakly to b, then
∑∞

n=0 cn, where cn =

∑n
j=0 ajbn−j, converges weakly to ab.

Proof. Let (An), (Bn), and (Cn) be the sequences of partial sums of
∑∞

n=0 an,
∑∞

n=0 bn,

and
∑∞

n=0 cn, respectively. Then (An) and (Bn) are both regular, (An) converges

absolutely weakly to a and (Bn) converges weakly to b. Since (An) and (Bn) are both

regular, so is (Cn). It remains to show that (Cn[q]) converges in R to (ab)[q] for all

q ∈ Q.
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Since (An) converges absolutely weakly to a, (An[t]) converges absolutely in R

to a[t] for all t ∈ Q. Similarly, (Bn[t]) converges in R to b[t] for all t ∈ Q. Let

A = ∪∞n=0supp(an) and B = ∪∞n=0supp(bn), and let q ∈ Q be given. Then

Cn[q] =

(
n∑

m=0

cm

)
[q] =

n∑

m=0

cm[q]

=
n∑

m=0







m∑

j=0

ajbm−j


 [q]




=
n∑

m=0




m∑

j=0

(ajbm−j) [q]




=
n∑

m=0

m∑

j=0




∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

aj[q1]bm−j[q2]




=
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B




n∑

m=0

m∑

j=0

aj[q1]bm−j[q2]


 because of regularity

=
∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B




n∑

m=0




m∑

j=0

aj[q1]bm−j[q2]





 .

Since
∑∞

n=0 an[q1] converges absolutely to a[q1] and since
∑∞

n=0 bn[q2] converges to b[q2],

we have that

lim
n→∞




n∑

m=0




m∑

j=0

aj[q1]bm−j[q2]







exists in R and is equal to a[q1]b[q2]. Since the sum over the q’s is finite because of

left-finiteness of A and B, we have also that

lim
n→∞




∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B




n∑

m=0




m∑

j=0

aj[q1]bm−j[q2]
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exists in R and is equal to

∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B


 lim

n→∞




n∑

m=0




m∑

j=0

aj[q1]bm−j[q2]








 .

Hence limn→∞ Cn[q] exists in R and we have that

lim
n→∞Cn[q] =

∑

q1 + q2 = q
q1 ∈ A, q2 ∈ B

a[q1]b[q2] = (ab)[q].

Since (Cn) is regular and since limn→∞ Cn[q] = (ab)[q] for all q ∈ Q, (Cn) converges

weakly in R to ab. Therefore,
∑∞

n=0 cn converges weakly to ab, and we can write

∞∑

n=0

cn = ab =

( ∞∑

n=0

an

) ( ∞∑

n=0

bn

)
.

The relationship between strong convergence and weak convergence is provided

by the following theorem.

Theorem 4.10 Strong convergence implies weak convergence to the same limit.

Proof. Let (sn) be a sequence in R converging strongly to s. Then, by Lemma 4.4,

we have that (sn) is regular. To show that (sn) converges weakly to s, it suffices by

Theorem 4.6 to show that the sequence (sn[q]) converges in R to s[q] for all q ∈ Q.

So let q ∈ Q be given. Since (sn) converges strongly to s in R, there exists Nq ∈ Z+

such that

|sm − s| < dq+1 for all m ≥ Nq.

Thus,

sm[q] = s[q] for all m ≥ Nq,

which entails that the sequence (sn[q]) converges in R to s[q].
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4.3 Power Series

We now discuss a very important class of sequences, namely, the power series. We

first study general criteria for power series with R coefficients to converge strongly

or weakly. Once their convergence properties are established, they will allow the

extension of many important real functions, and they will also provide the key for

an exhaustive study of differentiability of all functions that can be represented on a

computer (see Chapter 7; also see [38, 39, 40]). Also based on our knowledge of the

convergence properties of power series with R coefficients, we will be able to study in

Chapter 6 a large class of functions which will prove to have all the nice smoothness

properties that real power series have in R; (see also [41, 43]). We begin our discussion

of power series with an observation.

Lemma 4.18 Let M ∈ F be given. Define

MΣ = {q1 + ... + qn : n ∈ Z+, and q1, ..., qn ∈ M};

then MΣ ∈ F if and only if min(M) ≥ 0.

Proof. Let g = min(M). First assume that g < 0. Clearly, all multiples of g are in

MΣ. In other words, MΣ contains infinitely many elements smaller than zero and is

therefore not left-finite. Now assume that g ≥ 0. For g = 0, we start the discussion

by considering M̄ = M \ {0}, which has a minimum greater than zero. But since M

differs from M̄ only by containing zero, and since inclusion of zero does not change

a sum, we obviously have that M̄Σ = MΣ. It therefore suffices to consider the case

when g > 0. Now let r ∈ Q be given; we show that there are only finitely many

elements in MΣ that are smaller than r. Since all elements in MΣ are greater than or

equal to the minimum g, the property holds for r < g. Now let r ≥ g be given, and let

n = integer(r/g) be the greatest integer less than or equal to r/g. Let q < r in MΣ be
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given. Then at most n terms can sum up to q, since any sum with more than n terms

exceeds r and thus q. Furthermore, the sum can contain only finitely many different

elements of M , namely those below r. But this means that there are only finitely

many ways of forming sums, and thus only finitely many results of summations below

r.

Corollary 4.9 The sequence (xn) is regular if and only if λ(x) ≥ 0.

Let (an) be a sequence in R. Then the sequences (anxn) and (
∑n

j=0 ajx
j) are

regular if (an) is regular and λ(x) ≥ 0.

Proof. First observe that the set ∪∞n=1supp(xn) is identical with the set MΣ in the

previous lemma if we set M = supp(x). This is left-finite if and only if supp(x) has

a minimum greater than or equal to zero; that is if and only if λ(x) ≥ 0.

The second part is an immediate consequence of Lemma 4.1, which asserts that

the product of regular sequences is regular.

Theorem 4.11 (Strong Convergence Criterion for Power Series) Let (an) be

a sequence in R, and let

λ0 = − lim inf
n→∞

(
λ(an)

n

)
= lim sup

n→∞

(−λ(an)

n

)
in R.

Let x0 ∈ R be fixed and let x ∈ R be given. Then the power series
∑∞

n=0 an(x− x0)
n

converges strongly in R if λ(x− x0) > λ0 and is strongly divergent if λ(x− x0) < λ0

or if λ(x− x0) = λ0 and −λ(an)/n > λ0 for infinitely many n.

Proof. First assume that λ(x− x0) > λ0. To show that
∑∞

n=0 an(x− x0)
n converges

strongly in R, using Corollary 4.3, it suffices to show that the sequence (an(x−x0)
n)

is a null sequence with respect to the order topology. Since λ(x − x0) > λ0, there
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exists t > 0 in Q such that

λ(x− x0)− t > λ0 = lim sup
n→∞

(−λ(an)

n

)
.

Hence there exists N ∈ Z+ such that

λ(x− x0)− t >
−λ(an)

n
for all n ≥ N.

Thus,

λ(an(x− x0)
n) = λ(an) + nλ(x− x0) > nt for all n ≥ N.

Since t > 0, we obtain that (an(x− x0)
n) is a null sequence with respect to the order

topology.

Now assume that λ(x − x0) < λ0. To show that
∑∞

n=0 an(x − x0)
n is strongly

divergent in R, it suffices to show that the sequence (an(x − x0)
n) is not a null

sequence with respect to the order topology. Since λ(x − x0) < λ0, for all N ∈ Z+

there exists n > N such that

λ(x− x0) <
−λ(an)

n
.

Hence, for all N ∈ Z+, there exists n > N such that

λ(an(x− x0)
n) < 0,

which entails that the sequence (an(x − x0)
n) is not a null sequence with respect to

the order topology.

Finally, assume that λ(x − x0) = λ0 and −λ(an)/n > λ0 for infinitely many n.

Then for all N ∈ Z+, there exists n > N such that

−λ(an)

n
> λ0 = λ(x− x0).

Thus, for each N ∈ Z+, there exists n > N such that λ(an(x− x0)
n) < 0. Therefore,

the sequence (an(x− x0)
n) is not a null sequence with respect to the order topology;
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and hence
∑∞

n=0 an(x− x0)
n is strongly divergent in R. This finishes the proof of the

theorem.

The following two examples show that for the case when λ(x − x0) = λ0 and

−λ(an)/n ≥ λ0 for only finitely many n, the series
∑∞

n=0 an(x − x0)
n can either

converge or diverge strongly. For this case, Theorem 4.12 provides a test for weak

convergence.

Example 4.1 For each n ≥ 0, let an = d; and let x0 = 0 and x = 1.

Then

λ0 = lim sup
n→∞

(−λ(an)

n

)
= lim sup

n→∞

(
− 1

n

)
= 0 = λ(x).

Moreover, we have that

−λ(an)

n
= − 1

n
< λ0 for all n ≥ 0;

and
∑∞

n=0 anx
n =

∑∞
n=0 d is strongly divergent in R.

Example 4.2 For each n, let qn ∈ Q be such that
√

n/2 < qn <
√

n, let an = dqn;

and let x0 = 0 and x = 1.

Then

λ0 = lim sup
n→∞

(−λ(an)

n

)
= lim sup

n→∞

(
−qn

n

)
= 0 = λ(x).

Moreover, we have that

−λ(an)

n
= −qn

n
< 0 = λ0 for all n ≥ 0;

and
∑∞

n=0 anxn =
∑∞

n=0 dqn converges strongly in R since the sequence (dqn) is a null

sequence with respect to the order topology.
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Theorem 4.12 (Weak Convergence Criterion for Power Series) Let (an) be a

sequence in R, and let

λ0 = − lim inf
n→∞

(
λ(an)

n

)
= lim sup

n→∞

(−λ(an)

n

)
in R.

Let x0 ∈ R be fixed, and let x ∈ R be such that λ(x − x0) = λ0. For each n ≥ 0,

let bn = andnλ0. Suppose that the sequence (bn) is regular and write ∪∞n=0supp(bn) =

{q1, q2, . . .}; with qj1 < qj2 if j1 < j2. For each n, write bn =
∑∞

j=1 bnj
dqj , where

bnj
= bn[qj]. Let

r =
1

sup
{
lim supn→∞ |bnj

|1/n : j ≥ 1
} .

Then
∑∞

n=0 an(x− x0)
n converges absolutely weakly in R if |(x− x0)[λ0]| < r and is

weakly divergent in R if |(x− x0)[λ0]| > r.

Proof. Letting y = d−λ0(x− x0), we obtain that

λ(y) = 0 = lim sup
n→∞

(−λ(bn)

n

)
, and an(x− x0)

n = bny
n for all n ≥ 0.

So without loss of generality, we may assume that

x0 = 0; λ0 = 0 = λ(x); and bn = an for all n ≥ 0.

Let X = <(x); then X 6= 0. First assume that |X| < r.

First Claim: For all j ≥ 1, we have that
∑∞

n=0 anj
Xn converges in R.

Proof of the first claim: Since |X| < r, we have that

1

|X| > sup
{
lim sup

n→∞
|anj

|1/n : j ≥ 1
}

;

and hence

1

|X| > lim sup
n→∞

|anj
|1/n for all j ≥ 1.
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Thus,

|X| < 1

lim supn→∞ |anj
|1/n

for all j ≥ 1.

Hence
∑∞

n=0 anj
Xn converges in R for all j ≥ 1.

Second claim: For all j ≥ 1,
∑∞

n=0 anj
xn converges weakly in R.

Proof of the second claim: Let j ≥ 1 be given. For each n, let Anj
(x) =

∑n
i=0 aijx

i. So

we need to show that the sequence (Anj
(x))n≥0 is weakly convergent. Using Corollary

4.9, the sequence is regular since λ(x) ≥ 0 and since the sequence (aij) is purely real

and hence regular. Thus, it suffices to show that the sequence (Anj
(x)[t]) converges

in R for all t ∈ Q. Let s = x−X. If s = 0, then we are done. So we may assume that

s 6= 0. Let t ∈ Q be given; and choose m ∈ Z+ such that mλ(s) > t. Then (X + s)n

evaluated at t yields:

((X + s)n) [t] =

(
n∑

l=0

sl n!

(n− l)!l!
Xn−l

)
[t]

=
min{m,n}∑

l=0

sl[t]
n!

(n− l)!l!
Xn−l.

For the last equality, we used the fact that sl vanishes at t for l > m. So we get the

following chain of inequalities for any ν2 > ν1 > m:

ν2∑
n=ν1

∣∣∣anj
(X + s)n[t]

∣∣∣ =
ν2∑

n=ν1

∣∣∣anj

∣∣∣
∣∣∣∣∣∣

min{m,n}∑

l=0

sl[t]
n!

(n− l)!l!
Xn−l

∣∣∣∣∣∣

≤
ν2∑

n=ν1

m∑

l=0

∣∣∣anj

∣∣∣
∣∣∣sl[t]

∣∣∣ n!

(n− l)!l!
|X|n−l

≤



m∑

l=0

∣∣∣sl[t]
∣∣∣ |X|m−l

l!




(
ν2∑

n=ν1

∣∣∣anj

∣∣∣ nm|X|n−m

)
.

Note that the right sum contains only real terms. As |X| < r, the series converges; the

additional factor nm does not influence convergence since limn→∞
n
√

nm = 1. As the

left hand term does not depend on ν1 and ν2, we therefore obtain absolute convergence

at t. This finishes the proof of the second claim.
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Third claim:
∑∞

n=0 anxn converges weakly in R.

Proof of the third claim: By the result of the second claim, we have that
∑∞

n=0 anj
xn

converges weakly in R for all j ≥ 1. For each j, let fj(x) =
∑∞

n=0 anj
xn; then

λ (fj(x)) ≥ 0 for all j ≥ 1.

Thus
∑∞

j=1 dqjfj(x) converges strongly (and hence weakly) in R. Now let t ∈ Q be

given. Then there exists m ∈ Z+ such that qj > t for all j ≥ m. Thus,



∞∑

j=1

dqjfj(x)


 [t] =

∞∑

j=1

(dqjfj(x)) [t] =
∞∑

j=1


 ∑

t1+t2=t

dqj [t1]fj(x)[t2]




=
m∑

j=1


 ∑

t1+t2=t

dqj [t1]fj(x)[t2]


 =

m∑

j=1

∑

t1+t2=t

dqj [t1]

( ∞∑

n=0

anj
xn

)
[t2]

=
m∑

j=1

∑

t1+t2=t

dqj [t1]
∞∑

n=0

anj
xn[t2] =

∞∑

n=0

m∑

j=1

anj


 ∑

t1+t2=t

dqj [t1]x
n[t2]




=
∞∑

n=0

∞∑

j=1

anj


 ∑

t1+t2=t

dqj [t1]x
n[t2]


 =

∞∑

n=0

∞∑

j=1

anj
(dqjxn) [t]

=




∞∑

n=0

∞∑

j=1

anj
dqjxn


 [t] =




∞∑

n=0



∞∑

j=1

anj
dqj


 xn


 [t]

=

( ∞∑

n=0

anxn

)
[t].

This is true for all t ∈ Q. Thus,
∑∞

n=0 anxn converges weakly to
∑∞

j=1 dqjfj(x).

Now assume that |X| > r. Then

1

|X| < sup
{
lim sup

n→∞
|anj

|1/n : j ≥ 1
}

.

Hence there exists j0 ∈ Z+ such that

1

|X| < lim sup
n→∞

|anj0
|1/n.
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Thus,

|X| > 1

lim supn→∞ |anj0
|1/n

;

and hence
∑∞

n=0 anj0
Xn diverges in R. Therefore, (

∑∞
n=0 anx

n) [qj0 ] diverges in R; and

hence
∑∞

n=0 anx
n is weakly divergent in R.

Corollary 4.10 (Power Series with Purely Real Coefficients) Let
∑∞

n=0 anX
n,

an ∈ R, be a power series with classical radius of convergence equal to η. Let x ∈ R,

and let An(x) =
∑n

i=0 aix
i ∈ R. Then, for |x| < η and |x| 6≈ η, the sequence (An(x))

convergesabsolutely weakly. We define the limit to be the continuation of the power

series on R.

4.4 Transcendental Functions

Using Corollary 4.10, we can now extend real functions representable by power series

to the new field R.

Definition 4.6 (The Functions Exp, Cos, Sin, Cosh, and Sinh) By Corollary

4.10, the series

∞∑

n=0

xn

n!
,

∞∑

n=0

(−1)n x2n

(2n)!
,

∞∑

n=0

(−1)n x2n+1

(2n + 1)!
,

∞∑

n=0

x2n

(2n)!
, and

∞∑

n=0

x2n+1

(2n + 1)!

converge absolutely weakly in R for any x ∈ R, at most finite in absolute value. For

any such x, define

exp(x) =
∞∑

n=0

xn

n!
;

cos(x) =
∞∑

n=0

(−1)n x2n

(2n)!
;

sin(x) =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
;



90

cosh(x) =
∞∑

n=0

x2n

(2n)!
;

sinh(x) =
∞∑

n=0

x2n+1

(2n + 1)!
.

Remark 4.4 It follows from Definition 4.6 that for any x ∈ R, at most finite in

absolute value, cos(x) and cosh(x) are even functions, while sin(x) and sinh(x) are

odd functions of x.

Theorem 4.13 (Addition Theorem for the Exponential Function) Let x1, x2

∈ R be at most finite in absolute value. Then

exp(x1) exp(x2) = exp(x1 + x2).

Proof. Since
∑∞

n=0
xn
1

n!
and

∑∞
n=0

xn
2

n!
both converge absolutely weakly in R for any

x1 and x2, at most finite in absolute value, we have by Theorem 4.9 that
∑∞

n=0 cn

converges weakly in R to
(∑∞

n=0
xn
1

n!

) (∑∞
n=0

xn
2

n!

)
, where

cn =
n∑

j=0

xj
1

j!

x
(n−j)
2

(n− j)!
.

Hence,

exp(x1) exp(x2) =

( ∞∑

n=0

xn
1

n!

) ( ∞∑

n=0

xn
2

n!

)
=

∞∑

n=0




n∑

j=0

xj
1

j!

x
(n−j)
2

(n− j)!




=
∞∑

n=0

1

n!




n∑

j=0

n!

j!(n− j)!
xj

1x
(n−j)
2


 =

∞∑

n=0

1

n!
(x1 + x2)

n

= exp(x1 + x2).

Corollary 4.11 Let x ∈ R be at most finite in absolute value. Then

exp(x) · exp(−x) = 1.
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Thus for any such x,

exp(x) 6= 0 and
1

exp(x)
= exp(−x).

Corollary 4.12 Let x ∈ R be at most finite in absolute value. Then

exp(x) ≈ eX , where X = <(x).

Proof. Write x = X + s. Then by Theorem 4.13,

exp(x) = exp(X) exp(s) = eX exp(s).

Since |s| is infinitely small, exp(s) ≈ 1. Thus exp(x) ≈ eX since eX 6= 0.

Theorem 4.14 (Addition Theorems for Cosine and Sine) Let x1, x2 ∈ R be

at most finite in absolute value. Then

cos(x1 ± x2) = cos(x1) cos(x2)∓ sin(x1) sin(x2), and (4.18)

sin(x1 ± x2) = sin(x1) cos(x2)± cos(x1) sin(x2). (4.19)

Proof. Using the definitions of the sine and cosine functions in Definition 4.6, we

have that

cos(x1) cos(x2)∓ sin(x1) sin(x2)

=

( ∞∑

n=0

(−1)n x2n
1

(2n)!

) ( ∞∑

n=0

(−1)n x2n
2

(2n)!

)
∓

( ∞∑

n=0

(−1)n x2n+1
1

(2n + 1)!

) ( ∞∑

n=0

(−1)n x2n+1
2

(2n + 1)!

)

=
∞∑

n=0

(−1)n
n∑

j=0

x2j
1

(2j)!

x2n−2j
2

(2n− 2j)!
∓

∞∑

n=0

(−1)n
n∑

j=0

x2j+1
1

(2j + 1)!

x2n−2j+1
2

(2n− 2j + 1)!

=
∞∑

n=0

(−1)n
n∑

j=0

x2j
1

(2j)!

x2n−2j
2

(2n− 2j)!
∓

∞∑

n=1

(−1)n−1
n−1∑

j=0

x2j+1
1

(2j + 1)!

x2n−2j−1
2

(2n− 2j − 1)!
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=
∞∑

n=0

(−1)n
n∑

j=0

x2j
1

(2j)!

x2n−2j
2

(2n− 2j)!
±

∞∑

n=1

(−1)n
n−1∑

j=0

x2j+1
1

(2j + 1)!

x2n−2j−1
2

(2n− 2j − 1)!

= 1 +
∞∑

n=1

(−1)n




n∑

j=0

x2j
1

(2j)!

x2n−2j
2

(2n− 2j)!
±

n−1∑

j=0

x2j+1
1

(2j + 1)!

x2n−2j−1
2

(2n− 2j − 1)!




= 1 +
∞∑

n=1

(−1)n




n∑

j=0

x2j
1

(2j)!

(±x2)
2n−2j

(2n− 2j)!
+

n−1∑

j=0

x2j+1
1

(2j + 1)!

(±x2)
2n−2j−1

(2n− 2j − 1)!




= 1 +
∞∑

n=1

(−1)n
2n∑

k=0

xk
1

k!

(±x2)
2n−k

(2n− k)!

= 1 +
∞∑

n=1

(−1)n (x1 ± x2)
2n

(2n)!

=
∞∑

n=0

(−1)n (x1 ± x2)
2n

(2n)!

= cos(x1 ± x2),

which proves Equation (4.18). Similarly, we show that Equation (4.19) holds.

Corollary 4.13 Let x in R be at most finite in absolute value, let X = <(x), and

let s = x−X. Then

cos(x) ≈
{

cos(X) if cos(X) 6= 0
−s · sign(sin(X)) if cos(X) = 0

,

where

sign(Y ) =

{
1 if Y > 0
−1 if Y < 0

.

Proof. By Theorem 4.14, we have that

cos(x) = cos(X) cos(s)− sin(X) sin(s).

Suppose cos(X) 6= 0; then

cos(x) = cos(X)

(
1 +

∞∑

n=1

(−1)n s2n

(2n)!

)
− sin(X)

( ∞∑

n=0

(−1)n s2n+1

(2n + 1)!

)
≈ cos(X).
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Now suppose that cos(X) = 0; then sin(X) = sign(sin(X)), and hence

cos(x) = − sin(s)sign(sin(X)) = −
( ∞∑

n=0

(−1)n s2n+1

(2n + 1)!

)
sign(sin(X))

≈ −s · sign(sin(X)).

Corollary 4.14 Let x, X, and s be as in Corollary 4.13. Then

sin(x) ≈
{

sin(X) if sin(X) 6= 0
s · sign(cos(X)) if sin(X) = 0

.

Proof. By Theorem 4.14, we have that

sin(x) = sin(X) cos(s) + cos(X) sin(s).

Suppose sin(X) 6= 0; then

sin(x) = sin(X)

(
1 +

∞∑

n=1

(−1)n s2n

(2n)!

)
+ cos(X)

( ∞∑

n=0

(−1)n s2n+1

(2n + 1)!

)
≈ sin(X).

Now suppose that sin(X) = 0; then cos(X) = sign(cos(X)), and hence

sin(x) = sin(s)sign(cos(X)) ≈ s · sign(cos(X)).

Corollary 4.15 Let x ∈ R be at most finite in absolute value. Then

| sin(x)| ≤ |x|.

Moreover, equality holds only if x = 0.

Proof. Let X = <(x), and let s = x−X. It suffices to show that

sin(x) ≤ x for 0 ≤ X ≤ π/2,

and that equality holds only if x = 0. Suppose X = 0. Then

sin(x) = sin(s) ≈ s− s3

3!
≤ s; thus sin(x) = sin(s) ≤ s = x. (4.20)
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The equality holds in Equation (4.20) only if x = s = 0. Now suppose that 0 < X ≤
π/2. Then by Corollary 4.14,

sin(x) ≈ sin(X) < X ≈ x. (4.21)

Since X − sin(X) is finite, Equation (4.21) entails that sin(x) < x.

Corollary 4.16 Let x ∈ R be at most finite in absolute value. Then

cos2(x) + sin2(x) = 1.

Proof. Using Theorem 4.14, we have that

cos2(x) + sin2(x) = cos(x) cos(x) + sin(x) sin(x)

= cos(x− x) = cos(0)

= 1.

Using the results of Theorem 4.14 and Corollary 4.16, we readily obtain the fol-

lowing two corollaries.

Corollary 4.17 Let x ∈ R be at most finite in absolute value. Then

cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 = 1− 2 sin2(x), and

sin(2x) = 2 sin(x) cos(x).

Corollary 4.18 Let x ∈ R be at most finite in absolute value. Then

cos2(x) =
1 + cos(2x)

2
, and sin2(x) =

1− cos(2x)

2
.

Definition 4.7 For any x in R, at most finite in absolute value and satisfying

cos(x) 6= 0, we define

tan(x) =
sin(x)

cos(x)
.
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Definition 4.8 For any x in R, at most finite in absolute value and satisfying

sin(x) 6= 0, we define

cot(x) =
cos(x)

sin(x)
.

Corollary 4.19 Let x ∈ R be at most finite in absolute value and satisfy sin(x) cos(x) 6=
0. Then

cot(x) =
1

tan(x)
.

Corollary 4.20 tan(x) and cot(x) are both odd functions of x.

Corollary 4.21 Let x1 and x2 in R be such that tan(x1), tan(x2), and tan(x1+x2) all

exist in R (i.e. |x1| and |x2| are both at most finite, and cos(x1) cos(x2) cos(x1+x2) 6=
0). Then

tan(x1 + x2) =
tan(x1) + tan(x2)

1− tan(x1) tan(x2)
.

Corollary 4.22 Let x1 and x2 in R be such that cot(x1), cot(x2), and cot(x1+x2) all

exist in R (i.e. |x1| and |x2| are both at most finite, and sin(x1) sin(x2) sin(x1 +x2) 6=
0). Then

cot(x1 + x2) =
cot(x1) cot(x2)− 1

cot(x1) + cot(x2)
.

Lemma 4.19 Let x ∈ R be at most finite in absolute value. Then

cosh(x) =
exp(x) + exp(−x)

2
and sinh(x) =

exp(x)− exp(−x)

2
.

Proof. Using Definition 4.6, we have that

exp(x) + exp(−x)

2
=

1

2

( ∞∑

n=0

xn

n!
+

∞∑

n=0

(−x)n

n!

)

=
1

2

∞∑

n=0

xn + (−x)n

n!
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=
∞∑

k=0

x2k

(2k)!

= cosh(x).

Similarly, we can show that the second equality holds.

Corollary 4.23 Let x1, x2 ∈ R be at most finite in absolute value. Then

cosh(x1 ± x2) = cosh(x1) cosh(x2)± sinh(x1) sinh(x2), and

sinh(x1 ± x2) = sinh(x1) cosh(x2)± cosh(x1) sinh(x2).

Proof. Using the result of Lemma 4.23, we have that

cosh(x1) cosh(x2) + sinh(x1) sinh(x2)

=
exp(x1) + exp(−x1)

2

exp(x2) + exp(−x2)

2
+

exp(x1)− exp(−x1)

2

exp(x2)− exp(−x2)

2

=
exp(x1 + x2) + exp(x1 − x2) + exp(−x1 + x2) + exp(−x1 − x2)

4
+

exp(x1 + x2)− exp(x1 − x2)− exp(−x1 + x2) + exp(−x1 − x2)

4

=
exp(x1 + x2) + exp(−x1 − x2)

2

= cosh(x1 + x2).

Similarly, we can show that

cosh(x1 − x2) = cosh(x1) cosh(x2)− sinh(x1) sinh(x2), and

sinh(x1 ± x2) = sinh(x1) cosh(x2)± cosh(x1) sinh(x2).

Corollary 4.24 Let x in R be at most finite in absolute value, let X = <(x), and

let s = x−X. Then the following are true
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cosh(x) ≈ cosh(X).

sinh(x) ≈
{

sinh(X) if X 6= 0
s if X = 0

.

cosh2(x)− sinh2(x) = 1.

cosh(2x) = cosh2(x) + sinh2(x) = 2 cosh2(x)− 1 = 2 sinh2(x) + 1, and

sinh(2x) = 2 sinh(x) cosh(x).

cosh2(x) = cosh(2x)+1
2

, and sinh2(x) = cosh(2x)−1
2

.

Proof. The proofs of the statements above are similar to those of the corresponding

results about the nonhyperbolic functions; and we will omit the details here.



Chapter 5

Calculus on R

In this chapter, we begin with a review of topological continuity and differentiabil-

ity. We show that, like in R, the family of topologically continuous or differentiable

functions at a point or on a domain is closed under addition, multiplication and com-

position. We also show that if the derivative exists, it must vanish at a local maximum

or minimum. However, we show with examples that, unlike in R, a topologically con-

tinuous or differentiable function on a closed interval need not be bounded or satisfy

any of the common theorems of real calculus. We then review continuity and differ-

entiability, based on the derivate concept [10]. We show that the class of continuous

or differentiable functions on a given interval of R is again closed under operations

on functions. We develop a tool for easily checking the differentiability of functions

and we finally use the new smoothness criteria to study a large class of functions

for which we generalize the intermediate value theorem in [5] and prove an inverse

function theorem. We study infinitely often differentiable functions, convergence of

their Taylor series and show that power series can be reexpanded around any point

of their domain of convergence.
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5.1 Topological Continuity and Topological Differ-

entiability

Notation 5.1 Let a < b be given in R. By I (a, b), we will denote any one of the

intervals [a, b], (a, b], [a, b) or (a, b).

Definition 5.1 Let D ⊂ R, and let f : D → R. Then we say that f is topologically

continuous at x0 ∈ D if and only if for all ε > 0 in R there exists δ > 0 in R such

that

x ∈ D and |x− x0| < δ ⇒ |f (x)− f (x0)| < ε.

Definition 5.2 Let D ⊂ R, and let f : D → R. Then we say that f is topologically

continuous on D if and only if f is topologically continuous at x for all x ∈ D.

The following example shows that, contrary to the real case, a function topologi-

cally continuous on a closed interval [a, b] of R need not be bounded on [a, b].

Example 5.1 Let f : [0, 1] →R be given by

f (x) =





d−1 if 0 ≤ x < d
d−1/λ(x) if d ≤ x ¿ 1
1 if x ∼ 1

.

Then f is topologically continuous on [0, 1]: Let x ∈ [0, 1] and let ε > 0 in R be

given. First assume that 0 ≤ x < d. Let δ = (d− x) /2. Then δ > 0 and for all

y ∈ [0, 1] satisfying |y − x| < δ, we have that 0 ≤ y < x < d or 0 ≤ x < y < x + δ =

(d + x) /2 < d. Thus f (y) = d−1; and hence |f (y)− f (x)| = 0 < ε.

Now assume that d ≤ x ¿ 1. Let δ = d · x. Then for all y ∈ [0, 1] satisfying

|y − x| < δ, we have that λ (y) = λ (x). Thus, either

0 < y < d ≤ x and λ (x) = λ (y) = 1,



100

in which case

|f (y)− f (x)| =
∣∣∣d−1 − d−1

∣∣∣ = 0 < ε;

or

d ≤ x, y ¿ 1 and λ (x) = λ (y) ,

in which case

|f (y)− f (x)| =
∣∣∣d−1/λ(y) − d−1/λ(x)

∣∣∣ = 0 < ε.

Finally, assume that x ∼ 1. Let δ = d · x. Then for all y ∈ [0, 1] satisfying

|y − x| < δ, we have that y ∼ 1. Thus f (y) = 1 = f (x); and hence |f (y)− f (x)| =
0 < ε.

Next we show that f is not bounded on [0, 1]: Let M > 0 be given in R. Let

x =

{
d1/2 if λ (M) ≥ −1

d
1

1−λ(M) if λ (M) < −1
.

Thus

λ (x) =

{ 1
2

if λ (M) ≥ −1
1

1−λ(M)
∈

(
0, 1

2

)
∩Q if λ (M) < −1

.

Hence

|f (x)| =

{
d−2 if λ (M) ≥ −1
dλ(M)−1 if λ (M) < −1

À M.

Thus, for all M > 0 in R, there exists x ∈ [0, 1] such that |f (x)| > M . So f is not

bounded on [0, 1].

Lemma 5.1 Let D ⊂ R and let f : D → R. Then f is topologically continuous at

x0 ∈ D if and only if for any sequence (xn) in D that converges strongly to x0, the

sequence (f (xn)) converges strongly to f (x0).
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Proof. Suppose f is topologically continuous at x0, and let (xn) be a sequence in D

that converges strongly to x0. Let ε > 0 be given in R. There exists δ > 0 in R such

that

x ∈ D and |x− x0| < δ ⇒ |f (x)− f (x0)| < ε.

Since (xn) converges strongly to x0, there exists N ∈ Z+ such that

|xn − x0| < δ for all n ≥ N.

Thus,

|f (xn)− f (x0)| < ε for all n ≥ N.

Hence the sequence (f (xn)) converges strongly to f (x0).

Now suppose f is not topologically continuous at x0. Then there exists ε0 > 0

in R such that for all δ > 0 in R there exists x ∈ D such that |x− x0| < δ but

|f (x)− f (x0)| > ε0. In particular, for all n ∈ Z+, there exists xn ∈ D such that

|xn − x0| < dn and |f (xn)− f (x0)| > ε0.

Hence (xn) is a sequence in D that converges strongly to x0; but the sequence (f (xn))

does not converge strongly to f (x0).

Theorem 5.1 Let D ⊂ R, let f, g : D → R be topologically continuous at x0 ∈ D,

and let α ∈ R be given. Then (f + αg) and (f · g) are topologically continuous at x0.

Proof. Let (xn) be a sequence in D that converges strongly to x0. By Lemma 5.1, we

have that the sequences (f (xn)) and (g (xn)) converge strongly to f (x0) and g (x0),

respectively. For all n ≥ 1, we have that

(f + αg) (xn) = f (xn) + αg (xn) .
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Using the results of Lemma 4.5 and Lemma 4.6, the sequence ((f + αg) (xn)) con-

verges strongly to f (x0) + αg (x0) = (f + αg) (x0). By Lemma 5.1, (f + αg) is

topologically continuous at x0.

Also, for all n ≥ 1, we have that

(f · g) (xn) = f (xn) g (xn)

= (f (xn)− f (x0)) (g (xn)− g (x0))

+f (x0) (g (xn)− g (x0))

+g (x0) (f (xn)− f (x0))

+f (x0) g (x0) .

Thus, the sequence ((f · g) (xn)) converges strongly to f (x0) g (x0) = (f · g) (x0).

Again, by Lemma 5.1, (f · g) is topologically continuous at x0.

Corollary 5.1 Let D ⊂ R, let f, g : D → R be topologically continuous on D, and

let α ∈ R be given. Then (f + αg) and (f · g) are topologically continuous on D.

Theorem 5.2 Let Df , Dg ⊂ R and let f : Df → R and g : Dg → R be such that

f (Df ) ⊂ Dg, f is topologically continuous at x0 ∈ Df and g topologically continuous

at f (x0). Then g ◦ f : Df → R, given by (g ◦ f) (x) = g (f (x)), is topologically

continuous at x0.

Proof. Let (xn) be a sequence in Df that converges strongly to x0. Since f is topo-

logically continuous at x0, the sequence (f (xn)) converges strongly to f (x0). Since

g is topologically continuous at f (x0), the sequence (g (f (xn))) converges strongly

to g (f (x0)) = (g ◦ f) (x0). But for all n ≥ 1, we have that g (f (xn)) = (g ◦ f) (xn).

Thus, the sequence ((g ◦ f) (xn)) converges strongly to (g ◦ f) (x0). This is true for

any sequence (xn) in Df that converges strongly to x0. By Lemma 5.1, (g ◦ f) is

topologically continuous at x0.
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Corollary 5.2 Let Df , Dg ⊂ R and let f : Df → R and g : Dg → R be such that

f (Df ) ⊂ Dg, f is topologically continuous on Df and g topologically continuous on

Dg. Then g ◦ f is topologically continuous on Df .

Definition 5.3 Let D ⊂ R and let f : D → R. Then we say that f is topologically

uniformly continuous on D if and only if for all x ∈ D and for all ε > 0 in R there

exists δ > 0 in R such that

y ∈ D and |y − x| < δ ⇒ |f (y)− f (x)| < ε.

Lemma 5.2 Let D ⊂ R and let f : D → R. Then f is topologically uniformly

continuous on D if and only if for all ε > 0 in R there exists δ > 0 in R such that

x, y ∈ D and 0 < y − x < δ ⇒ |f (y)− f (x)| < ε.

Proof. First assume that f is topologically uniformly continuous on D, and let ε > 0

be given in R. Then by Definition 5.3, there exists δ > 0 in R such that for all x ∈ D,

we have that

y ∈ D and |y − x| < δ ⇒ |f (y)− f (x)| < ε.

Hence

x, y ∈ D and |y − x| < δ ⇒ |f (y)− f (x)| < ε;

in particular,

x, y ∈ D and 0 < y − x < δ ⇒ |f (y)− f (x)| < ε.

Now assume that for all ε > 0 in R there exists δ > 0 in R such that

x, y ∈ D and 0 < y − x < δ ⇒ |f (y)− f (x)| < ε. (5.1)

We show that f is topologically uniformly continuous on D. So let z ∈ D and let ε > 0

in R be given. Let δ > 0 in R be as in Equation (5.1), and let w ∈ D be such that
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|w − z| < δ. If z < w, let x = z and y = w in Equation (5.1) to get |f (w)− f (z)| < ε;

if w < z, let x = w and y = z in Equation (5.1) to get |f (z)− f (w)| < ε. Hence for

all z ∈ D and for all ε > 0 in R, there exists δ > 0 in R such that

w ∈ D and |w − z| < δ ⇒ |f (w)− f (z)| < ε.

Hence f is topologically uniformly continuous on D.

Theorem 5.3 Let a < b be given in R and let f : I (a, b) → R be topologically

uniformly continuous on I (a, b). Then there exists a unique function g : [a, b] → R,

topologically uniformly continuous on [a, b], such that

g|I(a,b) = f.

Proof. We may assume that I (a, b) 6= [a, b]. First assume that I (a, b) = (a, b]. For

all n ∈ Z+, let xn = a + dn (b− a). Then xn ∈ I (a, b) for all n ≥ 1; and the sequence

(xn) converges strongly to a. We show that the sequence (f (xn)) converges strongly

in R. So let ε > 0 be given in R. Then there exists δ > 0 in R such that

x, y ∈ (a, b] and |y − x| < δ ⇒ |f (y)− f (x)| < ε.

There exists N ∈ Z+ such that

dN (b− a) < δ.

Now let m,n ≥ N be given. Then

|xm − xn| = |dm − dn| (b− a) ≤ dN(b− a) < δ.

Thus,

|f (xm)− f (xn)| < ε for all m,n ≥ N.
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Hence the sequence (f (xn)) is strongly Cauchy. Since R is Cauchy complete with

respect to the order topology, (f (xn)) converges strongly in R. Define g : [a, b] →R
by

g (x) =

{
f (x) if x ∈ (a, b]
limn→∞ f (xn) if x = a

.

We show now that g is topologically uniformly continuous on [a, b]. Let ε > 0 be

given in R. There exists δ > 0 in R such that

x, y ∈ (a, b] and |y − x| < δ ⇒ |f (y)− f (x)| < ε

2
.

There exists N ∈ Z+ such that

dN (b− a) < δ and |f (xN)− g (a)| < ε

2
.

Now let x, y ∈ [a, b] be such that 0 < y − x < δ. Then y ∈ (a, b]. If x ∈ (a, b], then

|g (y)− g (x)| = |f (y)− f (x)| < ε

2
< ε.

If x = a, then

0 < y − a = y − x < δ and |y − xN | = |y − a− dN(b− a)|.

Since

0 < y − a < δ and 0 < dN(b− a) < δ,

we obtain that

|y − xN | = max
{
y − a, dN(b− a)

}
−min

{
y − a, dN(b− a)

}

< max
{
y − a, dN(b− a)

}
< δ.

and hence

|f(y)− f(xN)| < ε

2
.
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Thus,

|g (y)− g (x)| = |f (y)− g (a)|

≤ |f (y)− f (xN)|+ |f (xN)− g (a)|

<
ε

2
+

ε

2
= ε.

Hence g is topologically uniformly continuous on [a, b] and g|I(a,b) = f .

Let g1 : [a, b] → R be topologically uniformly continuous on [a, b] with g1|I(a,b) = f .

To show that g1 = g, it suffices to show that g1 (a) = g (a). Since g1 is topologically

continuous at a and since (xn) converges strongly to a, we obtain by Lemma 5.1 that

the sequence (g1 (xn)) converges strongly to g1 (a). Thus,

g1 (a) = lim
n→∞ g1 (xn) = lim

n→∞ f (xn) = g (a) .

So g1 = g; and hence g is unique.

Similarly we can show that the result is true for the cases I (a, b) = [a, b) and

I (a, b) = (a, b).

Example 5.2 Let f : (0, 1] →R be given by g (x) = 1/x.

We show that f is topologically continuous on (0, 1]; but there is no function g :

[0, 1] → R such that g is topologically continuous on [0, 1] and g|(0,1] = f . Let

x ∈ (0, 1] and let ε > 0 in R be given. Let

δ = min

{
x

2
,
εx2

2

}
,

and let y ∈ (0, 1] be such that 0 < |y − x| < δ. First assume that that y < x. Then

0 < x− y < δ, and

|f (y)− f (x)| =
1

y
− 1

x
<

1

x− δ
− 1

x
=

δ

x (x− δ)

≤ δ

x
(
x− x

2

) =
2δ

x2
≤ ε.
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Now assume that x < y. Then 0 < y − x < δ, and

|f (y)− f (x)| =
1

x
− 1

y
<

1

x
− 1

x + δ
=

δ

x (x + δ)

<
δ

x2
≤ ε

2
< ε.

Hence f is topologically continuous at x for all x ∈ (0, 1], and hence f is topologically

continuous on (0, 1].

Suppose there exists g : [0, 1] →R such that g is topologically continuous on [0, 1]

and g|(0,1] = f . Then, by Lemma 5.1, we have that the sequence (g (dn)) converges

strongly to g (0); i.e. the sequence (d−n) converges strongly to g (0), which contradicts

the fact that (d−n) is unbounded. So there can be no such g.

Definition 5.4 Let D ⊂ R be open and let f : D → R. Then we say that f is

topologically differentiable at x0 ∈ D if and only if there exists a number f ′ (x0) ∈ R
such that the function F1,x0 : D →R, given by

F1,x0 (x) =





f(x)−f(x0)
x−x0

if x 6= x0

f ′ (x0) if x = x0

,

is topologically continuous at x0. If this is the case, we call F1,x0 the derivate function

of f at x0 [10], and f ′ (x0) the derivative of f at x0.

Definition 5.5 Let D ⊂ R be open and let f : D → R. Then we say that f is

topologically differentiable on D if and only if f is topologically differentiable at x for

all x ∈ D.

The following lemma follows directly from Definition 5.4.

Lemma 5.3 Let D, f, x0, F1,x0 be as in Definition 5.4. Then we have that

f (x) = f (x0) + F1,x0 (x) (x− x0) for all x ∈ D.
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The following lemma is a direct consequence of Definitions 5.4 and 5.1.

Lemma 5.4 Let D ⊂ R be open and let f : D → R. Then f is topologically

differentiable at x0 ∈ D if and only if there exists a number f ′ (x0) ∈ R such that for

all ε > 0 in R there exists δ > 0 in R such that

x ∈ D and 0 < |x− x0| < δ ⇒
∣∣∣∣∣
f (x)− f (x0)

x− x0

− f ′ (x0)

∣∣∣∣∣ < ε.

Theorem 5.4 Let D ⊂ R be open and let f : D → R be topologically differentiable

at x0 ∈ D. Then f is topologically continuous at x0.

Proof. Let ε > 0 be given in R, and let ε1 = ε/2. Since f is topologically differen-

tiable at x0, there exists δ1 > 0 in R such that

x ∈ D and 0 < |x− x0| < δ1 ⇒
∣∣∣∣∣
f (x)− f (x0)

x− x0

− f ′ (x0)

∣∣∣∣∣ < ε1.

Let

δ =





min
{
δ1,

ε
2|f ′(x0)| , 1

}
if f ′ (x0) 6= 0

min {δ1, 1} if f ′ (x0) = 0

.

Then δ > 0, and for all x ∈ D satisfying 0 < |x− x0| < δ, we have that

|f (x)− f (x0)| < ε1 |x− x0|+ |f ′ (x0)| |x− x0|

<
ε

2
δ + |f ′ (x0)| δ

≤ ε

2
+

ε

2
= ε.

Hence f is topologically continuous at x0.

Corollary 5.3 Let D ⊂ R be open and let f : D → R be topologically differentiable

on D. Then f is topologically continuous on D.
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Theorem 5.5 Let D ⊂ R be open, let f, g : D → R be topologically differentiable

at x0 ∈ D, and let α ∈ R be given. Then (f + αg) and (f · g) are topologically

differentiable at x0, with derivatives

(f + αg)′ (x0) = f ′ (x0) + αg′ (x0) and

(f · g)′ (x0) = f ′ (x0) g (x0) + f (x0) g′ (x0) .

Proof. Let F1,x0 and G1,x0 denote the derivate functions of f and g at x0, respectively.

Then F1,x0 and G1,x0 are topologically continuous at x0. By Theorem 5.1, we have

that the function F1,x0 + αG1,x0 : D →R, given by

(F1,x0 + αG1,x0) (x) = F1,x0 (x) + αG1,x0 (x)

=





f(x)−f(x0)
x−x0

+ α g(x)−g(x0)
x−x0

if x 6= x0

f ′ (x0) + αg′ (x0) if x = x0

=





(f+αg)(x)−(f+αg)(x0)
x−x0

if x 6= x0

f ′ (x0) + αg′ (x0) if x = x0

,

is topologically continuous at x0. Thus, (f + αg) is topologically differentiable at x0,

with derivative

(f + αg)′ (x0) = f ′ (x0) + αg′ (x0) .

Now let H : D →R be given by

H (x) =





(f ·g)(x)−(f ·g)(x0)
x−x0

if x 6= x0

f ′ (x0) g (x0) + f (x0) g′ (x0) if x = x0

.
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To show that (f · g) is topologically differentiable at x0, we need to show that H is

topologically continuous at x0. Note that

H (x) =





f(x)g(x)−f(x0)g(x0)
x−x0

if x 6= x0

f ′ (x0) g (x0) + f (x0) g′ (x0) if x = x0

=





f(x)−f(x0)
x−x0

g (x0) + f (x) g(x)−g(x0)
x−x0

if x 6= x0

f ′ (x0) g (x0) + f (x0) g′ (x0) if x = x0

= F1,x0 (x) g (x0) + f (x) G1,x0 (x) .

Hence H = g(x0)F1,x0+f ·G1,x0 . Using Theorem 5.1, we obtain that H is topologically

continuous at x0. Thus, (f · g) is topologically differentiable at x0, with derivative

(f · g)′ (x0) = H (x0) = f ′ (x0) g (x0) + f (x0) g′ (x0) .

Corollary 5.4 Let D ⊂ R be open, let f, g : D →R be topologically differentiable on

D, and let α ∈ R be given. Then (f + αg) and (f · g) are topologically differentiable

on D, with derivatives

(f + αg)′ = f ′ + αg′ and (f · g)′ = f ′ · g + f · g′.

Theorem 5.6 (Chain Rule) Let Df , Dg ⊂ R be open, and let f : Df → R and

g : Dg →R be such that f (Df ) ⊂ Dg, f is topologically differentiable at x0 ∈ Df and

g topologically differentiable at f (x0). Then g ◦ f is topologically differentiable at x0,

with derivative

(g ◦ f)′ (x0) = g′ (f (x0)) f ′ (x0) .
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Proof. Let F1,x0 and G1,f(x0) denote the derivate functions of f at x0 and of g at

f (x0), respectively. Let H : Df → R be given by

H (x) =





(g◦f)(x)−(g◦f)(x0)
x−x0

if x 6= x0

g′ (f (x0)) f ′ (x0) if x = x0

.

Then

H (x) =





g(f(x))−g(f(x0))
x−x0

if x 6= x0

g′ (f (x0)) f ′ (x0) if x = x0

=





g(f(x))−g(f(x0))
f(x)−f(x0)

f(x)−f(x0)
x−x0

if x 6= x0 and f (x) 6= f (x0)

0 if x 6= x0 and f (x) = f (x0)
g′ (f (x0)) f ′ (x0) if x = x0

= G1,f(x0) (f (x)) F1,x0 (x) .

Hence

H =
(
G1,f(x0) ◦ f

)
· F1,x0 .

Since f is topologically continuous at x0 and since G1,f(x0) is topologically continuous

at f (x0), we have by Theorem 5.2 that
(
G1,f(x0) ◦ f

)
is topologically continuous at

x0. Since F1,x0 is topologically continuous at x0, so is
(
G1,f(x0) ◦ f

)
· F1,x0 = H by

Theorem 5.1. Hence (g ◦ f) is topologically differentiable at x0, with derivative

(g ◦ f)′ (x0) = H (x0) = g′ (f (x0)) f ′ (x0) .

Corollary 5.5 Let Df , Dg ⊂ R be open, and let f : Df → R and g : Dg → R
be such that f (Df ) ⊂ Dg, f is topologically differentiable on Df and g topologically

differentiable on Dg. Then g ◦ f is topologically differentiable on Df , with derivative

(g ◦ f)′ = (g′ ◦ f) · f ′.
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Theorem 5.7 Let D ⊂ R be open, and let f : D →R be such that f is topologically

differentiable and has a local maximum at x0 ∈ D. Then

f ′(x0) = 0.

Proof. Suppose not; then |f ′(x0)| > 0. Since D is open and since f is topologically

differentiable at x0, there exists δ > 0 in R such that (x0 − δ, x0 + δ) ⊂ D and

∣∣∣∣∣
f(x)− f(x0)

x− x0

− f ′(x0)

∣∣∣∣∣ < d |f ′(x0)| for all x 6= x0 in (x0 − δ, x0 + δ);

which entails that

f(x)− f(x0)

x− x0

≈ f ′(x0) for all x 6= x0 in (x0 − δ, x0 + δ).

In particular, (f(x)−f(x0))/(x−x0) has the same sign (that of f ′(x0)) for all x 6= x0

in (x0−δ, x0 +δ); which contradicts the fact that f has a local maximum at x0. Thus,

f ′(x0) = 0.

Corollary 5.6 Let D ⊂ R be open, and let f : D →R be such that f is topologically

differentiable and has a local minimum at x0 ∈ D. Then

f ′(x0) = 0.

Proof. Let g = −f . Then g is topologically differentiable and has a local maximum

at x0. By Theorem 5.7, we obtain that g′(x0) = 0. Using Theorem 5.5, we finally

obtain that

f ′(x0) = −g′(x0) = 0.

The following examples show that, contrary to the real case, topological continuity

or even topological differentiability of a function on a closed interval of R are not

always sufficient for the function to assume all intermediate values, a maximum, a

minimum, or a unique primitive function on the interval.
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Example 5.3 Let f : [0, 1] →R be given by

f (x) =

{
1 if x ∼ 1
0 if 0 ≤ x ¿ 1

.

Then f is topologically continuous on [0, 1] and topologically differentiable on (0, 1),

with derivative f ′ (x) = 0 for all x ∈ (0, 1). We have that

f (0) = 0 < d < 1 = f (1) ; but f (x) 6= d for all x ∈ [0, 1] .

So f does not satisfy the intermediate value theorem on [0, 1]. Moreover, although

f ′ (x) = 0 for all x ∈ (0, 1), f is not constant on [0, 1].

Example 5.4 Let t > 0 be given in Q, and let f : [−1, 1] →R be given by

f (x) =

{
dt exp (x) + sign (x) exp (−1/x2) if x ∼ 1
dt exp (x) if 0 ≤ x ¿ 1

,

where

sign (x) =

{
1 if x > 0
−1 if x < 0

.

Then f is topologically continuous on [−1, 1] and topologically differentiable on

(−1, 1) with derivative

f ′ (x) =

{
dt exp (x) + 2

x3 sign (x) exp (−1/x2) if x ∼ 1
dt exp (x) if 0 ≤ x ¿ 1

=

{
dt exp (x) + 2

|x|3 exp (−1/x2) if x ∼ 1

dt exp (x) if 0 ≤ x ¿ 1

> 0 for all x ∈ (−1, 1) .

Moreover, f is strictly increasing on [−1, 1]. We have that

f (−1) = dt exp (−1)− exp (−1) < d < dt exp (1) + exp (−1) = f (1) ;

but f (x) 6= d for all x ∈ [−1, 1].
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Example 5.5 Let f : [−1, 1] → R be given by

f (x) = x−< (x) .

Then f is topologically continuous on [−1, 1]. However, f assumes neither a maximum

nor a minimum on [−1, 1]. The set f ([−1, 1]) is bounded above by any positive real

number and below by any negative real number; but it has neither a least upper

bound nor a greatest lower bound.

Example 5.6 Let f : [−1, 1] → R be given by

f (x) =
∞∑

ν=1

xνd
3qν when x = < (x) +

∞∑

ν=1

xνd
qν .

Then f is topologically continuous on [−1, 1] and topologically differentiable on

(−1, 1), with derivative

f ′ (x) = 0 for all x ∈ (−1, 1) .

f has neither a maximum nor a minimum on [−1, 1]. Moreover, f is not constant on

[−1, 1] even though f ′ (x) = 0 for all x ∈ (−1, 1).

Example 5.7 Let f, g : [−1, 1] →R be given by

f (x) = x and g (x) = x + d3λ(x)+1.

Then f and g are both topologically continuous on [−1, 1] and topologically differen-

tiable on (−1, 1), with derivatives

f ′ (x) = 1 = g′ (x) for all x ∈ (−1, 1) .
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So f and g are two primitive functions of 1 on [−1, 1] that do not differ by a constant.

In the following section, we introduce stronger smoothness criteria on R and use

them to try and extend the common theorems of real calculus to R.

5.2 Continuity and Differentiability

Definition 5.6 Let a < b be given in R and let f : I (a, b) → R. Then we say that f

is continuous on I (a, b) if and only if there exists M ∈ R, called a Lipschitz constant

of f on I (a, b), such that [10]

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ ≤ M for all x 6= y in I (a, b) .

Lemma 5.5 Let a < b be given in R and let f : I (a, b) → R be continuous on

I (a, b). Then f is topologically uniformly continuous on I (a, b).

Proof. Let M be a Lipschitz constant of f on I (a, b), and let ε > 0 be given in R.

Let δ = ε/M . Then δ > 0, and for all x, y ∈ D satisfying 0 < y−x < δ, we have that

|f (y)− f (x)| ≤ M (y − x) < Mδ = ε.

Hence, using Lemma 5.2, we obtain that f is topologically uniformly continuous on

D.

Lemma 5.6 Let a < b be given in R and let f : I (a, b) → R be continuous on

I (a, b). Then f is bounded on I (a, b).

Proof. Since f is continuous on I (a, b), there exists M ∈ R such that

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ ≤ M for all x 6= y in I (a, b) .
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Thus, ∣∣∣∣∣∣
f (x)− f

(
b−a
2

)

x− b−a
2

∣∣∣∣∣∣
≤ M for all x 6= b− a

2
in I(a, b);

and hence

|f (x)| ≤
∣∣∣∣∣f

(
b− a

2

)∣∣∣∣∣ + M

∣∣∣∣∣x−
b− a

2

∣∣∣∣∣ ≤
∣∣∣∣∣f

(
b− a

2

)∣∣∣∣∣ + M |b− a|

for all x ∈ I (a, b).

Lemma 5.7 Let a < b be given in R and let f : I (a, b) →R be continuous on I (a, b)

with Lipschitz constant M . Let x ∈ I (a, b) be given, let r ∈ Q, and let h ∈ R be such

that |h| ¿ dr and x + h ∈ I (a, b). Then

f (x + h) =r+λ(M) f (x) .

Proof. If h = 0, we are done. So we may assume that h 6= 0. Thus,

∣∣∣∣∣
f (x + h)− f (x)

h

∣∣∣∣∣ ≤ M ; and hence |f (x + h)− f (x)| ≤ M |h| .

Thus,

λ (f (x + h)− f (x)) ≥ λ (M |h|) = λ (M) + λ (h) > λ (M) + r,

which entails that f (x + h) =r+λ(M) f (x).

Lemma 5.8 (Remainder Formula 0) Let a < b in R and let f : I (a, b) → R be

continuous on I (a, b) with Lipschitz constant M . Then for all x, y ∈ I (a, b), we have

that

f (y) = f (x) + r0 (x, y) (y − x) , with λ (r0 (x, y)) ≥ λ (M) .

Proof. Let x, y ∈ I (a, b) be given. Let

r0 (x, y) =

{
f(y)−f(x)

y−x
if y 6= x

0 if y = x
.
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Then f (y) = f (x) + r0 (x, y) (y − x). Moreover, since f is continuous on I (a, b), we

have that

|r0 (x, y)| ≤ M ; and hence λ (r0 (x, y)) ≥ λ (M) .

Theorem 5.8 Let a < b be given in R, let f, g : I (a, b) → R be continuous on

I (a, b), and let α ∈ R. Then f + αg and f · g are continuous on I (a, b).

Proof. Since f and g are continuous on I (a, b), there exist M1,M2 ∈ R such that

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ ≤ M1 and

∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ ≤ M2 for all x 6= y in I (a, b) .

Let

M = max {M1,M2} .

Then

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ ≤ M and

∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ ≤ M for all x 6= y in I (a, b) .

Now let x 6= y in I (a, b) be given. Then

∣∣∣∣∣
(f + αg) (y)− (f + αg) (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
f (y) + αg (y)− f (x)− αg (x)

y − x

∣∣∣∣∣

≤
∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ + |α|
∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣

≤ (1 + |α|) M.

Hence f + αg is continuous on I (a, b) with Lipschitz constant (1 + |α|) M .

Since f and g are continuous on I (a, b), we have by Lemma 5.6 that f and g are

bounded on I (a, b). Hence there exists M0 ∈ R such that

|f (x)| ≤ M0 and |g (x)| ≤ M0 for all x ∈ I (a, b) .
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Now for all x 6= y in I (a, b), we have that

∣∣∣∣∣
(f · g) (y)− (f · g) (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
f (y) g (y)− f (x) g (x)

y − x

∣∣∣∣∣

=

∣∣∣∣∣
f (y) (g (y)− g (x)) + (f (y)− f (x)) g (x)

y − x

∣∣∣∣∣

≤ |f (y)|
∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ + |g (x)|
∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣

≤ M0M2 + M0M1

≤ 2M0M.

Hence f · g is continuous on I (a, b) with Lipschitz constant 2M0M .

Theorem 5.9 Let a < b and c < e in R be given, and let f : I1(a, b) → R and

g : I2(c, e) → R be such that f (I1(a, b)) ⊂ I2(c, e), f is continuous on I1(a, b) and g

continuous on I2(c, e). Then g ◦ f is continuous on I1(a, b).

Proof. Let Mf and Mg be Lipschitz constants of f on I1(a, b) and of g on I2(c, e),

respectively. Let x 6= y be given in I1(a, b). First assume that f (y) = f (x). Then

∣∣∣∣∣
(g ◦ f) (y)− (g ◦ f) (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
g (f (y))− g (f (x))

y − x

∣∣∣∣∣ = 0 ≤ MgMf .

Now assume that f (y) 6= f (x). Then

∣∣∣∣∣
(g ◦ f) (y)− (g ◦ f) (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
g (f (y))− g (f (x))

y − x

∣∣∣∣∣

=

∣∣∣∣∣
g (f (y))− g (f (x))

f (y)− f (x)

f (y)− f (x)

y − x

∣∣∣∣∣

=

∣∣∣∣∣
g (f (y))− g (f (x))

f (y)− f (x)

∣∣∣∣∣

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣

≤ MgMf .
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Thus, for all y 6= x in I1(a, b), we have that

∣∣∣∣∣
(g ◦ f) (y)− (g ◦ f) (x)

y − x

∣∣∣∣∣ ≤ MgMf ;

and hence (g ◦ f) is continuous on I1(a, b), with Lipschitz constant MgMf .

Theorem 5.10 Let a < b be given in R and let f : I (a, b) → R be continuous on

I (a, b). Then there exists a unique function g : [a, b] → R, continuous on [a, b], such

that

g|I(a,b) = f.

Proof. We may assume that I (a, b) 6= [a, b]. First assume that I (a, b) = (a, b]. Let

f0 = lim
n→∞ f (a + dn(b− a)) ,

which exists by the proof of Theorem 5.3 since f is topologically uniformly continuous

on (a, b] by Lemma 5.5. Define g : [a, b] →R by

g (x) =

{
f (x) if x ∈ (a, b]
f0 if x = a

.

It remains to show that g is continuous on [a, b]. Let M be a Lipschitz constant of f

on (a, b] and let x 6= y in [a, b] be given. Without loss of generality, we may assume

that x < y. Assume that a < x, then x, y ∈ (a, b], and hence

∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ ≤ M ≤ 2M.

Now assume that x = a. There exists N ∈ Z+ such that

dN(b− a) < y − a and
∣∣∣f

(
a + dN(b− a)

)
− g (a)

∣∣∣ ≤ M (y − a) .

Then it follows that

0 < y −
(
a + dN(b− a)

)
< y − a;
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and hence
∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣
f (y)− g (a)

y − a

∣∣∣∣∣

=

∣∣∣∣∣∣
f (y)− f

(
a + dN(b− a)

)
+ f

(
a + dN(b− a)

)
− g (a)

y − a

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
f (y)− f

(
a + dN(b− a)

)

y − a

∣∣∣∣∣∣
+

∣∣∣∣∣∣
f

(
a + dN(b− a)

)
− g (a)

y − a

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
f (y)− f

(
a + dN(b− a)

)

y − (a + dN(b− a))

∣∣∣∣∣∣
+ M

≤ M + M = 2M.

Thus, for all x 6= y in [a, b], we have that
∣∣∣∣∣
g (y)− g (x)

y − x

∣∣∣∣∣ ≤ 2M.

Hence g is continuous on [a, b] with Lipschitz constant 2M , and g|(a,b] = f .

Similarly, we can show that the result is true for the cases when I (a, b) = [a, b)

and I (a, b) = (a, b).

Definition 5.7 Let a < b be given in R and let f : I (a, b) → R be continuous on

I (a, b). Then we say that f is differentiable on I (a, b) if and only if there exists

a function f ′ : I (a, b) → R, called the derivative of f on I (a, b), such that for all

x ∈ I (a, b), the derivate function F1,x : I (a, b) →R [10], given by

F1,x (y) =





f(y)−f(x)
y−x

if y 6= x

f ′ (x) if y = x

,

is continuous on I (a, b).

Lemma 5.9 Let a < b be given in R and let f : I (a, b) → R be differentiable on

I (a, b). Then f is topologically differentiable on (a, b).
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Proof. Let x ∈ (a, b) be given. Then the derivate function F1,x is continuous on

I (a, b). By Lemma 5.5, F1,x is topologically continuous at x. Hence f is topologically

differentiable at x. This is true for all x ∈ (a, b); hence f is topologically differentiable

on (a, b).

The following theorem is a generalization of a similar result in [5] and is a central

theorem because it reduces computing derivatives to mere arithemtic operations and

thus allows rigorous study of differentiation [38, 39, 40, 42].

Theorem 5.11 (Derivatives are Differential Quotients) Let a < b be given in

R and let f : I (a, b) → R be differentiable on I (a, b). Let x ∈ I (a, b) be given, let

F1,x be the derivate function of f at x, and let M1,x be a Lipschitz constant of F1,x.

Let r ∈ Q be given and let h ∈ R be such that 0 < |h| ¿ dr and x+h ∈ I (a, b). Then

f ′ (x) =r+λ(M1,x)
f (x + h)− f (x)

h
;

which means that ∣∣∣∣∣
f (x + h)− f (x)

h
− f ′ (x)

∣∣∣∣∣ ¿ M1,xd
r.

Proof. Since F1,x is continuous on I (a, b), we have using Lemma 5.7 that

F1,x (x) =r+λ(M1,x) F1,x (x + h) ,

where

F1,x (x) = f ′ (x) and F1,x (x + h) =
f (x + h)− f (x)

h
.

This finishes the proof of the theorem.

Theorem 5.12 (Remainder Formula 1) Let a < b be given in R and let f :

I (a, b) → R be differentiable on I (a, b). Let x ∈ I (a, b) be given, let F1,x be the
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derivate function of f at x, and let M1,x be a Lipschitz constant of F1,x. Then for all

y ∈ I (a, b), we have that

f (y) = f (x) + f ′ (x) (y − x) + r1 (x, y) (y − x)2 , with λ (r1 (x, y)) ≥ λ (M1,x) .

Proof. Since F1,x is continuous on I (a, b), we have by Lemma 5.8 that

F1,x (y) = F1,x (x) + r1 (x, y) (y − x) , with λ (r1 (x, y)) ≥ λ (M1,x) .

Thus,

f (y)− f (x)

y − x
= f ′ (x) + r1 (x, y) (y − x) ;

and hence

f (y) = f (x) + f ′ (x) (y − x) + r1 (x, y) (y − x)2 .

Theorem 5.13 Let a < b be given in R, let f, g : I (a, b) → R be differentiable on

I (a, b), and let α ∈ R. Then f + αg and f · g are differentiable on I (a, b), with

derivatives

(f + αg)′ = f ′ + αg′ and (f · g)′ = f ′ · g + f · g′.

Proof. Let x ∈ I (a, b) be given, and let F1,x and G1,x denote the derivate functions

of f and g at x, respectively. Then F1,x and G1,x are continuous on I (a, b). It follows

by Theorem 5.8 that the function F1,x + αG1,x : I (a, b) →R, given by

(F1,x + αG1,x) (y) = F1,x (y) + αG1,x (y)

=





f(y)+αg(y)−f(x)−αg(x)
y−x

if y 6= x

f ′ (x) + αg′ (x) if y = x

=





(f+αg)(y)−(f+αg)(x)
y−x

if y 6= x

(f ′ + αg′) (x) if y = x

,
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is continuous on I (a, b). This is true for all x ∈ I (a, b). Hence f +αg is differentiable

on I (a, b) with derivative (f + αg)′ = f ′ + αg′.

Now let x ∈ I (a, b) be given, and let Hx : D → R be given by

Hx (y) =





(f ·g)(y)−(f ·g)(x)
y−x

if y 6= x

f ′ (x) g (x) + f (x) g′ (x) if y = x

.

We show that Hx is continuous on I (a, b) for all x ∈ I (a, b). Note that

Hx (y) =





f(y)g(y)−f(x)g(x)
y−x

if y 6= x

f ′ (x) g (x) + f (x) g′ (x) if y = x

=





f(y)−f(x)
y−x

g (x) + f (y) g(y)−g(x)
y−x

if y 6= x

f ′ (x) g (x) + f (x) g′ (x) if y = x

= F1,x (y) g (x) + f (y) G1,x (y) .

Hence

Hx = g(x) · F1,x + f ·G1,x.

Since f , F1,x and G1,x are continuous on I (a, b), so is Hx by Theorem 5.8. This is

true for all x ∈ I (a, b), and hence (f · g) is differentiable on I (a, b), with derivative

(f · g)′ (x) = f ′ (x) g (x) + f (x) g′ (x) for all x ∈ I (a, b) .

Theorem 5.14 (Chain Rule) Let a < b and c < e in R, and let f : I1(a, b) → R
and g : I2(c, e) → R be such that f (I1(a, b)) ⊂ I2(c, e), f is differentiable on I1(a, b)

and g differentiable on I2(c, e). Then g ◦f is differentiable on I1(a, b), with derivative

(g ◦ f)′ = (g′ ◦ f) · f ′.
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Let x ∈ I (a, b) be given, and let Hx : D → R be given by

Hx (y) =





(g◦f)(y)−(g◦f)(x)
y−x

if y 6= x

g′ (f (x)) f ′ (x) if y = x

.

Then

Hx (y) =





g(f(y))−g(f(x))
y−x

if y 6= x

g′ (f (x)) f ′ (x) if y = x

=





g(f(y))−g(f(x))
f(y)−f(x)

f(y)−f(x)
y−x

if y 6= x and f (y) 6= f (x)

0 if y 6= x and f (y) = f (x)
g′ (f (x)) f ′ (x) if y = x

= G1,f(x) (f (y)) F1,x (y) ,

where F1,x is the derivate function of f at x, and G1,f(x) the derivate function of g at

f (x). Hence

Hx =
(
G1,f(x) ◦ f

)
· F1,x.

Since f is continuous on I1(a, b) and since G1,f(x) is continuous on I2(c, e), we have by

Theorem 5.9 that
(
G1,f(x) ◦ f

)
is continuous on I1(a, b). Since F1,x is continuous on

I1(a, b), so is
(
G1,f(x) ◦ f

)
· F1,x = Hx by Theorem 5.8. Hence (g ◦ f) is differentiable

on I1(a, b), with derivative

(g ◦ f)′ (x) = Hx (x) = g′ (f (x)) f ′ (x)

= ((g′ ◦ f) · f ′) (x) for all x ∈ I1(a, b).

The following result provides a useful tool for checking the differentiability of

functions and will be used frequently later, as in the proofs of Theorem 5.20 and

Theorem 5.23 and in Example 5.10.
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Theorem 5.15 Let a < b be given in R and let f : I (a, b) → R be continuous on

I(a, b). Suppose there exists M ∈ R and there exists a function g : I (a, b) →R such

that ∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ ≤ M |y − x| for all y 6= x in I (a, b) .

Then f is differentiable on I (a, b), with derivative f ′ = g.

Proof. We need to show that for all x ∈ I (a, b), the function F1,x : I (a, b) → R,

given by

F1,x (y) =





f(y)−f(x)
y−x

if y 6= x

g (x) if y = x

,

is continuous on I (a, b). It is sufficient to show that for all x ∈ I (a, b), we have that

∣∣∣∣∣
F1,x (y)− F1,x (z)

y − z

∣∣∣∣∣ ≤ d−1M for all y 6= z in I (a, b) .

So let x ∈ I (a, b) be given; and let y 6= z be given in I (a, b). Four cases are to be

considered.

As a first case, assume that y = x. Then

∣∣∣∣∣
F1,x (y)− F1,x (z)

y − z

∣∣∣∣∣ =

∣∣∣∣∣
F1,x (x)− F1,x (z)

x− z

∣∣∣∣∣ =

∣∣∣∣∣∣
g (x)− f(z)−f(x)

z−x

x− z

∣∣∣∣∣∣

=

∣∣∣f(z)−f(x)
z−x

− g (x)
∣∣∣

|z − x|

≤ M |z − x|
|z − x| = M

≤ d−1M.

As a second case, assume that z = x. Then

∣∣∣∣∣
F1,x (y)− F1,x (z)

y − z

∣∣∣∣∣ =

∣∣∣∣∣
F1,x (y)− F1,x (x)

y − x

∣∣∣∣∣ =

∣∣∣∣∣∣

f(y)−f(x)
y−x

− g (x)

y − x

∣∣∣∣∣∣
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=

∣∣∣f(y)−f(x)
y−x

− g (x)
∣∣∣

|y − x|

≤ M |y − x|
|y − x| = M

≤ d−1M.

As a third case, assume that y 6= x 6= z and |y − z| is not infinitely smaller than

|y − x|. Then |y − z| is not infinitely smaller than |z − x|; for if |y − z| ¿ |z − x|,
then |y − x| = |y − z + (z − x)| ≈ |z − x| À |y − z|, a contradiction. Thus,

|F1,x (y)− F1,x (z)| =

∣∣∣∣∣
f (y)− f (x)

y − x
− f (z)− f (x)

z − x

∣∣∣∣∣

=

∣∣∣∣∣

(
f (y)− f (x)

y − x
− g (x)

)
−

(
f (z)− f (x)

z − x
− g (x)

)∣∣∣∣∣

≤
∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ +

∣∣∣∣∣
f (z)− f (x)

z − x
− g (x)

∣∣∣∣∣

≤ M |y − x|+ M |z − x|

≤ d−1M |y − z| since d−1 |y − z| À |y − x|+ |z − x| .

Hence ∣∣∣∣∣
F1,x (y)− F1,x (z)

y − z

∣∣∣∣∣ ≤ d−1M.

Finally, assume that y 6= x 6= z and |y − z| ¿ |y − x|. Then

z − x = z − y + (y − x) ≈ y − x.

Thus

|F1,x (y)− F1,x (z)| =

∣∣∣∣∣
f (y)− f (x)

y − x
− f (z)− f (x)

z − x

∣∣∣∣∣

=

∣∣∣∣∣
f (y)− f (x)

y − x
− f (z)− f (x)

y − x

y − x

z − x

∣∣∣∣∣
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=

∣∣∣∣∣
f (y)− f (x)

y − x
− f (z)− f (x)

y − x

(
1 +

y − z

z − x

)∣∣∣∣∣

=

∣∣∣∣∣
f (y)− f (z)

y − x
− f (z)− f (x)

y − x

y − z

z − x

∣∣∣∣∣

=

∣∣∣∣∣
f (y)− f (z)

y − z

y − z

y − x
− f (z)− f (x)

z − x

y − z

y − x

∣∣∣∣∣

=

∣∣∣∣∣
y − z

y − x

∣∣∣∣∣

∣∣∣∣∣
f (y)− f (z)

y − z
− f (z)− f (x)

z − x

∣∣∣∣∣ .

By hypothesis, we have that

f (y)− f (z)

y − z
= g (z) + r1 and

f (z)− f (x)

z − x
= g (z) + r2;

where

|r1| ≤ M |y − z| and |r2| ≤ M |z − x| .

Thus,

|F1,x (y)− F1,x (z)| =

∣∣∣∣∣
y − z

y − x

∣∣∣∣∣ |r1 − r2|

≤
∣∣∣∣∣
y − z

y − x

∣∣∣∣∣ (|r1|+ |r2|)

≤
∣∣∣∣∣
y − z

y − x

∣∣∣∣∣ M (|y − z|+ |z − x|) .

Since |z − x| ≈ |y − x|, we obtain that |z − x| < d−1 |y − x| /2. Also, since |y − z| ¿
|y − x|, we obtain that |y − z| < |y − x| < d−1 |y − x| /2. Therefore,

|F1,x (y)− F1,x (z)| ≤
∣∣∣∣∣
y − z

y − x

∣∣∣∣∣ Md−1 |y − x| = d−1M |y − z| ;

and hence ∣∣∣∣∣
F1,x (y)− F1,x (z)

y − z

∣∣∣∣∣ ≤ d−1M.

This finishes the proof of the theorem.
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Remark 5.1 The proof of Theorem 5.15 is yet another example of how the non-

Archimedean properties of R allow us to obtain results that would not hold in R or in

any other Archimedean structure. In the third and fourth cases above, the existence of

an infinitely large number (d−1 in our proof) was essential to get the final inequality.

Indeed we could replace d−1 in the proof of Theorem 5.15 by any positive infinitely

large number without having to change anything else in the proof.

5.3 n-times Differentiability

Definition 5.8 Let a < b be given in R, and let f : I (a, b) → R. Let n ≥ 2

be given in Z+. Then we define n-times differentiability of f on I (a, b) inductively

as follows: Having defined (n− 1)-times differentiability, we say that f is n-times

differentiable on I (a, b) if and only if f is (n− 1)-times differentiable on I (a, b) and

for all x ∈ I (a, b), the (n− 1)st derivate function Fn−1,x is differentiable on I (a, b).

For all x ∈ I (a, b), the number

f (n) (x) = n!F ′
n−1,x (x)

will be called the nth derivative of f at x and the derivate function Fn,x of Fn−1,x at

x will be called the nth derivate function of f at x [10].

In connection with the derivate functions, we introduce the secants of different

orders.

Definition 5.9 Let a < b be given in R and let f : I(a, b) → R. Then for all

x ∈ I(a, b), the function S1,x : I(a, b) \ {x} → R, given by

S1,x(y) =
f(y)− f(x)

y − x
,

will be called the first secant of f at x.
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Definition 5.10 Let a < b be given in R, let n ∈ Z+ be given and let f : I(a, b) →R
be n-times differentiable on I(a, b). Let x ∈ I(a, b) be given, and let F1,x, . . . , Fn,x

denote the first,. . ., the nth derivate functions of f at x. For all l ∈ {2, . . . , n + 1},
define Sl,x : I(a, b) \ {x} → R to be the first secant of Fl−1,x at x. Then Sl,x will be

called the lth secant of f at x.

Lemma 5.10 Let n ∈ Z+ be given, let a < b be given in R, and let f : I (a, b) → R
be n-times differentiable on I (a, b). Let f ′, . . . , f (n) denote the first,. . .,nth deriva-

tive functions of f on I (a, b), and for all x ∈ I (a, b), let F1,x, . . . , Fn,x denote the

first,. . .,nth derivate functions of f at x. Then for all x, y ∈ I (a, b), we have [10] that

f (y) = f (x) + F1,x (y) (y − x)

= f (x) + f ′ (x) (y − x) + F2,x (y) (y − x)2

...

= f (x) +
n−1∑

j=1

f (j) (x)

j!
(y − x)j + Fn,x (y) (y − x)n .

Proof. By induction on n. The assertion is true for n = 1. Suppose it is true for n = l

and show it is true for n = l + 1. So let f be (l + 1)-times differentiable on I (a, b).

Since f is l-times differentiable on I (a, b), we have by the induction hypothesis that

f (y) = f (x) +
l−1∑

j=1

f (j) (x)

j!
(y − x)j + Fl,x (y) (y − x)l for all x, y ∈ I (a, b) . (5.2)

Since f is (l + 1)-times differentiable on I (a, b), we have that Fl,x is differentiable

on I (a, b), with derivative F ′
l,x (x) = f (l+1) (x) / (l + 1)! and with derivate function

Fl+1,x, the (l + 1)st derivate function of f at x. Thus,

Fl,x (y) = Fl,x (x) + Fl+1,x (y) (y − x)

= F ′
l−1,x (x) + Fl+1,x (y) (y − x)

=
f (l) (x)

l!
+ Fl+1,x (y) (y − x) for all x, y ∈ I (a, b) . (5.3)
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Substituting Equation (5.3) into Equation (5.2) yields

f (y) = f (x) +
l∑

j=1

f (j) (x)

j!
(y − x)j + Fl+1,x (y) (y − x)l+1 for all x, y ∈ I (a, b) .

So the assertion is true for n = l + 1; and hence it is true for all n ∈ Z+.

Corollary 5.7 Let a < b be given in R, let n ∈ Z+ be given and let f : I(a, b) → R
be n-times differentiable on I(a, b). Then for all l ∈ {2, . . . , n + 1} and for all y 6= x

in I(a, b), we have that

Sl,x(y) =
f(y)−∑l−1

j=0
f (j)(x)

j!
(y − x)j

(y − x)l
.

Proof. Let y 6= x in I(a, b) and l ∈ {2, . . . , n + 1} be given. Then, using Lemma

5.10, we obtain that

Sl,x(y) =
Fl−1,x(y)− Fl−1,x(x)

y − x

=
1

y − x




f(y)−∑l−2
j=0

f (j)(x)
j!

(y − x)j

(y − x)l−1
− f (l−1)(x)

(l − 1)!




=
f(y)−∑l−1

j=0
f (j)(x)

j!
(y − x)j

(y − x)l
.

Corollary 5.8 (Remainder Formula n) Let a < b be given in R and let f :

I (a, b) → R be n-times differentiable on I (a, b). Let x ∈ I (a, b) be given, let Fn,x

be the nth order derivate function of f at x, and let Mn,x be a Lipschitz constant of

Fn,x. Then for all y ∈ I (a, b), we have that

f (y) = f (x)+
n∑

j=1

f (j) (x)

j!
(y − x)j+rn (x, y) (y − x)n+1 , with λ (rn (x, y)) ≥ λ (Mn,x) .

Proof. If y = x, there is nothing to prove; so we may assume that y 6= x. Since Fn,x

is continuous on I (a, b), we have by Lemma 5.8 that

Fn,x (y) = Fn,x (x) + rn (x, y) (y − x) , with λ (rn (x, y)) ≥ λ (Mn,x) .
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Using Lemma 5.10, we have that

Fn,x (y) =
f (y)− f (x)−∑n−1

j=1
f (j)(x)

j!
(y − x)j

(y − x)n .

Also, from Definition 5.8, we obtain that

Fn,x (x) = F ′
n−1,x (x) =

f (n) (x)

n!
.

Thus,

f (y)− f (x)−∑n−1
j=1

f (j)(x)
j!

(y − x)j

(y − x)n =
f (n) (x)

n!
+ rn (x, y) (y − x) ;

and hence

f (y) = f (x) +
n∑

j=1

f (j) (x)

j!
(y − x)j + rn (x, y) (y − x)n+1 .

Theorem 5.16 Let n ∈ Z+ be given; let a < b be given in R; let f, g : I (a, b) →
R be n-times differentiable on I (a, b), with derivatives f ′, . . . , f (n) and g′, . . . , g(n),

respectively; and let α ∈ R be given. Then f +αg is n-times differentiable on I (a, b),

with derivatives

(f + αg)(l) = f (l) + αg(l) for all l ∈ {1, . . . , n} .

Proof. By induction on n. The assertion is true for n = 1 by Theorem 5.13. Suppose

it is true for n = m and show it is true for n = m + 1. So we have that f and g are

(m + 1)-times differentiable on I (a, b). By the induction hypothesis, we have that

(f + αg) is m-times equidifferentiable on I (a, b) with derivatives

(f + αg)(l) = f (l) + αg(l) for all l ∈ {1, . . . , m} . (5.4)

Now let x ∈ I (a, b) be given. Since f and g are (m + 1)-times differentiable on

I (a, b), we have that the (m+1)st derivate functions of f and g at x, Fm+1,x, Gm+1,x :
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I (a, b) →R, given by

Fm+1,x (y) =





f(y)−f(x)−
∑m

l=1

f(l)(x)
l!

(y−x)l

(y−x)m+1 if y 6= x

f (m+1)(x)
(m+1)!

if y = x

and

Gm+1,x (y) =





g(y)−g(x)−
∑m

l=1

g(l)(x)
l!

(y−x)l

(y−x)m+1 if y 6= x

g(m+1)(x)
(m+1)!

if y = x

,

are continuous on I (a, b). By Theorem 5.8, we have that Fm+1,x+αGm+1,x : I (a, b) →
R, given by

(Fm+1,x + αGm+1,x) (y) = Fm+1,x (y) + αGm+1,x (y)

=





f(y)+αg(y)−(f(x)+αg(x))−
∑m

l=1

f(l)(x)+αg(l)(x)
l!

(y−x)l

(y−x)m+1 if y 6= x

f (m+1)(x)+αg(m+1)(x)
(m+1)!

if y = x

=





(f+αg)(y)−(f+αg)(x)−
∑m

l=1

(f+αg)(l)(x)
l!

(y−x)l

(y−x)m+1 if y 6= x

f (m+1)(x)+αg(m+1)(x)
(m+1)!

if y = x

,

is continuous on I (a, b), where use has been made of Equation (5.4). Hence f + αg

is (m + 1)-times differentiable on I (a, b), with (m + 1)st derivative

(f + αg)(m+1) (x) = f (m+1) (x) + αg(m+1) (x) for all x ∈ I (a, b) .

So the assertion is true for n = m + 1, and hence it is true for all n ∈ Z+.

Definition 5.11 Let a < b be given in R, and let f : I (a, b) → R. Then we say

that f is infinitely often differentiable on I (a, b) if and only if for all n ∈ Z+, f is

n-times differentiable on I (a, b).
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Using Theorem 4.11, we obtain the following result.

Theorem 5.17 Let a < b be given in R, and let f : I (a, b) → R be infinitely often

differentiable on I (a, b). Let x0 ∈ I (a, b) be given, and let

λ0 = lim sup
n→∞


−λ

(
f (n) (x0)

)

n


 .

Then
∑∞

n=0 f (n) (x0) / (n!) (x− x0)
n converges strongly if λ (x− x0) > λ0, and it is

strongly divergent if λ (x− x0) < λ0.

Using Theorem 4.12, we obtain:

Theorem 5.18 Let a < b be given in R, and let f : I (a, b) → R be infinitely often

differentiable on I (a, b). Let x0 ∈ I (a, b) be given, and let

λ0 = lim sup
n→∞


−λ

(
f (n) (x0)

)

n


 .

Let x ∈ I (a, b) be such that λ (x− x0) = λ0. For all n ≥ 0, let

bn = dnλ0
f (n) (x0)

n!
.

Suppose that the sequence (bn) is regular; and write ∪∞n=0supp(bn) = {q1, q2, . . .} with

qj1 < qj2 if j1 < j2. For all n ≥ 0, write bn =
∑∞

j=1 bnj
dqj where bnj

= bn [qj]; and let

r =
1

sup
{
lim supn→∞ |bnj

|1/n : j ≥ 1
} .

Then
∑∞

n=0 f (n) (x0) / (n!) (x− x0)
n converges weakly if |(x− x0) [λ0]| < r, and it is

weakly divergent if |(x− x0) [λ0]| > r.
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The following two examples show that, even when
∑∞

n=0 f (n) (x0) / (n!) (x− x0)
n

converges, the series need not converge to f (x). It converges to f (x) only if the re-

mainder term rn (x0, x) (x− x0)
n+1 converges to 0; and Theorem 5.19 below provides

a criterion for that.

Example 5.8 Let f : [−1, 1] → R be given by

f (x) =

{
exp (−1/x2) if x ∼ 1
0 if 0 ≤ |x| ¿ 1

.

Then f is infinitely often differentiable on [−1, 1], and we have that

f (n) (0) = 0 for all n ≥ 1.

Thus,
∞∑

n=0

f (n) (0)

n!
xn converges strongly to 0 for all x ∈ [−1, 1] .

Hence the limit is equal to f (x) if 0 ≤ |x| ¿ 1 and is different from f (x) if x ∼ 1.

Example 5.9 Let f : [0, 1] →R be given by

f (x) =





0 if x = 0

∑n
j=1

d−jxj

j!
if n ≥ 1 and n− 1 ≤ λ (x) < n

.

Then f is infinitely often differentiable on [0, 1] with derivatives at 0 given by

f (l) (0) = d−l for all l ≥ 1.

First we show that f is differentiable on [0, 1] with derivative

f ′ (x) = g1 (x) =





d−1 if x = 0

∑n
j=1

d−jxj−1

(j−1)!
if n ≥ 1 and n− 1 ≤ λ (x) < n

.
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We will show that
∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ < d−11/4 |y − x| for all x 6= y in [0, 1] .

So let x 6= y in [0, 1] be given. Five cases are to be considered.

First case: x = 0 < y. In this case, f (x) = f (0) = 0 and g1 (x) = g1 (0) = d−1; so
∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ =

∣∣∣∣∣
f (y)

y
− d−1

∣∣∣∣∣

=





0 if 0 ≤ λ (y) < 1

∑m
j=2

d−jyj−1

j!
if m ≥ 2 and m− 1 ≤ λ (y) < m

= y ·





0 if 0 ≤ λ (y) < 1

∑m
j=2

d−jyj−2

j!
if m ≥ 2 and m− 1 ≤ λ (y) < m

.

Note that for all m ≥ 2 and for m− 1 ≤ λ (y) < m, we have that

λ
(
d−jyj−2

)
= −2 + (j − 2) λ

(
d−1y

)
≥ −2 for all j ∈ {2, . . . ,m} .

Thus,

λ




m∑

j=2

d−jyj−2

j!


 ≥ −2 for all m ≥ 2;

and hence ∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ < d−11/4y = d−11/4 |y − x| .

Second case: 0 = y < x. In this case, we have that
∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ =

∣∣∣∣∣
f (x)

x
− g1 (x)

∣∣∣∣∣

= −





0 if 0 ≤ λ (x) < 1

∑n
j=2

d−jxj−1

j!
−∑n

j=2
d−jxj−1

(j−1)!
if n ≥ 2 and n− 1 ≤ λ (x) < n

= x ·





0 if 0 ≤ λ (x) < 1

∑n
j=2

(
1

(j−1)!
− 1

j!

)
d−jxj−2 if n ≥ 2 and n− 1 ≤ λ (x) < n

.
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For all n ≥ 2 and for n− 1 ≤ λ (x) < n, we have that

λ
(
d−jxj−2

)
= −2 + (j − 2) λ

(
d−1x

)
≥ −2 for all j ∈ {2, . . . , n} .

Thus,

λ




n∑

j=2

(
1

(j − 1)!
− 1

j!

)
d−jxj−2


 ≥ −2 for all n ≥ 2;

and hence ∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ < d−11/4x = d−11/4 |y − x| .

Third case: x > 0, y > 0, and n− 1 ≤ λ (x) , λ (y) < n; for n ≥ 1. In this case, we

have that

∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣

=

∣∣∣∣∣

{
0 if n = 1∑n

j=2

(
d−j

j!
yj−xj

y−x

)
−∑n

j=2
d−jxj−1

(j−1)!
if n ≥ 2

∣∣∣∣∣

= d−11/4 |y − x| ·
∣∣∣∣∣

{
0 if n = 1
d11/4

y−x

∑n
j=2

d−j

j!

(
yj−xj

y−x
− jxj−1

)
if n ≥ 2

∣∣∣∣∣ .

So it remains to show that

∣∣∣∣∣∣
d11/4

y − x

n∑

j=2

d−j

j!

(
yj − xj

y − x
− jxj−1

)∣∣∣∣∣∣
< 1 for all n ≥ 2.

We have that

yj − xj

y − x
− jxj−1 = yj−1 + yj−2x + · · ·+ yxj−2 + xj−1 − jxj−1

= yj−1 + yj−2x + · · ·+ yxj−2 − (j − 1)xj−1

=
(
yj−1 − xj−1

)
+ x

(
yj−2 − xj−2

)
+ · · ·+ xj−2 (y − x) .

Thus, for all j ∈ {2, . . . , n}, we have that

λ

(
d11/4

y − x

d−j

j!

(
yj − xj

y − x
− jxj−1

))
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=
11

4
− j + λ

(
(yj−1 − xj−1) + x (yj−2 − xj−2) + · · ·+ xj−2 (y − x)

y − x

)

=
11

4
− j + λ

((
yj−2 + · · ·+ xj−2

)
+ x

(
yj−3 + · · ·+ xj−3

)
+ · · ·+ xj−2

)

=
3

4
+ λ

(((
d−1y

)j−2
+ · · ·+

(
d−1x

)j−2
)

+ · · ·+
(
d−1x

)j−2
)

≥ 3

4
since λ (x) ≥ 1 and λ (y) ≥ 1.

Hence

λ


 d11/4

y − x

n∑

j=2

d−j

j!

(
yj − xj

y − x
− jxj−1

)
 ≥ 3

4
for all n ≥ 2.

Therefore, ∣∣∣∣∣∣
d11/4

y − x

n∑

j=2

d−j

j!

(
yj − xj

y − x
− jxj−1

)∣∣∣∣∣∣
< 1 for all n ≥ 2;

and hence ∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ < d−11/4 |y − x| .

Similarly, we can show that

∣∣∣∣∣
f (y)− f (x)

y − x
− g1 (x)

∣∣∣∣∣ < d−11/4 |y − x|

for the remaining two cases, namely the case when x > 0, y > 0, and n − 1 ≤
λ (x) < n ≤ m − 1 ≤ λ (y) < m, for n ≥ 1; and the case when x > 0, y > 0, and

m − 1 ≤ λ (y) < m ≤ n − 1 ≤ λ (x) < n, for m ≥ 1. Thus, f is differentiable on

[0, 1], with derivative f ′ (x) = g1 (x) for all x ∈ [0, 1]. In particular, we have that

f ′ (0) = g1 (0) = d−1.

Similarly, we can show for all l ≥ 2 that f is l-times differentiable on [0, 1], with

l-th derivative

f (l) (x) =





d−l if x = 0
0 if 0 ≤ λ (x) < l − 1∑n

j=l
d−jxj−l

(j−l)!
if n ≥ l and n− 1 ≤ λ (x) < n

.
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Since

lim sup
l→∞


−λ

(
f (l) (0)

)

l


 = lim sup

l→∞

(
l

l

)
= 1,

we obtain that

∞∑

l=0

f (l) (0)

l!
xl converges strongly for 0 < x ¿ d.

However, for no such x does
∑∞

l=0 f (l) (0) / (l!) xl converge to f (x). This is so because,

as we will show below, for 0 < x ¿ d the remainder term rl (0, x) xl+1 does not

converge to 0 as l goes to ∞. So let x ∈ [0, 1] be such that 0 < x ¿ d. There exists

m ≥ 2 in Z+ such that m− 1 ≤ λ (x) < m. Then for all l > λ (x) + 2, we have that

rl (0, x) =
l∑

j=m+1

d−j

j!xl+1−j
;

so

rl (0, x) xl+1 =
l∑

j=m+1

d−j

j!x−j
=

l∑

j=m+1

(d−1x)
j

j!
≈ (d−1x)

m+1

(m + 1)!

since 0 < d−1x ¿ 1. Thus,

λ
(
rl (0, x) xl+1

)
= (m + 1) (λ (x)− 1) < (m + 1) λ (x) < ∞ for all l > 2λ (x) + 1,

which entails that

lim
l→∞

rl (0, x) xl+1 6= 0.

As an example, let x = d2; then

∞∑

l=0

f (l) (0)

l!
xl =

∞∑

l=1

d−l

l!
d2l =

∞∑

l=1

dl

l!
= exp (d)− 1

6= f
(
d2

)
= d +

d2

2!
+

d3

3!
.

Theorem 5.19 Let a < b be given in R and let f : I(a, b) → R be infinitely often

differentiable on I(a, b). Let x0 ∈ I(a, b) be given and for each l ∈ Z+, let Fl,x0 denote

the lth derivate function of f at x0 [10]. For each l ∈ Z+, let

αl = sup
in R

{λ(Ml) : Ml is a Lipschitz constant of Fl,x0},
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and let

λ0 = lim sup
l→∞

(−αl

l

)
.

Then
∑∞

n=0 f (n) (x0) / (n!) (x− x0)
n converges strongly to f(x) for all x ∈ I(a, b) sat-

isfying

λ(x− x0) > λ0.

Proof. Let x ∈ I(a, b) be such that λ(x− x0) > λ0 and let l ∈ Z+ be given. By the

remainder formula, Corollary 5.8, we have that

f(x) =
l∑

n=0

f (n)(x0)

n!
(x− x0)

n + rl(x0, x)(x− x0)
l+1,

where

λ (rl(x0, x)) ≥ λ(Ml)

for all Lipschitz constant Ml of Fl,x0 ; and hence

λ (rl(x0, x)) ≥ αl.

We need to show that

lim
l→∞

(
rl(x0, x)(x− x0)

l+1
)

= 0.

Since λ(x− x0) > λ0, there exists t ∈ Q+ such that

λ(x− x0)− t > λ0.

Hence there exists N ∈ Z+ such that

λ(x− x0)− t >
−αl

l
for all l ≥ N.

Hence

αl + lλ(x− x0) > lt for all l ≥ N.
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Thus,

λ
(
rl(x0, x)(x− x0)

l
)

> lt for all l ≥ N,

which entails that

lim
l→∞

(
rl(x0, x)(x− x0)

l
)

= 0.

Hence

lim
l→∞

(
rl(x0, x)(x− x0)

l+1
)

= (x− x0) lim
l→∞

(
rl(x0, x)(x− x0)

l
)

= 0.

This finishes the proof of the theorem.

The following result is a generalization of the corresponding result about power

series with real coefficients, which was proved in [5]; and the arguments in the proof

are very similar to those in the proof of the previous result.

Theorem 5.20 Let x0 ∈ R be given, let (an) be a sequence in R, let

λ0 = lim sup
n→∞

{−λ (an)

n

}
;

and for all n ≥ 0 let bn = dnλ0an. Suppose that the sequence (bn) is regular; and

write ∪∞n=0supp(bn) = {q1, q2, . . .} with qj1 < qj2 if j1 < j2. For all n ≥ 0, write

bn =
∑∞

j=1 bnj
dqj where bnj

= bn [qj]; and let

η =
1

sup
{
lim supn→∞ |bnj

|1/n : j ≥ 1
} in R. (5.5)

Then, for all σ ∈ R satisfying 0 < σ < η, the function f :
[
x0 − σdλ0 , x0 + σdλ0

]
→

R, given by

f (x) =
∞∑

n=0

an(x− x0)
n,

is infinitely often differentiable on
[
x0 − σdλ0 , x0 + σdλ0

]
, and the derivatives are

given by

f (k) (x) = gk (x) =
∞∑

n=k

n (n− 1) · · · (n− k + 1) an (x− x0)
n−k
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for all k ≥ 1 and for all x ∈
[
x0 − σdλ0 , x0 + σdλ0

]
. In particular, we have that

ak =
f (k) (x0)

k!
for all k = 0, 1, 2, . . . .;

and hence for all x ∈
[
x0 − σdλ0 , x0 + σdλ0

]
, we have that

f (x) =
∞∑

n=0

f (n) (x0)

n!
(x− x0)

n .

Proof. By a remark made at the beginning of the proof of Theorem 4.12, we may

assume that λ0 = 0, bn = an for all n ≥ 0, and

min (∪∞n=0supp (an)) = 0.

Using induction on k, it suffices to show that the result is true for k = 1. Since

limn→∞ (n)1/n = 1 and
∑∞

n=0 an (x− x0)
n converges weakly for x ∈ [x0 − σ, x0 + σ],

we obtain that
∑∞

n=1 nan (x− x0)
n−1 converges weakly for x ∈ [x0 − σ, x0 + σ]. Next

we show that f is differentiable at x with derivative f ′ (x) = g1 (x) for all x ∈
[x0 − σ, x0 + σ]; by Theorem 5.15, it suffices to show that

∣∣∣∣∣
f (x + h)− f (x)

h
− g1 (x)

∣∣∣∣∣ < d−1 |h|

for all x ∈ [x0 − σ, x0 + σ] and for all h 6= 0 in R satisfying x + h ∈ [x0 − σ, x0 + σ].

So let x ∈ [x0 − σ, x0 + σ] be given and let h 6= 0 in R be such that x + h ∈
[x0 − σ, x0 + σ]. First let |h| be finite. Since f (x), f (x + h) and g1 (x) are all at

most finite in absolute value, we obtain that

λ

(
f (x + h)− f (x)

h
− g1 (x)

)
≥ 0.

On the other hand, we have that

λ
(
d−1 |h|

)
= λ

(
d−1

)
+ λ (h) = −1 + 0 = −1.
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Hence ∣∣∣∣∣
f (x + h)− f (x)

h
− g1 (x)

∣∣∣∣∣ ¿ d−1 |h| .

Now let |h| be infinitely small. Write h = h0d
r (1 + h1) with h0 ∈ R, 0 < r ∈ Q

and 0 ≤ |h1| ¿ 1. Let s ≤ 2r be given. Since (an) is regular, there exist only finitely

many elements in [0, s] ∩ ∪∞n=0supp(an); write

[0, s] ∩ ∪∞n=0supp (an) = {q1,s, q2,s, . . . , qj,s} .

Thus,

f (x + h) [s] =

( ∞∑

n=0

an (x + h− x0)
n

)
[s]

=
∞∑

n=0

(an (x + h− x0)
n) [s]

=
∞∑

n=0




j∑

l=1

an [ql,s] (x + h− x0)
n [s− ql,s]




=
j∑

l=1

( ∞∑

n=0

an [ql,s] (x + h− x0)
n [s− ql,s]

)

=
j∑

l=1

( ∞∑

n=0

an [ql,s]
n∑

ν=0

(
n!

ν! (n− ν)!
hν (x− x0)

n−ν

)
[s− ql,s]

)

=
j∑

l=1




∑∞
n=0 an [ql,s] (x− x0)

n [s− ql,s]

+
∑∞

n=1 nan [ql,s]
(
h (x− x0)

n−1
)

[s− ql,s]

+
∑∞

n=2
n(n−1)

2
an [ql,s]

(
h2 (x− x0)

n−2
)

[s− ql,s]


 .

Other terms are not relevant, since the corresponding powers of h are infinitely smaller

than ds in absolute value, and hence infinitely smaller than ds−ql,s for all l ∈ {1, . . . , j} .

Thus

f (x + h) [s] =
∞∑

n=0




j∑

l=1

an [ql,s] (x− x0)
n [s− ql,s]
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+
∞∑

n=1




j∑

l=1

nan [ql,s]
(
h (x− x0)

n−1
)

[s− ql,s]




+
∞∑

n=2




j∑

l=1

n (n− 1)

2
an [ql,s]

(
h2 (x− x0)

n−2
)

[s− ql,s]




=
∞∑

n=0

(an (x− x0)
n) [s] +

∞∑

n=1

(
nhan (x− x0)

n−1
)

[s]

+
∞∑

n=2

(
n (n− 1)

2
h2an (x− x0)

n−2

)
[s] .

Therefore, we obtain that

f (x + h)− f (x)

h
− g1 (x) =r h0d

r
∞∑

n=2

n (n− 1)

2
an (x− x0)

n−2 . (5.6)

Since λ (an) ≥ 0 for all n ≥ 2 and since λ (x− x0) ≥ 0, we obtain that

λ

( ∞∑

n=2

n (n− 1)

2
an (x− x0)

n−2

)
≥ 0.

Thus, Equation (5.6) entails that

λ

(
f (x + h)− f (x)

h
− g1 (x)

)
≥ r = λ (h) > λ (h)− 1 = λ

(
d−1 |h|

)
;

and hence ∣∣∣∣∣
f (x + h)− f (x)

h
− g1 (x)

∣∣∣∣∣ ¿ d−1 |h| .

This finishes the proof of the theorem.

Theorem 5.21 (Reexpansion of Power Series) Let x0 ∈ R be given, let (an) be

a regular sequence in R, with

λ0 = lim sup
n→∞

{−λ (an)

n

}
= 0;

and let η ∈ R be the radius of weak convergence of f (x) =
∑∞

n=0 an (x− x0)
n,

given by Equation (5.5). Let y0 ∈ R be such that |< (y0 − x0)| < η. Then, for
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all x ∈ R satisfying |< (x− y0)| < η − |< (y0 − x0)|, we have that the power series

∑∞
k=0 f (k) (y0) / (k!) (x− y0)

k converges weakly to f(x); i.e.

∞∑

k=0

f (k) (y0)

k!
(x− y0)

k = f (x) =
∞∑

n=0

an (x− x0)
n .

Moreover, the radius of weak convergence of
∑∞

k=0 f (k) (y0) / (k!) (x− y0)
k is exactly

η − |< (y0 − x0)|.

Proof. Let x ∈ R be such that |< (x− y0)| < η − |< (y0 − x0)|. By Theorem 5.20,

we have, since |< (y0 − x0)| < η, that

f (k) (y0) =
∞∑

n=k

n (n− 1) · · · (n− k + 1) an (y0 − x0)
n−k for all k ≥ 0.

Since |< (x− y0)| < η − |< (y0 − x0)|, we obtain that

|< (x− x0)| = |< (x− y0 + y0 − x0)| = |< (x− y0) + < (y0 − x0)|

≤ |< (x− y0)|+ |< (y0 − x0)|

< η.

Hence
∑∞

n=0 an (x− x0)
n converges absolutely weakly in R. Now let q ∈ Q be given.

Then

f(x)[q]

=

( ∞∑

n=0

an (x− x0)
n

)
[q]

=

( ∞∑

n=0

an (y0 − x0 + x− y0)
n

)
[q]

=

( ∞∑

n=0

an

n∑

k=0

(
n
k

)
(y0 − x0)

n−k (x− y0)
k

)
[q]

=

( ∞∑

n=0

n∑

k=0

n!

k! (n− k)!
an (y0 − x0)

n−k (x− y0)
k

)
[q]
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=

( ∞∑

n=0

n∑

k=0

n (n− 1) . . . (n− k + 1)

k!
an (y0 − x0)

n−k (x− y0)
k

)
[q]

=
∞∑

n=0

n∑

k=0

(
n (n− 1) . . . (n− k + 1)

k!
an (y0 − x0)

n−k (x− y0)
k

)
[q] . (5.7)

Because of absolute convergence in R, we can interchange the order of the sums in

Equation (5.7) to get

f(x)[q] =
∞∑

k=0

∞∑

n=k

(
n (n− 1) . . . (n− k + 1)

k!
an (y0 − x0)

n−k (x− y0)
k

)
[q]

=

( ∞∑

k=0

1

k!

( ∞∑

n=k

n (n− 1) . . . (n− k + 1) an (y0 − x0)
n−k

)
(x− y0)

k

)
[q]

=

( ∞∑

k=0

f (k) (y0)

k!
(x− y0)

k

)
[q] .

Thus, for all q ∈ Q, we have that

( ∞∑

k=0

f (k) (y0)

k!
(x− y0)

k

)
[q] converges in R to f(x) [q] .

Now consider the sequence (Am)m≥1, where for each m,

Am =
m∑

k=0

f (k) (y0)

k!
(x− y0)

k .

Since (an) is regular and since λ (y0 − x0) ≥ 0, we obtain that the sequence
(
f (k) (y0)

)

is regular. Since, in addition, λ (x− y0) ≥ 0, we obtain that the sequence (Am) itself

is regular. Since (Am) is regular and since (Am [q]) converges in R to f(x)[q] for all

q ∈ Q, we finally obtain that (Am) converges weakly to f(x); and we can write

∞∑

k=0

f (k) (y0)

k!
(x− y0)

k = f (x) =
∞∑

n=0

an (x− x0)
n

for all x satisfying |< (x− y0)| < η − |< (y0 − x0)|.

Next we show that η − |< (y0 − x0)| is indeed the radius of weak convergence of

∑∞
k=0 f (k) (y0) / (k!) (x− y0)

k. So let r > η−|< (y0 − x0)| be given in R; we show that
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there exists x ∈ R satisfying |< (x− y0)| < r such that
∑∞

k=0 f (k) (y0) / (k!) (x− y0)
k

is weakly divergent in R. Let

x =





y0 + r+η−|<(y0−x0)|
2

if y0 ≥ x0

y0 − r+η−|<(y0−x0)|
2

if y0 < x0

.

Then

|< (x− y0)| = |x− y0| = r + η − |< (y0 − x0)|
2

< r.

But

< (x− x0) =





< (y0 − x0) + r+η−|<(y0−x0)|
2

if y0 ≥ x0

< (y0 − x0)− r+η−|<(y0−x0)|
2

if y0 < x0

=





|< (y0 − x0)|+ r+η−|<(y0−x0)|
2

if y0 ≥ x0

− |< (y0 − x0)| − r+η−|<(y0−x0)|
2

if y0 < x0

=





r+η+|<(y0−x0)|
2

if y0 ≥ x0

− r+η+|<(y0−x0)|
2

if y0 < x0

;

and hence

|< (x− x0)| = r + η + |< (y0 − x0)|
2

> η.

Hence
∑∞

n=0 an (x− x0)
n is weakly divergent inR. Thus, there exists t0 ∈ Q such that

(
∑∞

n=0 an (x− x0)
n) [t0] diverges in R. Hence

(∑∞
k=0 f (k) (y0) / (k!) (x− y0)

k
)

[t0] di-

verges in R; and it follows that
∑∞

k=0 f (k) (y0) / (k!) (x− y0)
k is weakly divergent in R.

So η−|< (y0 − x0)| is the radius of weak convergence of
∑∞

k=0 f (k) (y0) / (k!) (x− y0)
k.

In Chapter 6, we will study a large class of functions that are given locally by

power series; and we will prove more results about power series.



147

5.4 Intermediate Value Theorem and Inverse Func-

tion Theorem

Notation 5.2 Let D1, D2 ⊂ R and let f1 : D1 → R and f2 : D2 → R. Then we say

that f1 ∼ f2 if and only if there exists n ∈ Z+ such that

1

n
|f1(x)| ≤ |f2(y)| ≤ n|f1(x)| for all x ∈ D1 and for all y ∈ D2.

Definition 5.12 Let a < b be given in R, and let f : [a, b] → R be differentiable.

Then we say that f is quasi-linear on [a, b] if and only if

S1,x ∼ S1,x̄ and S2,x ∼ S2,x̄ for all x, x̄ ∈ [a, b], (5.8)

where S1,x and S2,x denote the first and second secants of f at x, respectively.

Remark 5.2 It follows directly from Definition 5.12 that if f is quasi-linear on [a, b]

and if a ≤ a1 < b1 ≤ b, then f is quasi-linear on [a1, b1].

Lemma 5.11 Let a < b be given in R, and let f : [a, b] → R be quasi-linear. Then

there exist n,m ∈ Z+ such that

1

n

|f(b)− f(a)|
b− a

≤
∣∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣∣ ≤ n
|f(b)− f(a)|

b− a
, (5.9)

1

n

|f(b)− f(a)|
b− a

≤ |f ′(x)| ≤ n
|f(b)− f(a)|

b− a
and (5.10)

∣∣∣∣∣
f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣∣ ≤ m
|f(b)− f(a)|

(b− a)2
|y − x| (5.11)

for all x and for all y 6= x in [a, b].

Proof. Since f is quasi-linear on [a, b], there exists n such that

1

n

∣∣∣∣∣
f(ȳ)− f(x̄)

ȳ − x̄

∣∣∣∣∣ ≤
∣∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣∣ ≤ n

∣∣∣∣∣
f(ȳ)− f(x̄)

ȳ − x̄

∣∣∣∣∣ (5.12)
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and

1

n

|f(ȳ)− f(x̄)− f ′(x̄)(ȳ − x̄)|
(ȳ − x̄)2

≤ |f(y)− f(x)− f ′(x)(y − x)|
(y − x)2

≤ n
|f(ȳ)− f(x̄)− f ′(x̄)(ȳ − x̄)|

(ȳ − x̄)2
(5.13)

for all y 6= x and for all ȳ 6= x̄ in [a, b]. Letting x̄ = a and ȳ = b in Equation (5.12),

we obtain Equation (5.9). Since

f ′(x) = lim
y→x

f(y)− f(x)

y − x

for all x ∈ [a, b], Equation (5.10) follows readily from Equation (5.9).

Equation (5.13) entails that
∣∣∣∣∣
f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣∣ ≤ n
|f(b)− f(a)− f ′(a)(b− a)|

(b− a)2
|y − x|

for all x and for all y 6= x in [a, b]. Using Equation (5.9) and Equation (5.10), we

have that

|f(b)− f(a)− f ′(a)(b− a)|
(b− a)2

≤ 1

b− a

( |f(b)− f(a)|
b− a

+ |f ′(a)|
)

≤ 1

b− a
(n + 1)

|f(b)− f(a)|
b− a

= (n + 1)
|f(b)− f(a)|

(b− a)2

Thus, ∣∣∣∣∣
f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣∣ ≤ n(n + 1)
|f(b)− f(a)|

(b− a)2
|y − x|

for all x and for all y 6= x in [a, b].

Corollary 5.9 Let a < b be given in R and let f : [a, b] →R be quasi-linear on [a, b].

Let n be as in Lemma 5.11. Then

1

n2
|f ′(x)| ≤ |f ′(x̄)| ≤ n2 |f ′(x)| for all x, x̄ ∈ [a, b]; (5.14)

and hence f ′ ∼ f ′.
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Proof. Let x, x̄ ∈ [a, b] be given. Using Equation (5.10), we have that

1

n

|f(b)− f(a)|
b− a

≤ |f ′(x)| ≤ n
|f(b)− f(a)|

b− a
and (5.15)

1

n

|f(b)− f(a)|
b− a

≤ |f ′(x̄)| ≤ n
|f(b)− f(a)|

b− a
. (5.16)

Combining the results of Equation (5.15) and Equation (5.16), we obtain Equation

(5.14).

Corollary 5.10 Let a < b be given in R and let f : [a, b] →R be quasi-linear. Then

f(y)− f(x)

y − x
∼ f(b)− f(a)

b− a
for all y 6= x in [a, b], and (5.17)

f ′(x) ∼ f(b)− f(a)

b− a
for all x ∈ [a, b]. (5.18)

Lemma 5.12 Let a < b be given in R, and let f : [a, b] → R be quasi-linear. Then

f is continuously differentiable on [a, b].

Proof. Let m ∈ Z+ be as in Lemma 5.11, and let x 6= y in [a, b] be given. Then

|f ′(y)− f ′(x)| ≤
∣∣∣∣∣
f(y)− f(x)

y − x
− f ′(y)

∣∣∣∣∣ +

∣∣∣∣∣
f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣∣

≤ m
|f(b)− f(a)|

(b− a)2
|y − x|+ m

|f(b)− f(a)|
(b− a)2

|y − x|

= 2m
|f(b)− f(a)|

(b− a)2
|y − x|.

Hence ∣∣∣∣∣
f ′(y)− f ′(x)

y − x

∣∣∣∣∣ ≤ 2m
|f(b)− f(a)|

(b− a)2
for all y 6= x in [a, b].

Therefore, f ′ is continuous on [a, b].
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Lemma 5.13 Let a < b be given in R, and let f : [a, b] → R be quasi-linear. Then

for all x, y ∈ [a, b], we have that

λ (f ′ (y)− f ′ (x)) ≥ λ

(
f (b)− f (a)

b− a

)
+ λ

(
y − x

b− a

)
.

Proof. Let x, y ∈ [a, b] be given. Using the proof of Theorem 5.12, we have that

f (y) = f (x) + f ′ (x) (y − x) + r (x, y) (y − x)2 and (5.19)

f (x) = f (y) + f ′ (y) (x− y) + r (y, x) (y − x)2 , (5.20)

where, using Equation (5.11), we have that

λ (r (x, y)) ≥ λ

(
f (b)− f (a)

(b− a)2

)
= λ

(
f (b)− f (a)

b− a

)
− λ (b− a) and

λ (r (y, x)) ≥ λ

(
f (b)− f (a)

b− a

)
− λ (b− a) .

Adding Equations (5.19) and (5.20), we obtain that

(f ′ (y)− f ′ (x)) (y − x) = (r (x, y) + r (y, x)) (y − x)2 ;

and hence

f ′ (y)− f ′ (x) = (r (x, y) + r (y, x)) (y − x) .

Thus,

λ (f ′ (y)− f ′ (x)) = λ (r (x, y) + r (y, x)) + λ (y − x)

≥ λ

(
f (b)− f (a)

b− a

)
− λ (b− a) + λ (y − x)

= λ

(
f (b)− f (a)

b− a

)
+ λ

(
y − x

b− a

)
.

Lemma 5.14 Let a < b be given in R, and let f : [a, b] → R be quasi-linear. If

f (a) = f (b), then f is constant on [a, b].
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Proof. Let x ∈ (a, b] be given. Then, by Equation (5.17), we have that

f (x)− f (a)

x− a
∼ f (b)− f (a)

b− a
= 0,

which entails that f (x) = f (a).

Definition 5.13 Let a < b be given in R, and let f : [a, b] → R be quasi-linear and

nonconstant. Define g : [0, 1] →R by

g (x) =
f ((b− a) x + a)− f (a)

f (b)− f (a)
.

Then g will be called the scaled function of f on [0, 1].

Lemma 5.15 Let a < b be given in R, let f : [a, b] →R be quasi-linear and noncon-

stant, and let g be the scaled function of f on [0, 1]. Then g is quasi-linear on [0, 1],

with

λ (g (x)) = λ(x) ≥ 0 and λ (g′ (x)) = 0 for all x ∈ [0, 1] .

Proof. Using Theorems 5.8 and 5.9, we obtain that g is continuous on [0, 1]. Using

Theorems 5.13 and 5.14, we obtain that g is differentiable on [0, 1], with derivative

g′ (x) =
b− a

f (b)− f (a)
f ′ ((b− a) x + a) for all x ∈ [0, 1] .

Using Equation (5.18), we have that

f ′ ((b− a) x + a) ∼ f (b)− f (a)

b− a
for all x ∈ [0, 1] .

Hence

g′ (x) ∼ 1 for all x ∈ [0, 1] .

Moreover, for all x ∈ [0, 1], we have that

λ (g (x)) = λ

(
f ((b− a) x + a)− f (a)

f (b)− f (a)

)
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= λ

(
f ((b− a) x + a)− f (a)

(b− a) x

(b− a) x

f (b)− f (a)

)

= λ

(
f ((b− a) x + a)− f (a)

(b− a) x

)
+ λ

(
b− a

f (b)− f (a)

)
+ λ (x) .

Using Equation (5.17), we have that

λ

(
f ((b− a) x + a)− f (a)

(b− a) x

)
= λ

(
f (b)− f (a)

b− a

)
= −λ

(
b− a

f (b)− f (a)

)

for all x ∈ [0, 1]. Hence

λ (g (x)) = λ (x) ≥ 0 for all x ∈ [0, 1] .

Now let x, x̄ ∈ [0, 1] be given, let S1,x and S1,x̄ denote the first secants of g at x

and x̄ and let T1,(b−a)x+a and T1,(b−a)x̄+a denote the first secants of f at (b − a)x + a

and (b− a)x̄ + a. Then for all y 6= x in [0, 1], we have that

S1,x(y) =
g (y)− g (x)

y − x

=
1

f (b)− f (a)

f ((b− a) y + a)− f ((b− a) x + a)

y − x

=
b− a

f (b)− f (a)

f ((b− a) y + a)− f ((b− a) x + a)

((b− a) y + a)− ((b− a) x + a)

=
b− a

f(b)− f(a)
T1,(b−a)x+a((b− a)y + a).

Similarly, for all ȳ 6= x̄ in [0, 1], we have that

S1,x̄(ȳ) =
b− a

f(b)− f(a)
T1,(b−a)x̄+a((b− a)ȳ + a).

Since f is quasi-linear on [a, b], we have that

T1,(b−a)x+a ∼ T1,(b−a)x̄+a.

Hence

S1,x ∼ S1,x̄.
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Finally let S2,x and S2,x̄ denote the second secants of g at x and x̄ and let T2,(b−a)x+a

and T2,(b−a)x̄+a denote the second secants of f at (b− a)x + a and (b− a)x̄ + a. Then

for all y 6= x in [0, 1], we have that

S2,x(y) =
g (y)− g (x)− g′(x)(y − x)

(y − x)2

=
(b− a)2

f (b)− f (a)
·

f ((b− a) y + a)− f ((b− a) x + a)− f ′((b− a)x + a)(b− a)(y − x)

((b− a)(y − x))2

=
(b− a)2

f(b)− f(a)
T2,(b−a)x+a((b− a)y + a).

Similarly, for all ȳ 6= x̄ in [0, 1], we have that

S2,x̄(ȳ) =
(b− a)2

f(b)− f(a)
T2,(b−a)x̄+a((b− a)ȳ + a).

Since f is quasi-linear on [a, b], we have that

T2,(b−a)x+a ∼ T2,(b−a)x̄+a.

Hence

S2,x ∼ S2,x̄.

This finishes the proof of the lemma.

The following result follows immediately from Lemma 5.15 and Lemma 5.13.

Corollary 5.11 Let a < b be given in R, let f : [a, b] → R be quasi-linear and

nonconstant, and let g be the scaled function of f on [0, 1]. Then for all x, y ∈ [0, 1],

we have that

λ (g′ (y)− g′ (x)) ≥ λ (y − x) .
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Lemma 5.16 Let a < b be given in R, let f : [a, b] →R be quasi-linear and noncon-

stant, and let g be the scaled function of f on [0, 1]. Let gR : [0, 1] ∩ R → R be given

by

gR (X) = g (X) [0] .

Then gR is continuously differentiable on [0, 1] ∩R, with derivative

(gR)′ (X) = g′ (X) [0] 6= 0 for all X ∈ [0, 1] ∩R.

Proof. Since g is quasi-linear on [0, 1] by Lemma 5.15, there exists n ∈ Z+ such that

∣∣∣∣∣
g(y)− g(x)

y − x
− g′(x)

∣∣∣∣∣ ≤ n|y − x| for all y 6= x in [0, 1].

Now let X ∈ [0, 1] ∩R be given. Then

∣∣∣∣∣
g (Y )− g (X)

Y −X
− g′ (X)

∣∣∣∣∣ ≤ n |Y −X| for all Y 6= X in [0, 1] ∩R.

Thus,

∣∣∣∣∣
gR (Y )− gR (X)

Y −X
− g′ (X) [0]

∣∣∣∣∣ =

∣∣∣∣∣
g (Y ) [0]− g (X) [0]

Y −X
− g′ (X) [0]

∣∣∣∣∣

=

∣∣∣∣∣

(
g (Y )− g (X)

Y −X
− g′ (X)

)
[0]

∣∣∣∣∣

≤ 2n |Y −X| for all Y 6= X in [0, 1] ∩R,

which entails that gR is differentiable (in the real sense) at X with derivative

(gR)′ (X) = g′ (X) [0] 6= 0,

since λ (g′ (X)) = 0 by Lemma 5.15.

Next we show that (gR)′ is continuous on [0, 1] ∩ R. As in the proof of Lemma

5.12, we have that

|g′(y)− g′(x)| ≤ 2n|y − x| for all x, y ∈ [0, 1].



155

In particular,

|g′(Y )− g′(X)| ≤ 2n|Y −X| for all X,Y ∈ [0, 1] ∩R.

It follows that

|(gR)′(Y )− (gR)′(X)| = |g′(Y )[0]− g′(X)[0]|

≤ 3n|Y −X| for all X, Y ∈ [0, 1] ∩R,

which entails that (gR)′ is (uniformly) continuous on [0, 1] ∩ R. Thus, gR is continu-

ously differentiable on [0, 1] ∩R.

Lemma 5.17 Let a < b be given in R, and let f : [a, b] → R be quasi-linear and

nonconstant. Then f is strictly monotone on [a, b].

Proof. Let g : [0, 1] → R be the scaled function of f on [0, 1]. We show that g is

strictly increasing on [0, 1]. Let gR be as in Lemma 5.16. Then gR is continuously

differentiable on [0, 1]∩R and (gR)′ (X) 6= 0 for all X ∈ [0, 1]∩R. Thus, gR is strictly

monotone on [0, 1] ∩ R. Since gR (0) = 0 < 1 = gR (1), we obtain that gR is strictly

increasing on [0, 1] ∩ R. Now let x, y ∈ [0, 1] be such that x < y, and let X = < (x)

and Y = < (y). As a first case, assume that X < Y ; then gR (X) < gR (Y ). Hence

g (y)− g (x) = gR (Y )− gR (X)

+ (g (y)− g (Y )) + (g (Y )− gR (Y ))

+ (gR (X)− g (X)) + (g (X)− g (x)) ,

where the first term is positive and real. By Theorem 5.12, we have that

g(y)− g(Y ) = g′(Y )(y − Y ) + r(Y, y)(y − Y )2,

where

λ(g′(Y )) = 0, λ(y − Y ) > 0, and λ(r(Y, y)) ≥ 0.
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Hence |g(y) − g(Y )| is infinitely small. Similarly, |g(X) − g(x)| is infinitely small.

Since

λ(g(Y )) ≥ 0 and gR(Y ) = g(Y )[0],

we obtain that |g(Y )−gR(Y )| is infinitely small. Similarly, |gR(X)−g(X)| is infinitely

small. So

g(y)− g(x) ≈ gR(Y )− gR(X) > 0; and hence g (x) < g (y) .

As a second case, assume that X = Y . Then y − x ¿ 1, and hence

g (y)− g (x) = g′ (x) (y − x) + r (x, y) (y − x)2

≈ g′ (x) (y − x) , (5.21)

since |r (x, y)| is at most finite and hence

λ
(
r (x, y) (y − x)2

)
= λ (r (x, y)) + 2λ (y − x)

≥ 2λ (y − x)

> λ (y − x) = λ (g′ (x)) + λ (y − x)

= λ (g′ (x) (y − x)) .

By Corollary 5.11, we have that

λ (g′ (x)− g′ (X)) ≥ λ (x−X) > 0.

Since

g′ (x) ∼ 1, g′ (X) ∼ 1 and |g′ (x)− g′ (X)| ¿ 1,

we obtain that

g′ (x) ≈ g′ (X) ≈ (gR)′ (X) > 0. (5.22)

From Equations (5.21) and (5.22), we obtain that g (y)− g (x) > 0. Thus,

g (x) < g (y) for all x < y in [0, 1] ;
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and hence g is strictly increasing on [0, 1]. Since

f (x) = (f (b)− f (a)) g
(

x− a

b− a

)
+ f (a) for all x ∈ [a, b]

and since g is strictly increasing on [0, 1], we obtain that f is strictly increasing on

[a, b] if f (a) < f (b), and f is strictly decreasing on [a, b] if f (a) > f (b).

The following theorem generalizes the intermediate value theorem which was dis-

cussed in [5] and which applied to functions whose domain and range are both finite

and whose derivatives are finite everywhere. We offer two proofs; and after scaling,

the second proof is similar to that of the previous version of the intermediate value

theorem.

Theorem 5.22 (Intermediate Value Theorem) Let a < b be given in R, and let

f : [a, b] →R be quasi-linear. Then f assumes every intermediate value between f (a)

and f (b).

Proof. If f (a) = f (b), then f is constant on [a, b] by Lemma 5.14, and there is

nothing to prove. So we may assume that f (a) 6= f (b). Let g : [0, 1] → R be the

scaled function of f on [0, 1]. For all x ∈ [a, b], we have that

f (x) = (f (b)− f (a)) g
(

x− a

b− a

)
+ f (a)

= l2 ◦ g ◦ l1 (x) ,

where l1 and l2 are linear functions. Hence it suffices to show that g assumes every

intermediate value between g (0) = 0 and g (1) = 1. We present two proofs.

First proof (by iteration): Let gR be as in Lemma 5.16, let S ∈ (0, 1) be given, and

let SR = < (S). Then SR ∈ [0, 1] ∩R. Since gR is continuous on [0, 1] ∩R by Lemma

5.16, there exists X ∈ [0, 1] ∩R such that gR (X) = SR. Thus,

|S − g (X)| ≤ |S − SR|+ |SR − gR (X)|+ |gR (X)− g (X)|

= |S − SR|+ |gR (X)− g (X)|
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is infinitely small.

Now let s = S − g (X). If s = 0, then g (X) = S and we are done. So we may

assume that s 6= 0; we try to find x ∈ R such that 0 < |x| ¿ 1, X + x ∈ [0, 1] and

g (X + x) = S. Let a1 = 1/g′ (X), and let

x1 = a1s =
s

g′ (X)
.

Then, by Theorem 5.12, we have that

g (X + x1) = g

(
X +

s

g′ (X)

)
= g (X) + s + r (X, X + x1) x2

1

= S + r (X, X + x1) x2
1;

and hence

|g (X + x1)− S| = |r (X, X + x1)|x2
1,

where |r (X,X + x1)| is at most finite. So

|g (X + x1)− S| = |r (X, X + x1)| s2

(g′ (X))2 = c1s
2,

where

c1 =
|r (X,X + x1)|

(g′ (X))2 .

Let

s1 = S − g (X + x1) = −r (X, X + x1) x2
1,

let

a2 = −r (X, X + x1) a2
1

g′ (X + x1)

and let

x2 = x1 +
s1

g′ (X + x1)
.

Then

x2 = x1 − r (X,X + x1) x2
1

g′ (X + x1)
= x1 − r (X,X + x1) a2

1

g′ (X + x1)
s2 = x1 + a2s

2.
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Since g′ (z) ∼ 1 for all z ∈ [0, 1] by Lemma 5.15, we obtain that |a1| and |a2| are both

at most finite, and x2 ≈ x1. Moreover,

g (X + x2) = g

(
X + x1 +

s1

g′ (X + x1)

)

= g (X + x1) + s1 + r (X + x1, X + x2) (x2 − x1)
2

= S + r (X + x1, X + x2) a2
2s

4,

where |r (X + x1, X + x2) | is at most finite. Let

c2 = |r (X + x1, X + x2)| a2
2.

Then c2 is at most finite and

|g (X + x2)− S| = c2s
4.

By induction, we obtain a sequence (xn) such that for all n ≥ 1, we have that

xn =
n∑

j=1

ajs
2j−1 ≈ a1s = x1 and |g (X + xn)− S| = cns

2n

,

with

λ (an) ≥ 0 and λ (cn) ≥ 0 for all n ≥ 1.

Since |s| ¿ 1 and since λ (cn) ≥ 0 for all n ≥ 1, we have that

lim
n→∞ cns

2n

= 0; and hence lim
n→∞ g (X + xn) = S.

Also, the sequence (xn) converges strongly. Let

x = lim
n→∞xn =

∞∑

j=1

ajs
2j−1

.

Then

x ≈ x1 = a1s =
s

g′ (X)
.
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We show that g (X + x) = S. Since g is continuous on [0, 1] and since the sequence

(xn) converges strongly to x, we obtain by Lemma 5.5 and Lemma 5.1 that the

sequence (g (X + xn)) converges strongly to g (X + x). Hence

g (X + x) = lim
n→∞ g (X + xn) = S.

Finally we show that X+x ∈ (0, 1). First assume that X = 0; then S > 0 = g (X)

and hence s = S − g (X) > 0. Since g′ (0) ≈ (gR)′ (0) > 0, we obtain that

X + x = x ≈ s

g′ (0)
> 0.

Moreover, x ¿ 1; hence X + x = x ∈ (0, 1). Now assume that X = 1; then

S < 1 = g (1) and hence s < 0. It follows that

x ≈ s

g′ (1)
< 0 and hence X + x = 1 + x < 1.

Since |x| ¿ 1, we obtain that X +x = 1+x ∈ (0, 1). Finally assume that 0 < X < 1;

then X is finitely away from 0 and 1. Since |x| ¿ 1, we obtain that X + x ∈ (0, 1).

Second proof (using the fixed point theorem): Having found X ∈ [0, 1] ∩ R such

that gR (X) = SR, we proceed to find x such that 0 < |x| ¿ 1, X + x ∈ [0, 1] and

g (X + x) = S. Since g is differentiable on [0, 1], we have, by Theorem 5.12, that

S = g (X + x) = g (X) + g′ (X) x + r (X, X + x) x2, (5.23)

where |r (X,X + x)| is at most finite.

Transforming Equation (5.23) into a fixed point problem yields

x =
s

g′ (X)
− r (X, X + x)

g′ (X)
x2 (5.24)

= h (x) ,

where s = S − g (X) is infinitely small in absolute value. Let

M = {z ∈ R : λ (z) ≥ λ (s)} .
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Let x ∈ M be given. Since |r (X,X + x)| is at most finite and since g′ (X) ∼ 1, we

have that

λ

(
r (X, X + x)

g′ (X)
x2

)
≥ 2λ (x) > λ (x) ≥ λ (s) = λ

(
s

g′ (X)

)
.

Hence s/g′ (X) is the leading term on the right hand side of Equation (5.24). Thus,

h (x) ≈ s

g′ (X)
; and hence λ (h (x)) = λ (s) for all x ∈ M.

Hence

h (M) ⊂ M.

Now let x1 6= x2 be given in M . Then

|h (x1)− h (x2)| =

∣∣∣∣∣
r (X,X + x2) x2

2 − r (X, X + x1) x2
1

g′ (X)

∣∣∣∣∣

=

∣∣∣∣∣
g (X + x2)− g (X + x1)

g′ (X)
+ x1 − x2

∣∣∣∣∣ .

But

g (X + x2) = g (X + x1) + g′ (X + x1) (x2 − x1) + r (X + x1, X + x2) (x2 − x1)
2 ,

where |r (X + x1, X + x2)| is at most finite. Thus,

|h (x1)− h (x2)|

=

∣∣∣∣∣
g′ (X + x1) (x2 − x1) + r (X + x1, X + x2) (x2 − x1)

2

g′ (X)
+ x1 − x2

∣∣∣∣∣

=

∣∣∣∣∣
g′ (X + x1)− g′ (X)

g′ (X)
(x2 − x1) +

r (X + x1, X + x2)

g′ (X)
(x2 − x1)

2

∣∣∣∣∣

≤ |x1 − x2|
( |g′ (X + x1)− g′ (X)|

g′ (X)
+
|r (X + x1, X + x2)|

g′ (X)
|x1 − x2|

)
.

Using Corollary 5.11 and the fact that g′ (X) ∼ 1, we have that

λ

( |g′ (X + x1)− g′ (X)|
g′ (X)

)
= λ (g′ (X + x1)− g′ (X))

≥ λ (x1) ≥ λ (s)

>
λ (s)

2
.
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Also

λ

( |r (X + x1, X + x2)|
g′ (X)

|x1 − x2|
)

≥ λ (x1 − x2)

≥ min {λ (x1) , λ (x2)} ≥ λ (s)

>
λ (s)

2
.

Hence

|h (x1)− h (x2)| ¿ dλ(s)/2 |x1 − x2| ,

where λ (s) > 0. So h is contracting on M , and hence h has a fixed point x in M .

The same argument as at the end of the first proof shows that X + x ∈ (0, 1).

The following two examples show that the conditions in Equation (5.8) are nec-

essary to obtain Theorem 5.22.

Example 5.10 Let f : [−1, 1] →R be given by

f (x) =

{
d if 0 ≤ |x| ¿ 1
x3 if x ∼ 1

.

Then f is continuous on [−1, 1] since

∣∣∣∣∣
f(y)− f(x)

y − x

∣∣∣∣∣ ≤ 3 for all x 6= y in [−1, 1].

Next we show that f is differentiable on [−1, 1] with derivative

f ′(x) = g (x) =

{
0 if 0 ≤ |x| ¿ 1
3x2 if x ∼ 1

.

Let x 6= y be given in [−1, 1]. We show that

∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ < 3 |y − x| .

First assume that 0 ≤ |x| ¿ 1. Then

∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ =

∣∣∣∣∣
f (y)− f (x)

y − x

∣∣∣∣∣ =

{
0 if 0 ≤ |y| ¿ 1∣∣∣y3−d

y−x

∣∣∣ if y ∼ 1
.
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But for y ∼ 1, we have that

∣∣∣∣∣
y3 − d

y − x

∣∣∣∣∣ ≈ y2 ≤ |y| ≈ |y − x| ; and hence

∣∣∣∣∣
y3 − d

y − x

∣∣∣∣∣ < 2 |y − x| .

Thus, for 0 ≤ |x| ¿ 1 and for all y 6= x in [−1, 1], we obtain that

∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ < 2 |y − x| .

Now assume that x ∼ 1 and 0 ≤ |y| ¿ 1. Then

∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ =

∣∣∣∣∣
d− x3

y − x
− 3x2

∣∣∣∣∣

≈ 2x2 ≤ 2 |x| ≈ 2 |y − x| ;

and hence ∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ < 3 |y − x| .

Finally, assume that x ∼ 1 and y ∼ 1. Then

∣∣∣∣∣
f (y)− f (x)

y − x
− g (x)

∣∣∣∣∣ =

∣∣∣∣∣
y3 − x3

y − x
− 3x2

∣∣∣∣∣ =
∣∣∣y2 + xy − 2x2

∣∣∣

= |(y + 2x) (y − x)| = |y + 2x| |y − x|

< 3 |y − x| .

Using Theorem 5.15, we have that f is differentiable on [−1, 1], with derivative

f ′ (x) = g (x) =

{
0 if 0 ≤ |x| ¿ 1
3x2 if x ∼ 1

.

But f is not quasi-linear on [−1, 1] since f is neither constant nor strictly monotone

on [−1, 1]. f does not satisfy the intermediate value theorem on [−1, 1] since

f (−1) = −1 < 0 < 1 = f (1) ; but f (x) 6= 0 for all x ∈ [−1, 1] .

Example 5.11 Let f : [0, 1] →R be given by

f (x) =





πx if x ∼ 1 and x [0] ∈ Q
2x if x ∼ 1 and x [0] /∈ Q
x if 0 ≤ x ¿ 1

.
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Then f is differentiable on [0, 1], with derivative

f ′ (x) =





π if x ∼ 1 and x [0] ∈ Q
2 if x ∼ 1 and x [0] /∈ Q
1 if 0 ≤ x ¿ 1

.

Thus

f ′ (x) ∼ 1 =
f (1)− f (0)

1− 0
for all x ∈ [0, 1] .

But f is not quasi-linear on [0, 1] since f is neither constant nor strictly monotone on

[0, 1]. We have that

f (0) = 0 < 1 < π = f (1) ; but f (x) 6= 1 for all x ∈ [0, 1] .

In this example, the first condition in Equation (5.8) is satisfied, but the second

condition is not. We also note that even though f ′ (x) is positive and finite for all

x ∈ [0, 1], f is not strictly increasing on [0, 1], which is another manifestation of the

differences between R and R.

Using Lemma 5.17 and Theorem 5.22, we readily obtain the following result.

Corollary 5.12 Let a < b be given in R, and let f : [a, b] → R be quasi-linear. Let

α = min {f (a) , f (b)} and β = max {f (a) , f (b)}. Then

f ([a, b]) = [α, β] .

Theorem 5.23 (Inverse Function Theorem) Let a < b be given in R, and let

f : [a, b] → R be quasi-linear and nonconstant. Let α = min {f (a) , f (b)} and

β = max {f (a) , f (b)}. Then f has an inverse function f−1 : [α, β] → [a, b] that is

quasi-linear on [α, β], with derivative

(
f−1

)′
(ρ) =

1

f ′ (f−1 (ρ))
for all ρ ∈ [α, β] .
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Proof. That f−1 exists follows immediately from the fact that f is strictly monotone

on [a, b], by Lemma 5.17. Let m,n ∈ Z+ be as in Lemma 5.11. First we show that

f−1 is continuous on [α, β]. Let ρ 6= υ in [α, β] be given and let x = f−1(ρ) and

y = f−1(υ). Then, using Equation (5.9), we obtain that
∣∣∣∣∣
f−1(υ)− f−1(ρ)

υ − ρ

∣∣∣∣∣ =

∣∣∣∣∣
y − x

f(y)− f(x)

∣∣∣∣∣

≤ n
b− a

|f(b)− f(a)| .

Thus ∣∣∣∣∣
f−1(υ)− f−1(ρ)

υ − ρ

∣∣∣∣∣ ≤ n
b− a

|f(b)− f(a)| for all ρ 6= υ in [α, β];

and hence f−1 is continuous on [α, β].

Next we show that f−1 is differentiable on [α, β]. Let ρ 6= υ in [α, β] be given, and

let x = f−1 (ρ) and y = f−1 (υ). Then, using Equations (5.9), (5.10) and (5.11), we

obtain that
∣∣∣∣∣
f−1 (υ)− f−1 (ρ)

υ − ρ
− 1

f ′ (f−1 (ρ))

∣∣∣∣∣

=

∣∣∣∣∣
y − x

f (y)− f (x)
− 1

f ′ (x)

∣∣∣∣∣

=

∣∣∣∣∣
y − x

f (y)− f (x)

∣∣∣∣∣
1

|f ′ (x)|

∣∣∣∣∣
f (y)− f (x)

y − x
− f ′ (x)

∣∣∣∣∣

≤
∣∣∣∣∣

y − x

f (y)− f (x)

∣∣∣∣∣
1

|f ′ (x)|m
|f(b)− f(a)|

(b− a)2
|y − x|

= m
|f(b)− f(a)|

(b− a)2

(
y − x

f (y)− f (x)

)2
1

|f ′ (x)| |f (y)− f (x)|

= m
|f(b)− f(a)|

(b− a)2

(
y − x

f (y)− f (x)

)2
1

|f ′ (x)| |υ − ρ|

≤ m
|f(b)− f(a)|

(b− a)2
n2 (b− a)2

(f(b)− f(a))2n
b− a

|f(b)− f(a)| |υ − ρ|
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= mn3 b− a

(f(b)− f(a))2 |υ − ρ|.

Using Theorem 5.15, we obtain that f−1 is differentiable on [α, β] with derivative

(
f−1

)′
(ρ) =

1

f ′ (f−1 (ρ))
for all ρ ∈ [α, β] .

Now let ρ, ρ̄ ∈ [α, β] be given, let S1,ρ and S1,ρ̄ denote the first secants of f−1 at ρ

and ρ̄, let x = f−1(ρ) and x̄ = f−1(ρ̄), and let T1,x and T1,x̄ denote the first secants of

f at x and x̄. For all υ 6= ρ and for all ῡ 6= ρ̄, let y = f−1(υ) and ȳ = f−1(ῡ). Then

we have that

S1,ρ(υ) =
f−1(υ)− f−1(ρ)

υ − ρ
=

y − x

f(y)− f(x)
=

1

T1,x(y)
and (5.25)

S1,ρ̄(ῡ) =
f−1(ῡ)− f−1(ρ̄)

ῡ − ρ̄
=

ȳ − x̄

f(ȳ)− f(x̄)
=

1

T1,x̄(ȳ)
. (5.26)

Since f is quasi-linear on [a, b], we have that T1,x ∼ T1,x̄. Hence Equations (5.25) and

(5.26) entail that

S1,ρ ∼ S1,ρ̄ for all ρ, ρ̄ ∈ [α, β].

Finally, using Corollary 5.9 and the fact that T1,x ∼ T1,x̄ and T2,x ∼ T2,x̄ for all

x, x̄ ∈ [a, b], we can easily verify that

S2,ρ ∼ S2,ρ̄ for all ρ, ρ̄ ∈ [α, β],

where S2,ρ denotes the second secant of f−1 at ρ and T2,x the second secant of f at

x. Hence f−1 is quasi-linear on [α, β].



Chapter 6

Expandable Functions

In this chapter, we will present a detailed study of a large class of functions on R,

which are given locally by power series with R coefficients [41, 43]. We show that

these functions have all the desired smoothness properties; in particular they satisfy

all the common theorems of real calculus.

6.1 Definition and Algebraic Properties

Definition 6.1 Let a, b ∈ R be such that 0 < b − a ∼ 1, let f : [a, b] → R and let

x0 ∈ [a, b]. Then we say that f is expandable at x0 if and only if there exists δ > 0,

finite in R, and there exists a regular sequence (an (x0)) in R such that, under weak

convergence, f (x) =
∑∞

n=0 an (x0) (x− x0)
n for all x ∈ (x0 − δ, x0 + δ) ∩ [a, b].

Definition 6.2 Let a, b ∈ R be such that 0 < b− a ∼ 1 and let f : [a, b] →R. Then

we say that f is expandable on [a, b] if and only if f is expandable at each x ∈ [a, b].

Definition 6.3 Let a < b in R be such that t = λ(b− a) 6= 0 and let f : [a, b] → R.

Then we say that f is expandable on [a, b] if and only if the function g : [d−ta, d−tb] →
R, given by

g(x) = f(dtx),

167



168

is expandable on [d−ta, d−tb].

Lemma 6.1 Let a, b ∈ R be such that 0 < b − a ∼ 1, let f, g : [a, b] → R be

expandable on [a, b] and let α ∈ R be given. Then f + αg and f · g are expandable on

[a, b].

Proof. Let x ∈ [a, b] be given. Then there exist finite δ1 > 0 and δ2 > 0, and there

exist regular sequences (an) and (bn) in R such that

0 ≤ |h| < δ1 ⇒ f (x + h) =
∞∑

n=0

anh
n and

0 ≤ |h| < δ2 ⇒ g (x + h) =
∞∑

n=0

bnhn.

Let δ = min {δ1/2, δ2/ 2}. Then 0 < δ ∼ 1. Moreover, for 0 ≤ |h| < δ, we have that

(f + αg) (x + h) = f (x + h) + αg (x + h)

=
∞∑

n=0

anh
n + α

∞∑

n=0

bnhn

=
∞∑

n=0

anh
n +

∞∑

n=0

(αbn) hn

=
∞∑

n=0

(an + αbn) hn,

where
∑∞

n=0 (an + αbn) hn converges weakly and where the sequence (an + αbn) is

regular by Lemma 4.1. Thus (f + αg) is expandable at x. This is true for all x ∈ [a, b] ;

hence (f + αg) is expandable on [a, b] .

Now for each n, let

cn =
n∑

j=0

ajbn−j.

Then the sequence (cn) is regular by Lemma 4.1. Since
∑∞

n=0 anh
n converges weakly

for all h satisfying x + h ∈ [a, b] and 0 ≤ |h| < δ1, so does
∑∞

n=0 an [t] hn for all
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t ∈ ∪nsupp(an) . Hence
∑∞

n=0 |(an [t] hn) [q]| converges in R for all q ∈ Q, for all

t ∈ ∪nsupp(an) and for all h satisfying

x + h ∈ [a, b] , 0 ≤ |h| < 3

2
δ ≤ 3

4
δ1 and |h| 6≈ 3

2
δ.

Now let h ∈ R be such that x + h ∈ [a, b] and 0 ≤ |h| < δ. Then

∞∑

n=0

|(anhn) [q]| =
∞∑

n=0

∣∣∣∣∣∣∣∣

∑

q1 ∈ supp(an), q2 ∈ supp(hn)
q1 + q2 = q

an [q1] h
n [q2]

∣∣∣∣∣∣∣∣

≤ ∑

q1 ∈ ∪∞n=0supp(an), q2 ∈ ∪∞n=0supp(hn)
q1 + q2 = q

∞∑

n=0

|an [q1]| |hn [q2]| .

Since
∑∞

n=0 |an [q1]| |hn [q2]| converges in R and since only finitely many terms con-

tribute to the sum
∑

q1 ∈ ∪∞n=0supp(an), q2 ∈ ∪∞n=0supp(hn)
q1 + q2 = q

by regularity, we ob-

tain that
∑∞

n=0 |(anh
n) [q]| converges for each q ∈ Q. Since

∑∞
n=0 anh

n converges abso-

lutely weakly, since
∑∞

n=0 bnh
n converges weakly and since the sequences (

∑n
m=0 amhm)

and (
∑n

m=0 bmhm) are both regular, we obtain by Theorem 4.9 that

∞∑

n=0

anhn ·
∞∑

n=0

bnhn =
∞∑

n=0

cnhn; hence

(f · g) (x + h) =
∞∑

n=0

cnhn.

Thus (f · g) is expandable at x. This is true for all x ∈ [a, b] ; hence (f · g) is expand-

able on [a, b].

Corollary 6.1 Let a < b in R be given, let f, g : [a, b] → R be expandable on [a, b]

and let α ∈ R be given. Then f + αg and f · g are expandable on [a, b].

Proof. Let t = λ(b− a), and let F,G : [d−ta, d−tb] be given by

F (x) = f(dtx) and G(x) = g(dtx).
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Then, by definition, F and G are both expandable on [d−ta, d−tb]; and hence so is

F + αG by Lemma 6.1. For all x ∈ [d−ta, d−tb], we have that

(F + αG)(x) = F (x) + αG(x)

= f(dtx) + αg(dtx)

= (f + αg)(dtx).

Since (F + αG) is expandable on [d−ta, d−tb], so is (f + αg) on [a, b].

Also by Lemma 6.1, we have that (F ·G) is expandable on [d−ta, d−tb], where for

all x ∈ [d−ta, d−tb],

(F ·G)(x) = F (x) ·G(x)

= f(dtx) · g(dtx)

= (f · g)(dtx).

Hence (f · g) is expandable on [a, b].

Lemma 6.2 Let a < b and c < e in R be such that b − a and e − c are both finite.

Let f : [a, b] → R be expandable on [a, b], let g : [c, e] → R be expandable on [c, e],

and let f ([a, b]) ⊂ [c, e]. Then g ◦ f is expandable on [a, b].

Proof. Let x ∈ [a, b] be given. There exist finite δ1 > 0 and δ2 > 0, and there exist

regular sequences (an) and (bn) in R such that

|h| < δ1 and x + h ∈ [a, b] ⇒ f (x + h) = f (x) +
∞∑

n=1

anhn ; and

|y| < δ2 and f (x) + y ∈ [c, e] ⇒ g (f (x) + y) = g (f (x)) +
∞∑

n=1

bny
n.

Since F (h) = (
∑∞

n=1 anh
n) [0] is continuous on R, we can choose δ ∈ (0, δ1/2] such

that

|h| < δ and x + h ∈ [a, b] ⇒
∣∣∣∣∣
∞∑

n=1

anh
n

∣∣∣∣∣ <
δ2

2
.
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Thus, for |h| < δ and x + h ∈ [a, b] , we have that

(g ◦ f) (x + h) = g (f (x + h))

= g

(
f (x) +

∞∑

n=1

anh
n

)

= g (f (x)) +
∞∑

k=1

bk

( ∞∑

n=1

anh
n

)k

= (g ◦ f) (x) +
∞∑

k=1

bk

( ∞∑

n=1

anhn

)k

. (6.1)

For each k, let Vk (h) = bk (
∑∞

n=1 anhn)k . Then Vk (h) is a power series in h

Vk (h) =
∞∑

j=1

akjh
j,

where the sequence (akj)j≥1 is regular in R for each k. By our choice of δ, we have

that for all q ∈ Q,
∑∞

j=1 |(akjh
j) [q]| converges in R; so we can rearrange the terms

in Vk (h) [q] =
∑∞

j=1 (akjh
j) [q] . Moreover, the double sum

∑∞
k=1

∑∞
j=1 (akjh

j) [q] con-

verges; so (see for example [31] pp 205-208) we obtain that

((g ◦ f) (x + h)) [q] = ((g ◦ f) (x)) [q] +
∞∑

k=1

∞∑

j=1

(
akjh

j
)

[q]

= ((g ◦ f) (x)) [q] +
∞∑

j=1

∞∑

k=1

(
akjh

j
)

[q]

for all q ∈ Q. Therefore,

(g ◦ f) (x + h) = (g ◦ f) (x) +
∞∑

k=1

∞∑

j=1

akjh
j

= (g ◦ f) (x) +
∞∑

j=1

∞∑

k=1

akjh
j.

Thus rearranging and regrouping the terms in Equation (6.1), we obtain that

(g ◦ f) (x + h) = (g ◦ f) (x) +
∞∑

l=1

clh
l,

where the sequence (cl) is regular.
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Corollary 6.2 Let a < b and c < e in R be given. Let f : [a, b] → R be expandable

on [a, b], let g : [c, e] → R be expandable on [c, e], and let f ([a, b]) ⊂ [c, e]. Then g ◦ f

is expandable on [a, b].

Lemma 6.3 Let a, b ∈ R be such that 0 < b − a ∼ 1, and let f : [a, b] → R be

expandable on [a, b]. Then f is bounded on [a, b].

Proof. Let (an (a)) and (an (b)) be the expansion coefficients of f to the right of

a and to the left of b, respectively. Let aR = < (a) and bR = < (b), and define

f : [a, b] ∪ [aR, bR] →R by

f (x) =





f (x) if x ∈ [a, b]∑∞
n=0 an (a) (x− a)n if x ∈ [aR, a)∑∞
n=0 an (b) (x− b)n if x ∈ (b, bR]

.

Then f is expandable on [a, b] ∪ [aR, bR]. For all X ∈ [aR, bR] ∩ R there exists

δ > 0 in R and there exists a regular sequence (an (X)) in R such that f (x) =

∑∞
n=0 an (X) (x−X)n for all x ∈ (X − δ (X) , X + δ (X)) ∩ [a, b]. We have that

{(X − δ (X) /2, X + δ (X) /2) ∩R : X ∈ [aR, bR] ∩R} is a real open cover of the com-

pact real set [aR, bR] ∩ R. There exists m ∈ Z+ and there exist X1, . . . , Xm ∈
[aR, bR] ∩R such that

[aR, bR] ∩R ⊂ ∪m
j=1

((
Xj − δ (Xj)

2
, Xj +

δ (Xj)

2

)
∩R

)
.

It follows that

[a, b] ∪ [aR, bR] ⊂ ∪m
j=1 (Xj − δ (Xj) , Xj + δ (Xj)) .

Let

l = min
1≤j≤m

{min {∪∞n=0supp (an (Xj))}} .
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Then
∣∣∣f (x)

∣∣∣ < dl−1 for all x ∈ [a, b] ∪ [aR, bR] ,

and hence f is bounded on [a, b] ∪ [aR, bR]. In particular, f is bounded on [a, b].

Remark 6.1 In the proof of Lemma 6.3, l is independent of the choice of the cover.

It depends only on a, b, and f ; we will call it the index of f on [a, b] and we will

denote it by i (f) . Moreover, for all ∆ > 0 in R and for all X ∈ (aR, bR) ∩ R there

exists Y1 ∈ [a, b]∩R ∩ (X −∆, X) and there exists Y2 ∈ [a, b]∩R ∩ (X,X + ∆) such

that λ (f (Y1)) = i (f) = λ (f (Y2)) .

Proof. Let X1, . . . , Xm and l be as in the proof of Lemma 6.3. Let Z1, . . . , Zk ∈
[aR, bR] ∩ R, let {(Zj − δ (Zj) , Zj + δ (Zj)) ∩R : j ∈ {1, . . . , k}} be an open cover of

[aR, bR] , with δ (Zj) > 0 and real for all j ∈ {1, . . . , k}; and let

l1 = min
1≤j≤k

{min {∪∞n=0supp (an (Zj))}} .

Suppose l1 6= l. Without loss of generality, we may assume that l < l1. In particular,

l < ∞. Define fR : [aR, bR] ∩R → R by

fR (Y ) = f (Y ) [l] .

Then for Y ∈ (Xj − δ (Xj) , Xj + δ (Xj)) ∩ [aR, bR] ∩R, we have that

fR (Y ) =

( ∞∑

n=0

an (Xj) (Y −Xj)
n

)
[l]

=
∞∑

n=0

an (Xj) [l] (Y −Xj)
n . (6.2)

Thus fR is analytic on [aR, bR] ∩R. Moreover,

fR (Y ) = f (Y ) [l] = 0
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for all Y ∈
(
Z1 − δ(Z1)

2
, Z1 + δ(Z1)

2

)
∩ [aR, bR] ∩ R. Using the Identity Theorem for

analytic real functions, we obtain that fR (Y ) = 0 for all Y ∈ [aR, bR] ∩ R. Using

Equation (6.2), we obtain that

an (Xj) [l] = 0 for all n ≥ 0 and for all j ∈ {1, . . . , m} ,

which contradicts the definition of l. Thus l1 = l.

Corollary 6.3 Let a, b and f be as in Lemma 6.3 and let i (f) be the index of f on

[a, b] . Then

i (f) = min {supp (f (x)) : x ∈ [a, b]} .

Corollary 6.4 Let a < b in R be given, and let f : [a, b] →R be expandable on [a, b].

Then f is bounded on [a, b].

Definition 6.4 Let a, b, f and f be as in Lemma 6.3 and let i (f) be the index of f

on [a, b]. The function fR : [aR, bR] ∩ R → R, defined by fR (X) = f (X) [i (f)], will

be called the underlying real function of f on [aR, bR] ∩R.

Remark 6.2 Let a, b ∈ R be such that 0 < b−a ∼ 1, let f : [a, b] → R be expandable

on [a, b], and let fR be the underlying real function of f on [aR, bR]∩R. Then, by the

proof of Remark 6.1, fR is analytic on [aR, bR]∩R; in particular, fR is continuous on

[aR, bR] ∩R.

6.2 Calculus on the Expandable Functions

In this section we show that like in the case of continuous real functions over closed

and bounded real intervals, the expandable functions over closed intervals satisfy

an intermediate value theorem, a maximum theorem, and a mean value theorem.

Consequently, the expandable functions are integrable.
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6.2.1 Intermediate Value Theorem

In this section, we state and prove the intermediate value theorem for the expandable

functions, which is a generalization of the corresponding result for normal functions

[5]. We first find a real intermediate point where the real part of intermediate value is

assumed by the real part of the function; then we look for a solution in the infinitely

small neighborhood of this real point where the function is given by an infinite power

series with R coefficients. Thus, finding the point where the intermediate value is

assumed requires finding a root of a power series. We find this root by first finding

a root x0 of the leading polynomial in the power series and then applying the fixed

point theorem in the second iteration, as the proof below will illustrate in details.

Theorem 6.1 (Intermediate Value Theorem) Let a, b ∈ R be such that 0 <

b − a ∼ 1, and let f : [a, b] → R be expandable on [a, b]. Then f assumes every

intermediate value between f (a) and f (b).

Proof. Let f be as in the proof of Lemma 6.3 and let fR be the underlying real

function of f on [aR, bR]∩R. Without loss of generality, we may assume that i (f) = 0.

Now let S be between f (a) and f (b). Without loss of generality, we may assume

that f (a) < 0 = S < f (b). Since fR is continuous on [aR, bR] ∩ R, there exists

X ∈ [aR, bR] ∩ R such that fR (X) = 0. Let ZfR
= {X ∈ [aR, bR] ∩R : fR (X) = 0},

let

A =





∅ if {aR, bR} ∩ ZfR
= ∅

{a} if {aR, bR} ∩ ZfR
= {aR}

{b} if {aR, bR} ∩ ZfR
= {bR}

{a, b} if {aR, bR} ∩ ZfR
= {aR, bR}

,

and let B = (ZfR
\ {aR, bR}) ∪ A. If there exists X ∈ B such that f (X) = 0, then

we are done. So we may assume that f (X) 6= 0 for all X ∈ B.
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First Claim: There exists X0 ∈ B such that for all finite ∆ > 0 there exists

x ∈ (X0 −∆, X0 + ∆) ∩ [a, b] with λ (x−X0) = 0 such that f (x) /f (X0) < 0.

Proof of the first claim: Suppose not. Then for all X ∈ B there exists ∆ (X) > 0,

finite in R, such that

f (x)

f (X)
≥ 0 for all x ∈ (X −∆ (X) , X + ∆ (X)) ∩ [a, b] with λ (x−X) = 0. (6.3)

Since fR is continuous on [aR, bR] ∩ R, we have that for all Y ∈ ([aR, bR] ∩R) \ ZfR

there exists a real ∆ (Y ) > 0 such that fR (X) /fR (Y ) > 0 for all X ∈ [aR, bR] ∩
R∩ (Y − 2∆ (Y ) , Y + 2∆ (Y )). It follows that, for all Y ∈ ([aR, bR] ∩R) \ ZfR

,

f (x)

f (Y )
> 0 for all x ∈ (Y −∆ (Y ) , Y + ∆ (Y )) ∩ [a, b] .

In particular,

f (x)

f (Y )
> 0 for all x ∈ (Y −∆ (Y ) , Y + ∆ (Y )) ∩ [a, b] with λ (x− Y ) = 0. (6.4)

Combining Equation (6.3) and Equation (6.4), we obtain that for all X ∈ [aR, bR]∩R

there exists a finite δ (X) > 0 such that





f(x)
f(X)

≥ 0
for all x ∈ (X − δ (X) , X + δ (X)) ∩ [a, b]
with λ (x−X) = 0, if X ∈ (aR, bR)

f(x)
f(a)

≥ 0
for all x ∈ [a, a + δ (X)) ∩ [a, b]
with λ (x− a) = 0, if X = aR

f(x)
f(b)

≥ 0
for all x ∈ (b− δ (X) , b] ∩ [a, b]
with λ (b− x) = 0, if X = bR

. (6.5)

{(X −< (δ (X)) /2, X + < (δ (X)) /2) ∩R : X ∈ [aR, bR] ∩R} is a real open cover of

the compact real set [aR, bR] ∩ R. Hence there exists m ∈ Z+ and there exist

X1, . . . , Xm ∈ [aR, bR] ∩R such that

[aR, bR] ∩R ⊂ ∪m
j=1

((
Xj − < (δ (Xj))

2
, Xj +

< (δ (Xj))

2

)
∩R

)
.

Thus

[a, b] ⊂ ∪m
j=1 (Xj − δ (Xj) , Xj + δ (Xj)) . (6.6)
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By Equation (6.5), we have for j ∈ {1, . . . , m} that





f(x)
f(Xj)

≥ 0
for all x ∈ (Xj − δ (Xj) , Xj + δ (Xj)) ∩ [a, b]
with λ (x−Xj) = 0, if Xj ∈ (aR, bR)

f(x)
f(a)

≥ 0
for all x ∈ [a, a + δ (Xj)) ∩ [a, b]
with λ (x−Xj) = 0, if Xj = aR

f(x)
f(b)

≥ 0
for all x ∈ (b− δ (Xj) , b] ∩ [a, b]
with λ (x−Xj) = 0, if Xj = bR

. (6.7)

Using Equation (6.6) and Equation (6.7), we obtain that f (b) /f (a) ≥ 0, a con-

tradiction to the fact that f (a) < 0 < f (b). This finishes the proof of the first

claim.

Since f is expandable at X0, there exists a real δ (X0) > 0 and there exists a

regular sequence (an (X0))n≥1 in R such that

0 ≤ |h| < δ (X0) ⇒ f (X0 + h) = f (X0) +
∞∑

n=1

an (X0) hn.

Now we look for x such that 0 < |x| ¿ 1 and f (X0 + x) = S = 0. That is we look

for a root of the equation

f (X0) +
∞∑

n=1

an (X0) xn = 0.

Since fR (X0) = 0, we have that 0 < |f (X0)| ¿ 1. Let

m = min {n ≥ 1 : λ (an (X0)) = 0} .

Such an m exists by virtue of Remark 6.1. Consider the polynomial

P (x) = f (X0) + a1 (X0) x + · · ·+ am−1 (X0) xm−1 + am (X0) xm.

Second Claim: P (x) has a root x0 ∈ R.

Proof of the second claim: Suppose not. Then by the Fundamental Theorem of

Algebra, we have that m is even and am(X0)
f(X0)

> 0. Thus

P (x)

f (X0)
> 0 for all x ∈ (−δ (X0) , δ (X0)) with λ (x) = 0. (6.8)
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There exist M1 > 0 and M2 > 0 in R such that

|P (x)| > M1 for all x ∈
[
−δ (X0)

2
,
δ (X0)

2

]
with λ (x) = 0

and ∣∣∣∣∣
∑
n>m

an (X0) xn

∣∣∣∣∣ < M2 |x|m+1 for all x ∈
[
−δ (X0)

2
,
δ (X0)

2

]
.

Let

δ1 = min





(
M1

2M2

) 1
m+1

,
δ (X0)

2



 .

Then δ1 > 0, δ1 is finite, and

∣∣∣∣∣
∑
n>m

an (X0) xn

∣∣∣∣∣ < M2 |x|m+1

<
M1

2

<
|P (x)|

2
for all x ∈ (−δ1, δ1) with λ (x) = 0.

Thus f (X0 + x) = P (x) +
∑

n>m an (X0) xn has the same sign as P (x) for all x ∈
(−δ1, δ1) with λ (x) = 0. Using Equation (6.8) and the fact that δ1 < δ (X0) , we

obtain that f(X0+x)
f(X0)

> 0 for all x ∈ (−δ1, δ1) with λ (x) = 0, or

f (x)

f (X0)
> 0 for all x ∈ (X0 − δ1, X0 + δ1) with λ (x−X0) = 0,

which contradicts the result of the first claim. This finishes the proof of the second

claim.

So P (x) has a root x0 ∈ R. Since λ (ak (X0)) > 0 for all k < m, we obtain that

λ (x0) > 0. Let j ∈ {1, . . . , m} be such that

λ (an (X0) xn
0 ) > λ

(
aj (X0) xj

0

)
for all n < j and

λ (an (X0) xn
0 ) ≥ λ

(
aj (X0) xj

0

)
for all n ≥ j. (6.9)
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Such a j exists by our choice of m and the fact that λ (x0) > 0. We look for x ≈ x0

such that 0 = g (x) = f (X0 + x) = P (x) +
∑

n>m an (X0) xn. Write x = x0 + y with

λ (y) > λ (x0). Then, using the results of Theorems 5.20 and 5.21, we have that

g(x0 + y) = g (x0) +
∞∑

k=1

βk (X0, x0) yk = 0, (6.10)

where for k = 1, 2, . . .

βk (X0, x0) =
∞∑

n=k

n . . . (n− k + 1)

k!
an (X0) xn−k

0 .

Using Equation (6.9), we obtain that λ (β1 (X0, x0)) = λ
(
aj (X0) xj−1

0

)
and

λ (βk (X0, x0)) ≥ λ
(
aj (X0) xj−k

0

)
for all k ≥ 2.

We write Equation (6.10) as a fixed point problem

y =
−g (x0)

β1 (X0, x0)
−

∞∑

k=2

βk (X0, x0)

β1 (X0, x0)
yk = h (y) , (6.11)

where λ (g (x0)) = λ (
∑

n>m an (X0) xn
0 ) ≥ (m + 1) λ (x0). Note that, by our choice of

j,

λ (β1 (X0, x0)) = λ
(
aj (X0) xj−1

0

)
≤ λ

(
am (X0) xm−1

0

)
= (m− 1) λ (x0) .

Thus λ (g (x0) /β1 (X0, x0)) = λ (g (x0))− λ (β1 (X0, x0)) ≥ 2λ (x0).

Let

M =

{
z ∈ R : λ(z) ≥ λ

(
g (x0)

β1 (X0, x0)

)}

and let y ∈ M be given. For all k ≥ 2, we have that

λ

(
βk (X0, x0)

β1 (X0, x0)
yk−1

)
> λ

(
βk (X0, x0)

β1 (X0, x0)
xk−1

0

)

= λ
(
βk (X0, x0) xk−1

0

)
− λ (β1 (X0, x0))

≥ λ
(
aj (X0) xj−k

0 xk−1
0

)
− λ

(
aj (X0) xj−1

0

)
= 0.

Thus

λ

(
βk (X0, x0)

β1 (X0, x0)
yk

)
> λ (y) ≥ λ

(
g (x0)

β1 (X0, x0)

)
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for all k ≥ 2. So −g (x0) /β1 (X0, x0) is the leading term on the right hand side of

Equation (6.11), and hence h (y) ≈ −g (x0) /β1 (X0, x0). Thus h (M) ⊂ M . Now let

y1, y2 ∈ M be given. Then

h (y1)− h (y2) = (y2 − y1)
∞∑

k=2

(
βk (X0, x0)

β1 (X0, x0)

(
k−1∑

l=0

yl
2y

k−1−l
1

))
.

Since λ (y1) ≥ 2λ (x0) and since λ (y2) ≥ 2λ (x0), we have for all k ≥ 2 that

λ

(
βk (X0, x0)

β1 (X0, x0)

(
k−1∑

l=0

yl
2y

k−1−l
1

))
≥ λ

(
βk (X0, x0)

β1 (X0, x0)
x

2(k−1)
0

)

= λ (βk (X0, x0))− λ (β1 (X0, x0)) + 2 (k − 1) λ (x0)

≥ λ
(
aj (X0) xj−k

0

)
− λ

(
aj (X0) xj−1

0

)
+ (2k − 2) λ (x0)

= (k − 1) λ (x0)

≥ λ (x0)

>
λ (x0)

2
> 0.

Hence

|h (y1)− h (y2)| ¿ d
λ(x0)

2 |y1 − y2| for all y1, y2 ∈ M,

where

d
λ(x0)

2 ¿ 1.

So h is contracting on M ; and hence, using Theorem 3.3, h has a (unique) fixed

point y0 in M. Thus

f (X0 + x0 + y0) = 0.

Remark 6.3 In the proof of Theorem 6.1, g (x) = f (X0) +
∑∞

n=1 an (X0) xn has at

most m roots in Rs = {x ∈ R : 0 < |x| ¿ 1}.

Proof. Let x1, . . . , xm0 be the roots of

P (x) = f (X0) + a1 (X0) x + · · ·+ am−1 (X0) xm−1 + am (X0) xm
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in Rs. Then m0 ≤ m. By the proof of Theorem 6.1, we have that for each l ∈
{1, . . . , m0} there exists a unique ηl ≈ xl in Rs such that g (ηl) = 0. We show that

η1, . . . , ηm0 are the only roots of g (x) in Rs. So let η ∈ Rs be such that g (η) = 0.

Thus

f (X0) + a1 (X0) η + · · ·+ am (X0) ηm +
∑
n>m

an (X0) ηn = 0,

and hence

P (η) = f (X0) + a1 (X0) η + · · ·+ am (X0) ηm = − ∑
n>m

an (X0) ηn. (6.12)

We look for y ∈ Rs such that λ (y) > λ (η) and P (η + y) = 0. Thus,

0 = P (η + y) = f (X0) + a1 (X0) (η + y) + · · ·+ am (X0) (η + y)m

= P (η) +
m∑

k=1

αk (X0, η) yk, (6.13)

where for k = 1, 2, . . . , m

αk (X0, η) =
m∑

n=k

n . . . (n− k + 1)

k!
an (X0) ηn−k.

Let j ∈ {1, . . . ,m} be such that

λ (an (X0) ηn) > λ
(
aj (X0) ηj

)
for all n < j, and

λ (an (X0) ηn) ≥ λ
(
aj (X0) ηj

)
for all n ∈ {j, . . . , m} . (6.14)

Thus

λ (α1 (X0, η)) = λ
(
aj (X0) ηj−1

)
and

λ (αk (X0, η)) ≥ λ
(
aj (X0) ηj−k

)
for all k ∈ {2, . . . , m} . (6.15)

We write Equation (6.13) as a fixed point problem

y =
−P (η)

α1 (X0, η)
−

m∑

k=2

αk (X0, η)

α1 (X0, η)
yk (6.16)

= h (y) ,
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where

λ (−P (η)) = λ

( ∑
n>m

an (X0) ηn

)
using Equation (6.12)

≥ (m + 1) λ (η) .

Note that, by our choice of j,

λ (α1 (X0, η)) = λ
(
aj (X0) ηj−1

)
≤ λ

(
am (X0) ηm−1

)
= (m− 1) λ (η) .

Thus

λ

( −P (η)

α1 (X0, η)

)
= λ (−P (η))− λ (α1 (X0, η))

≥ (m + 1) λ (η)− (m− 1) λ (η)

= 2λ (η) .

Let

M =

{
z ∈ R : λ(z) ≥ λ

(
P (η)

α1 (X0, η)

)}
.

Let y ∈ M be given. For all k ∈ {2, . . . , m} , we have that

λ

(
αk (X0, η)

α1 (X0, η)
yk

)
= λ

(
αk (X0, η)

α1 (X0, η)
yk−1

)
+ λ (y)

> λ

(
αk (X0, η)

α1 (X0, η)
ηk−1

)
+ λ

(
P (η)

α1 (X0, η)

)
.

But

λ

(
αk (X0, η)

α1 (X0, η)
ηk−1

)
= λ

(
αk (X0, η) ηk−1

)
− λ (α1 (X0, η))

≥ λ
(
aj (X0) ηj−kηk−1

)
− λ

(
aj (X0) ηj−1

)

= 0.

Thus

λ

(
αk (X0, η)

α1 (X0, η)
yk

)
> λ

(
P (η)

α1 (X0, η)

)
for all k ∈ {2, . . . , m} .
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So −P (η) /α1 (X0, η) is the leading term on the right hand side of Equation (6.16),

and hence h (y) ≈ −P (η) /α1 (X0, η) . Thus

h (M) ⊂ M.

Now let y1, y2 ∈ M be given. Then

h (y1)− h (y2) =
m∑

k=2

αk (X0, η)

α1 (X0, η)

(
yk

2 − yk
1

)

= (y2 − y1)
m∑

k=2

(
αk (X0, η)

α1 (X0, η)

(
k−1∑

l=0

yl
2y

k−1−l
1

))
.

Since λ (y1) ≥ 2λ (η) and since λ (y2) ≥ 2λ (η), we have for all k ∈ {2, . . . , m} that

λ

(
αk (X0, η)

α1 (X0, η)

(
k−1∑

l=0

yl
2y

k−1−l
1

))
≥ λ

(
αk (X0, η)

α1 (X0, η)
η2(k−1)

)

= λ (αk (X0, η))− λ (α1 (X0, η)) + 2 (k − 1) λ (η)

≥ λ
(
aj (X0) ηj−k

)
− λ

(
aj (X0) ηj−1

)
+ (2k − 2) λ (η)

= (k − 1) λ (η) ≥ λ (η)

>
λ (η)

2
> 0.

Hence

|h (y1)− h (y2)| ¿ d
λ(η)

2 |y1 − y2| for all y1, y2 ∈ M,

where

d
λ(η)

2 ¿ 1.

So h is contracting on M , and hence h has a (unique) fixed point y0 in M. Thus

P (η + y0) = 0 with λ (y0) ≥ 2λ (η) > λ (η) .

Thus,

η + y0 ≈ η.
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Since P (η + y0) = 0, there exists l ∈ {1, . . . , m0} such

η + y0 = xl.

Hence

η ≈ xl.

By uniqueness of ηl as a solution to

{
g (x) = 0
x ≈ xl

,

we obtain that

η = ηl,

which finishes the proof of the remark.

Corollary 6.5 Let a, b ∈ R be such that 0 < b − a ∼ 1, let α < β be given in

[a, b] and let f : [a, b] → R be expandable on [a, b]. Then f assumes on [α, β] every

intermediate value between f (α) and f (β).

Proof. Let t = λ(β − α), and let g : [d−tα, d−tβ] → R be given by g(x) = f(dtx).

Then t ≥ 0, and hence g is expandable on [d−tα, d−tβ]. Thus, by Theorem 6.1, g

assumes on [d−tα, d−tβ] every intermediate value between g(d−tα) and g(d−tβ). Now

let S be an intermediate value between f(α) and f(β); then S is an intermediate

value between g(d−tα) and g(d−tβ). Hence there exists γ ∈ [d−tα, d−tβ] such that

g(γ) = S. Let η = dtγ. Then η ∈ [α, β] and f(η) = g(d−tη) = g(γ) = S.

Corollary 6.6 Let a < b in R, let α < β in [a, b] be given and let f : [a, b] → R
be expandable on [a, b]. Then f assumes on [α, β] every intermediate value between

f (α) and f (β).
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Proof. Let t = λ (b− a) and let g : [d−ta, d−tb] → R be given by g (x) = f (dtx).

Then g is expandable on [d−ta, d−tb] by definition, where 0 < d−tb − d−ta ∼ 1. By

Corollary 6.5, g assumes on [d−tα, d−tβ] every intermediate value between g (d−tα)

and g (d−tβ). It follows that f assumes on [α, β] every intermediate value between

f (α) and f (β).

6.2.2 Maximum Theorem and Mimimum Theorem

We start this section by stating the following theorem whose proof follows directly

from that of Theorem 5.20.

Theorem 6.2 Let a, b ∈ R be such that 0 < b − a ∼ 1, and let f : [a, b] → R be

expandable on [a, b] with i(f) = 0. Then f is infinitely often differentiable on [a, b],

and for all m ∈ Z+, we have that f (m) is expandable on [a, b]. Moreover, if f is given

locally around x0 ∈ [a, b] by f (x) =
∑∞

n=0 an (x0) (x− x0)
n, then f (m) is given by

f (m) (x) = gm(x) =
∞∑

n=m

n (n− 1) · · · (n−m + 1) an (x0) (x− x0)
n−m .

In particular, we have that am (x0) = f (m) (x0) /m! for all m = 0, 1, 2, . . ..

Corollary 6.7 Let a < b in R be given, and let f : [a, b] → R be expandable on

[a, b]. Then f is infinitely often differentiable on [a, b], and for all m ∈ Z+, we have

that f (m) is expandable on [a, b]. Moreover, if f is given locally around x0 ∈ [a, b] by

f (x) =
∑∞

n=0 an (x0) (x− x0)
n, then f (m) is given by

f (m) (x) =
∞∑

n=m

n (n− 1) · · · (n−m + 1) an (x0) (x− x0)
n−m .

In particular, we have that am (x0) = f (m) (x0) /m! for all m = 0, 1, 2, . . ..

The following theorem is again a generalization of the maximum theorem for

normal functions [5]; the key step in the proof is to apply the intermediate value the-
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orem, Theorem 6.1, to the derivative function which is itself an expandable function

by Theorem 6.2.

Theorem 6.3 Let a, b ∈ R be such that 0 < b − a ∼ 1, and let f : [a, b] → R be

expandable on [a, b]. Then f assumes a maximum on [a, b].

Proof. Without loss of generality, we may assume that i (f) = 0 and that fR is not

constant on [aR, bR] ∩ R, where aR = < (a) and bR = < (b) . Since fR is continuous

on [aR, bR] ∩ R, fR assumes a maximum MR on [aR, bR] ∩ R. Since fR is analytic

on [aR, bR] ∩ R, there are only finitely many points X1, . . . , Xk in [aR, bR] ∩ R where

fR assumes its maximum MR. We look for a maximum of f in the infinitely small

neighborhoods of the Xj’s. So let j ∈ {1, . . . , k} be given. Assume Xj ∈ (aR, bR) .

Then f ′R (Xj) = 0 and there exists δ1 > 0 in R such that

f ′R (X) > 0 for X ∈ (Xj − δ1, Xj) ∩R and

f ′R (X) < 0 for X ∈ (Xj, Xj + δ1) ∩R.

Using Theorem 6.2 and the fact that f is expandable at Xj, there exists δ ≤ δ1 in R

such that 0 ≤ |h| < δ ⇒

f (Xj + h) =
∞∑

n=0

f (n) (Xj)

n!
hn and f ′ (Xj + h) =

∞∑

n=1

f (n) (Xj)

(n− 1)!
hn−1.

Let

m = min
{
n ∈ Z+ : λ

(
f (n+1) (Xj)

)
= 0

}
.

Using the intermediate value and its proof, and using Remark 6.3 and its proof, all

applied to f ′, we obtain at least one and at most (m− 1) roots of f ′ that are infinitely

close to Xj, and f ′ changes sign from positive to negative in going from the left to the

right of at least one of the roots. Thus we obtain at least one and at most (m− 1)

local maxima of f in the infinitely small neighborhood of Xj. Let

Mj = max {f (Xj + h) : |h| ¿ 1} .
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Similarly we show that f has a maximum in the infinitely small neighborhood of a if

aR ∈ {X1, . . . , Xk} and that f has a maximum in the infinitely small neighborhood

of b if bR ∈ {X1, . . . , Xk} . Let

M = max {Mj : 1 ≤ j ≤ k} .

We show that M = max {f (x) : x ∈ [a, b]} . So let x ∈ [a, b] be given. Suppose x is

finitely away from Xj for all j ∈ {1, . . . , k} . Then

f (x)−M = (f (x)− fR (< (x))) + (fR (< (x))−<(M)) + (<(M)−M) .

Since < (x) /∈ {X1, . . . , Xk} , we have that fR (< (x))−<(M) is negative and finite in

absolute value. Since |f (x)− fR (< (x))| ¿ 1 and since |<(M)−M | ¿ 1, we obtain

that f (x)−M < 0; that is f (x) < M.

Now suppose x is infinitely close to one of the Xj’s, say Xj0 . Then f (x) ≤ Mj0 ≤
M. Thus f (x) ≤ M for all x ∈ [a, b]. Moreover, M is assumed on [a, b] . Hence

M = max {f (x) : x ∈ [a, b]} .

Corollary 6.8 Let a, b ∈ R be such that 0 < b − a ∼ 1, let α < β be given in [a, b]

and let f : [a, b] →R be expandable on [a, b]. Then f assumes a maximum on [α, β].

Corollary 6.9 Let a < b in R be given, let α, β ∈ [a, b] be such that α < β and let

f : [a, b] →R be expandable on [a, b]. Then f assumes a maximum on [α, β].

Proof. Let t = λ (b− a) and let g : [d−ta, d−tb] → R be given by g (y) = f (dty).

Then g is expandable on [d−ta, d−tb] . Thus there exists y1 ∈ [d−tα, d−tβ] such that

g (y) ≤ g (y1) for all y ∈ [d−tα, d−tβ] . Let x1 = dty1, and let x ∈ [α, β] be given. Then

d−tx ∈ [d−tα, d−tβ] . Thus

f (x) = g
(
d−tx

)
≤ g (y1) = g

(
d−tx1

)
= f (x1) .

Hence f (x) ≤ f (x1) for all x ∈ [α, β] .
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Corollary 6.10 Let a < b in R be given, let α, β ∈ [a, b] be such that α < β and let

f : [a, b] →R be expandable on [a, b]. Then f assumes a minimum on [α, β].

Corollary 6.11 Let a < b in R be given, let α, β ∈ [a, b] be such that α < β and let

f : [a, b] →R be expandable on [a, b]. Then there exist m,M ∈ R such that

f ([α, β]) = [m,M ] .

Proof. By Corollary 6.9 and Corollary 6.10, there exist x1, x2 ∈ [α, β] such that

f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [α, β]. Let m = f(x1) and M = f(x2). By Corollary

6.6, for each y ∈ [m,M ], there exists x ∈ [x1, x2] ⊂ [α, β] such that f(x) = y. Thus,

f([α, β]) = [m,M ].

6.2.3 Rolle’s Theorem and the Mean Value Theorem

In this section, we prove Rolle’s theorem and the mean value theorem for expandable

functions, which will lead the way to an integration theory in Section 6.3.

Theorem 6.4 (Rolle’s Theorem) Let a < b in R be given, let α, β ∈ [a, b] be such

that α < β and let f : [a, b] → R be expandable. Suppose f (α) = f (β). Then there

exists c ∈ (α, β) such that f ′ (c) = 0.

Proof. If f (x) = f (α) for all x ∈ [α, β], then f ′ (x) = 0 for all x ∈ (α, β) and we

are done. So we may assume that f is not constant on [α, β]. Then f has either a

maximum or a minimum at some c ∈ (α, β). Using Corollary 6.7 and Lemma 5.9, we

obtain that f is topologically differentiable at c. Using Theorem 5.7 and Corollary

5.6, we finally obtain that f ′ (c) = 0.

Like the intermediate value theorem and the maximum theorem, the following

mean value theorem is a generalization of the corresponding result for the normal

functions [5].
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Theorem 6.5 (Mean Value Theorem) Let a < b in R be given, let α, β ∈ [a, b]

be such that α < β and let f : [a, b] → R be expandable on [a, b]. Then there exists

c ∈ (α, β) such that

f ′ (c) =
f (β)− f (α)

β − α
.

Proof. Let F : [a, b] →R be given by

F (x) = f(x)− f(α)− f(β)− f(α)

β − α
(x− α).

Then F is expandable on [a, b]. Moreover,

F (α) = F (β) = 0.

Thus, by Theorem 6.4, there exists c ∈ (α, β) such that F ′ (c) = 0; that is

0 = F ′(c) = f ′(c)− f(β)− f(α)

β − α
,

which finishes the proof of the theorem.

As a direct consequence of the Mean Value Theorem, we obtain the following

important result.

Corollary 6.12 Let a < b in R be given, and let f : [a, b] → R be expandable on

[a, b]. Then the following are true.

(i) If f ′ (x) 6= 0 for all x ∈ (a, b) then either f ′ (x) > 0 for all x ∈ (a, b) and f

is strictly increasing on [a, b], or f ′ (x) < 0 for all x ∈ (a, b) and f is strictly

decreasing on [a, b].

(ii) If f ′ (x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Proof.
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(i) Suppose f ′ (x) 6= 0 for all x ∈ (a, b). Then applying the intermediate value

theorem to f ′, we infer that either f ′ (x) > 0 for all x ∈ (a, b) or f ′ (x) < 0 for

all x ∈ (a, b). First assume that f ′ (x) > 0 for all x ∈ (a, b) and let x, y ∈ [a, b]

be such that y > x. By Theorem 6.5, there exists c ∈ (x, y) ⊂ (a, b) such that

f ′ (c) =
f (y)− f (x)

y − x
.

Since c ∈ (a, b) , we have that f ′ (c) > 0; and hence f (y) > f (x). Thus, f is

strictly increasing on [a, b].

Now assume that f ′ (x) < 0 for all x ∈ (a, b) and let x, y ∈ [a, b] be such that

y > x. Then there exists c ∈ (x, y) ⊂ (a, b) such that

f ′ (c) =
f (y)− f (x)

y − x
.

Since c ∈ (a, b) , we have that f ′ (c) < 0; and hence f (y) < f (x). Thus, f is

strictly decreasing on [a, b].

(ii) Suppose f ′ (x) = 0 for all x ∈ (a, b) , and let y ∈ [a, b] be given. There exists

c ∈ (a, y) ⊂ (a, b) such that

f ′ (c) =
f (y)− f (a)

y − a
.

Since c ∈ (a, b) , we have that f ′ (c) = 0; and hence f (y) = f (a) . Thus f (y) =

f (a) for all y ∈ [a, b] .

6.3 Integration

In this section, we develop an integration theory on the class of expandable functions,

which is a generalization of the integration theory developed in [5] for the normal

functions.
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Definition 6.5 Let a < b in R be given, and let f : [a, b] → R be expandable on

[a, b]. Then a function F : [a, b] → R is said to be an expandable primitive of f on

[a, b] if and only if F is expandable on [a, b] and F ′ (x) = f (x) for all x ∈ [a, b].

Lemma 6.4 Let a, b ∈ R be given such that 0 < b− a ∼ 1, and let f : [a, b] → R be

expandable on [a, b]. Then f has an expandable primitive F on [a, b].

Proof. Using the proof of Lemma 6.3, there exists m ∈ Z+ and there exist x1, . . . , xm ∈
[a, b] such that

[a, b] ⊂ ∪m
j=1 (xj − δ(xj), xj + δ(xj)) ,

where for all j ∈ {1, . . . ,m}, δ(xj) is a real domain of expansion of f around xj. For

all j ∈ {1, . . . , m}, there exists a regular sequence (an(xj)) in R such that

f(x) =
∞∑

n=0

an(xj)(x− xj)
n for all x ∈ (xj − δ(xj), xj + δ(xj)) .

Define F : [a, b] →R by

F (x) =
∞∑

n=0

an(xj)

(n + 1)!
(x− xj)

n+1 for all x ∈ (xj − δ(xj), xj + δ(xj)) ;

for all j ∈ {1, . . . ,m}. Using Theorem 5.21, we obtain that F is expandable on [a, b].

Using Theorem 6.2, we obtain that

F ′(x) = f(x) for all x ∈ [a, b].

Hence F is an expandable primitive of f on [a, b].

Corollary 6.13 Let a < b in R be given, and let f : [a, b] → R be expandable on

[a, b]. Then f has an expandable primitive F on [a, b].

Lemma 6.5 Let a < b in R be given, and let f : [a, b] → R be expandable on [a, b].

Let F1 and F2 be two expandable primitives of f on [a, b]. Then there exists a constant

c ∈ R such that F2 (x) = F1 (x) + c for all x ∈ [a, b].
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Proof. Let F : [a, b] → R be given by F (x) = F2 (x)−F1 (x). Then F is expandable

on [a, b] and F ′ (x) = F ′
2 (x)−F ′

1 (x) = f (x)−f (x) = 0 for all x ∈ [a, b]. By Corollary

6.12, F is constant on [a, b].

Corollary 6.14 Let a < b in R be given, let α, β ∈ [a, b] be given and let f : [a, b] →
R be expandable on [a, b]. Let F1 and F2 be two expandable primitives of f on [a, b].

Then F2 (β)− F2 (α) = F1 (β)− F1 (α).

Definition 6.6 Let a < b in R be given, let α, β ∈ [a, b] be given and let f : [a, b] →R
be expandable on [a, b]. We define the integral of f from α to β, denoted by

∫ β
α f , as

follows: Let F : [a, b] → R be an expandable primitive of f on [a, b], which exists by

Corollary 6.13 and let
∫ β

α
f = F (β)− F (α) .

Remark 6.4 By Corollary 6.14, the integral in Definition 6.6 is independent of the

choice of the expandable primitive function F ; it depends only on f , α, and β, and

hence it is well defined.

Theorem 6.6 Let a < b in R be given, let α, γ, β ∈ [a, b] be given, let f, g : [a, b] →R
be expandable on [a, b] and let κ ∈ R be given. Then

∫ β

α
(f + κg) =

∫ β

α
f + κ

∫ β

α
g; and

∫ β

α
f =

∫ γ

α
f +

∫ β

γ
f.

Proof. Let F, G : [a, b] → R be expandable primitives of f and g on [a, b], re-

spectively. Then, using Lemma 6.1, we obtain that F + κG is expandable on [a, b].

Moreover, using Theorem 5.13, we obtain that

(F + κG)′ (x) = F ′(x) + κG′(x) = f(x) + κg(x) = (f + κg) (x) for all x ∈ [a, b].
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Thus, F + κG is an expandable primitive of f + κg on [a, b]; and hence

∫ β

α
(f + κg) = (F + κG)(β)− (F + κG)(α)

= F (β)− F (α) + κ (G(β)−G(α))

=
∫ β

α
f + κ

∫ β

α
g.

Since F is an expandable primitive of f on [a, b], we also have that

∫ β

α
f = F (β)− F (α)

= (F (γ)− F (α)) + (F (β)− F (γ))

=
∫ γ

α
f +

∫ β

γ
f.



Chapter 7

Computer Functions

In this final chapter, we present one of the applications of the non-Archimedean field

R, namely the computation of derivatives of real functions that can be represented

on a computer; see also [38, 39, 40, 42].

7.1 Introduction

The general question of efficient differentiation is at the core of many parts of the work

on perturbation and aberration theories relevant in Physics and Engineering; for an

overview, see for example [11]. In this case, derivatives of highly complicated functions

have to be computed to high orders. However, even when the derivative of the function

is known to exist at the given point, numerical methods fail to give an accurate value

of the derivative; the error increases with the order, and for orders greater than three,

the errors often become too large for the results to be practically useful. On the other

hand, while formula manipulators like Mathematica are successful in finding low-order

derivatives of simple functions, they fail for high-order derivatives of very complicated

functions. Consider, for example, the function

g(x) =

sin (x3 + 2x + 1) + 3+cos(sin(ln|1+x|))
exp(tanh(sinh(cosh( sin(cos(tan(exp(x))))

cos(sin(exp(tan(x+2))))))))

2 + sin (sinh (cos (tan−1 (ln (exp(x) + x2 + 3)))))
. (7.1)

194
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Using the R numbers implemented in COSY INFINITY [8, 12], we find g(n)(0)

for 0 ≤ n ≤ 19. These numbers are listed in Table 7.1; we note that, for 0 ≤ n ≤ 19,

Order n g(n)(0) CPU Time

0 1.004845319007115 1.820 msec
1 0.4601438089634254 2.070 msec
2 −5.266097568233224 3.180 msec
3 −52.82163351991485 4.830 msec
4 −108.4682847837855 7.700 msec
5 16451.44286410806 11.640 msec
6 541334.9970224757 18.050 msec
7 7948641.189364974 26.590 msec
8 −144969388.2104904 37.860 msec
9 −15395959663.01733 52.470 msec
10 −618406836695.3634 72.330 msec
11 −11790314615610.74 97.610 msec
12 403355397865406.1 128.760 msec
13 0.5510652659782951× 1017 168.140 msec
14 0.3272787402678642× 1019 217.510 msec
15 0.1142716430145745× 1021 273.930 msec
16 −0.6443788542310285× 1021 344.880 msec
17 −0.5044562355111304× 1024 423.400 msec
18 −0.5025105824599693× 1026 520.390 msec
19 −0.3158910204361999× 1028 621.160 msec

Table 7.1: g(n)(0), 0 ≤ n ≤ 19, computed with R calculus

we list the CPU time needed to obtain all derivatives of g at 0 up to order n and

not just g(n)(0). For comparison purposes, we give in Table 7.2 the function value

and the first six derivatives computed with Mathematica. Note that the respective

values listed in Table 7.1 and Table 7.2 agree. However, Mathematica used a much

longer CPU time to compute the first six derivatives, and it failed to find the seventh

derivative as it ran out of memory. We also list in Table 7.3 the first ten derivatives

of g at 0 computed numerically using the numerical differentiation formulas

g(n)(0) = (∆x)−n




n∑

j=0

(−1)n−j

(
n
j

)
g (j∆x)


 , ∆x = 10−16/(n+1),
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for 1 ≤ n ≤ 10, together with the corresponding relative errors obtained by comparing

the numerical values with the respective exact values computed with R calculus.

Order n g(n)(0) CPU Time

0 1.004845319007116 0.11 sec
1 0.4601438089634254 0.17 sec
2 −5.266097568233221 0.47 sec
3 −52.82163351991483 2.57 sec
4 −108.4682847837854 14.74 sec
5 16451.44286410805 77.50 sec
6 541334.9970224752 693.65 sec

Table 7.2: g(n)(0), 0 ≤ n ≤ 6, computed with Mathematica

Order n g(n)(0) Relative Error

1 0.4601437841866840 54× 10−9

2 −5.266346392944456 47× 10−6

3 −52.83767867680922 30× 10−5

4 −87.27214664649106 0.20
5 19478.29555909866 0.18
6 633008.9156614641 0.17
7 −12378052.73279768 2.6
8 −1282816703.632099 7.8
9 83617811421.48561 6.4
10 91619495958355.24 149

Table 7.3: g(n)(0), 1 ≤ n ≤ 10, computed numerically

Furthermore, numerical methods and formula manipulators fail to find the deriva-

tives of certain functions at given points even though the functions are differentiable

at the respective points. For example, the functions

g1(x) = |x|5/2 · g(x) and g2(x) =

{
1−exp (−x2)

x
· g(x) if x 6= 0

0 if x = 0
, (7.2)

where g(x) is the function given in Equation (7.1) above, are both differentiable at

0; but the attempt to compute their derivatives using formula manipulators fails.

This is not specific to g1 and g2, and is generally connected to the occurrence of
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nondifferentiable parts that do not affect the differentiability of the end result, of

which case g1 is an example, as well as the occurrence of branch points in coding as

in IF-ELSE structures, of which case g2 is an example.

One of the applications of the non-Archimedean field R deals with many of the

general problems connected to computational differentiation [38, 39, 40]. Using the

calculus on R, we formulate a necessary and sufficient condition for the derivatives

of functions from R into R representable on a computer to exist, and show how to

find these derivatives whenever they exist.

7.2 Computer Functions of One Variable

At the machine level, a function f : R → R is characterized by what it does to the

original set of memory locations. So f induces a function ~F (f) : Rm → Rm, where

m is the number of memory locations affected in the process of computing f . We

note here that, without compiler optimization, ~F (f) is unique up to flipping of the

memory locations; on the other hand, with compiler optimization, ~F (f) is unique in

the subspace describing the true variables. Moreover, at the machine level, any code

constitutes solely of intrinsic functions, arithmetic operations and branches. In the

following, we formally define the machine level representations of intrinsic functions,

the Heaviside function, and the arithmetic operations.

Definition 7.1 Let I= {H, sin, cos, tan, exp, . . .} be the set consisting of the Heavi-

side function H and all the intrinsic functions on a computer, which for the sake of

convenience are assumed to include the reciprocal function; and let O= {+, ·}.

Definition 7.2 For f ∈ I, define ~Fi,k,f : Rm → Rm by

~Fi,k,f (x1, x2, . . . , xm) = (x1, . . . , xk−1, f(xi)︸ ︷︷ ︸
k

, xk+1, . . . , xm);
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so the kth memory location is replaced by f(xi). Then ~Fi,k,f is the machine level

representation of f . For ⊗ ∈ O, define ~Fi,j,k,⊗ : Rm → Rm by

~Fi,j,k,⊗(x1, x2, . . . , xm) = (x1, . . . , xk−1, xi ⊗ xj︸ ︷︷ ︸
k

, xk+1, . . . , xm),

so the kth memory location is replaced by xi ⊗ xj. Then ~Fi,j,k,⊗ is the machine level

representation of ⊗. Finally, let

F = {~Fi,k,f : f ∈ I} ∪ {~Fi,j,k,⊗ : ⊗ ∈ O}.

Definition 7.3 A function f : R → R is called a computer function if and only

if it can be obtained from intrinsic functions and the Heaviside function through a

finite number of arithmetic operations and compositions. In this case, there are some

~F1, ~F2, . . . , ~FN ∈ F such that ~F (f) = ~FN ◦ ~FN−1 ◦ · · · ◦ ~F2 ◦ ~F1, and we call ~F (f) :

Rm → Rm, already mentioned above, the machine level representation of f .

Obviously, the so defined class of computer functions in a formal way describes all

those functions that can be evaluated on a computer. Since we will be studying only

computer functions, it will be useful to define the domain Dc of computer numbers

as the subset of the real numbers representable on a computer.

We recall the following result, Corollary 4.10, which allows us to extend all intrinsic

functions given by power series to R.

Theorem 7.1 (Power Series with Purely Real Coefficients) Let
∑∞

n=0 anXn, an ∈
R, be a power series with classical radius of convergence equal to η. Let x ∈ R, and

let An(x) =
∑n

i=0 aix
i ∈ R. Then, for |x| < η and |x| 6≈ η, the sequence (An(x))

converges absolutely weakly. We define the limit to be the continuation of the power

series on R.
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Remark 7.1 The continuation H̄ of the real Heaviside function H is defined for all

x ∈ R by

H̄(x) =

{
1 if x ≥ 0
0 if x < 0

.

The functions n
√

x and 1/x are continued to R via the existence of roots and

multiplicative inverses on R (see Section 3.1).

Definition 7.4 Let f ∈ I, let D be the domain of definition of f in R, let x0 ∈ D,

and let s ∈ R. Then we say that f is extendable to x0 + s if and only if x0 + s belongs

to the domain of definition of f̄ , the continuation of f to R, where f̄ is given by

Theorem 7.1 and Remark 7.1.

Let f1, f2 ∈ I with domains of definition D1 and D2 in R respectively, let x0 ∈
D1 ∩ D2, let s ∈ R, and let ⊗ ∈ {+, ·}. Then we say that f2 ⊗ f1 is extendable to

x0 + s if and only if f1 and f2 are both extendable to x0 + s.

Let f1, f2 ∈ I with domains of definition D1 and D2 in R respectively, let x0 ∈ D1

be such that f1 (x0) ∈ D2, and let s ∈ R. Then we say that f2 ◦ f1 is extendable to

x0 + s if and only if f1 is extendable to x0 + s and f2 extendable to f1(x0 + s).

Finally, let f be a real computer function, let D be the domain of definition of

f in R, let x0 ∈ D, and let s ∈ R; then f is obtained in finitely many steps from

functions in I via compositions and arithmetic operations. We define extendability

of f to x0 + s inductively.

We have the following result about the local form of computer functions, which

will prove useful in studying the differentiability of computer functions.

Theorem 7.2 Let f be a real computer function with domain of definition D, and

let x0 ∈ D be such that f is extendable to x0 ± d. Then there exists σ > 0 in R such
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that, for 0 < x < σ,

f(x0 ± x) = A±
0 (x) +

i±∑

i=1

xq±i A±
i (x), (7.3)

where A±
i (x), 0 ≤ i ≤ i±, is a power series in x with a radius of convergence no

smaller than σ, A±
i (0) 6= 0 for i = 1, . . . , i±, and the q±i ’s are nonzero rational

numbers that are not positive integers.

Remark 7.2 Noninteger rational powers may appear in Equation (7.3) as a result

of the root function.

Proof. The statement of the theorem can easily be verified for each f ∈ I.

Let f1 and f2 be two computer functions with domains of definition D1 and D2 in

R, respectively. Let x0 ∈ D1∩D2, let f1 and f2 be both extendable to x0± d, and let

f1 and f2 satisfy Equation (7.3) around x0. For ⊗ ∈ {+, ·}, let F⊗ = f2 ⊗ f1. Thus

we have that

f1(x0 ± x) = A±
0 (x) +

i±∑

i=1

xq±i A±
i (x) for x ∈ (0, σ1),

f2(x0 ± x) = B±
0 (x) +

j±∑

j=1

xt±j B±
j (x) for x ∈ (0, σ2),

where σ1 and σ2 are both positive real numbers; A±
i (x), 0 ≤ i ≤ i±, and B±

j (x), 0 ≤
j ≤ j±, are power series in x with radii of convergence no smaller than σ = min{σ1, σ2};
A±

i (0) 6= 0 for i ∈ {1, . . . , i±} and B±
j (0) 6= 0 for j ∈ {1, . . . , j±}; and the q±i ’s and

the t±j ’s are nonzero rational numbers that are not positive integers. As a reminder,

we note that σ1, σ2, the A±
i ’s, the B±

j ’s, the q±i ’s, and the t±j ’s depend on x0.

For 0 < x < σ, we have that

F⊗(x0 ± x) = f2(x0 ± x)⊗ f1(x0 ± x) =




i±∑

i=0

xq±i A±
i (x)


⊗




j±∑

j=0

xt±j B±
j (x)


 , (7.4)
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where q±0 = t±0 = 0. It is easy to check that, for ⊗ = + or ⊗ = ·, the result in

Equation (7.4) is an expression of the form of Equation (7.3).

Now let f1 and f2 be two computer functions with domains of definition D1 and D2

in R, respectively. Let x0 ∈ D1, let f1 be extendable to x0±d, let f2 be extendable to

f1(x0±d), and let f1 and f2 satisfy Equation (7.3) around x0 and f1(x0), respectively.

Let F◦ = f2 ◦ f1. Thus we have that

f1(x0 ± x) = A±
0 (x) +

i±∑

i=1

xq±i A±
i (x) for x ∈ (0, σ1),

f2(f1(x0)± y) = B±
0 (y) +

j±∑

j=1

yt±j B±
j (y) for y ∈ (0, σ2),

where σ1 and σ2 are positive real numbers; A±
i (x), 0 ≤ i ≤ i± and B±

j (y), 0 ≤ j ≤ j±,

are power series in x and y with radii of convergence no smaller than σ = min{σ1, σ2};
A±

i (0) 6= 0 for i ∈ {1, . . . , i±} and B±
j (0) 6= 0 for j ∈ {1, . . . , j±}; and the q±i ’s and

the t±j ’s are nonzero rational numbers that are not positive integers. Without loss of

generality, we may assume that at least one of the series B±
j (y) is infinite. It follows,

since f2 is extendable to f1(x0 ± d), that the q±i ’s are all positive and that A±
0 (0) =

f1(x0). Let A±
00(x) = A±

0 (x)−A±
0 (0) = A±

0 (x)− f1(x0). Then A±
00(x) has no constant

term, and we have, for 0 < x < σ1, that f1(x0±x) = f1(x0)+A±
00(x)+

∑i±
i=1 xq±i A±

i (x).

Since A±
00(x) has no constant term and the q±i ’s are all positive, there exists σ ∈ R, 0 <

σ ≤ σ1, such that |A±
00(x)+

∑i±
i=1 xq±i A±

i (x)| < σ2 and A±
00(x)+

∑i±
i=1 xq±i A±

i (x) has the

same sign for all x satisfying 0 < x < σ. To prove the last statement, note that since

g±(x) = A±
00(x) +

∑i±
i=1 xq±i A±

i (x) is continuous at 0, there exists δ1 ∈ R, 0 < δ1 ≤ σ1,

such that 0 < x < δ1 ⇒ |g±(x) − g±(0)| = |A±
00(x) +

∑i±
i=1 xq±i A±

i (x)| < σ2. Now let

α±xq± be the leading term of g±(x). Write g±(x) = α±xq±
(
1 + g±1 (x)

)
, where g±1 (x)

is continuous at 0 and g±1 (0) = 0. Hence there exists δ2 ∈ R, 0 < δ2 ≤ σ1, such that

0 < x < δ2 ⇒ |g±1 (x)| < 1/2 ⇒ 1 + g±1 (x) > 0 ⇒ g±(x) has the same sign as α±. Let
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σ = min{δ1, δ2}. Then 0 < σ ≤ σ1, and 0 < x < σ ⇒ |A±
00(x) +

∑i±
i=1 xq±i A±

i (x)| < σ2

and A±
00(x) +

∑i±
i=1 xq±i A±

i (x) has the same sign as α±. Thus, for 0 < x < σ, we have

that

F◦(x0 ± x) = f2 (f1(x0 ± x)) = f2


f1(x0) + A±

00(x) +
i±∑

i=1

xq±i A±
i (x)




= E0


A±

00(x) +
i±∑

i=1

xq±i A±
i (x)




+
J∑

j=1





∣∣∣∣∣∣
A±

00(x) +
i±∑

i=1

xq±i A±
i (x)

∣∣∣∣∣∣

sj

Ej


A±

00(x) +
i±∑

i=1

xq±i A±
i (x)






 ,

where Ej, 0 ≤ j ≤ J, are power series; Ej(0) 6= 0 for 1 ≤ j ≤ J ; and the sj’s are

nonzero rational numbers that are not positive integers.

Note that for 1 ≤ j ≤ J ,

∣∣∣∣∣∣
A±

00(x) +
i±∑

i=1

xq±i A±
i (x)

∣∣∣∣∣∣

sj

=
∣∣∣α±

∣∣∣
sj

xsjq±
(
1 + g±1 (x)

)sj

=
∣∣∣α±

∣∣∣
sj

xsjq±Sj(g
±
1 (x)),

where g±1 (x) is of the form of Equation (7.3), g±1 (0) = 0, |g±1 (x)| < 1/2, and Sj(g
±
1 (x)) =

(
1 + g±1 (x)

)sj

is a power series in g±1 (x). Thus, it suffices to show that a power series

of an expression of the form of Equation (7.3), in which the q±i ’s are all positive and

in which A±
0 (0) = 0, yields an expression of the same form.

So let S(y) =
∑∞

m=0 amym be a power series with positive radius of convergence η.

Then, for x sufficiently small,

S


A±

0 (x) +
i±∑

i=1

xq±i A±
i (x)


 =

∞∑

m=0

am


A±

0 (x) +
i±∑

i=1

xq±i A±
i (x)




m

. (7.5)

For each i ∈ {1, . . . , i±}, write q±i = m±
i /n±i , where m±

i and n±i are positive and

relatively prime. Expanding the powers in Equation (7.5), the only exponents of x
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that may occur are of the form k + s, where k is a positive integer and

s ∈ T =

{
m±

i

n±i
, . . . , (n±i − 1)

m±
i

n±i
/i = 1, . . . , i±

}
,

a finite set. For each m let Sm(x) = am

(
A±

0 (x) +
∑i±

i=1 xq±i A±
i (x)

)m
. Then Sm is an

infinite series

Sm(x) =
∞∑

n=0

umn(x), (7.6)

where umn(x) is of the form amnxk+s with amn ∈ R, k a positive integer, and s ∈ T .

Let η1 be the radius of convergence of A±
0 (x) +

∑i±
i=1 xq±i A±

i (x), and let 0 < x < η1/2

be such that
∣∣∣A±

0 (x) +
∑i±

i=1 xq±i A±
i (x)

∣∣∣ < η/2. Then for each m, the sum in Equation

(7.6) converges absolutely; so we can rearrange the terms in Sm. Moreover, the double

sum
∑∞

m=0

∑∞
n=0 umn(x) converges; so (see for example [31], pages 205-208) we obtain

that

S


A±

0 (x) +
i±∑

i=1

xq±i A±
i (x)


 =

∞∑

m=0

∞∑

n=0

umn(x) =
∞∑

n=0

∞∑

m=0

umn(x).

Thus rearranging and regrouping the terms in Equation (7.5), we obtain an expression

of the form C±
0 (x) +

∑p±
p=1 xr±p C±

p (x), where C±
p (x), 0 ≤ p ≤ p±, are power series,

C±
p (0) 6= 0 for 1 ≤ p ≤ p±, p± is finite, and the r±p ’s are nonzero rational numbers

which are not positive integers. Hence S
(
A±

0 (x) +
∑i±

i=1 xq±i A±
i (x)

)
is of the form of

Equation (7.3). It follows that F◦(x0 ± x) in Equation (7.5) is itself of the form of

Equation (7.3).

Now let f be a real computer function with domain of definition D, and let x0 ∈ D

be such that f is extendable to x0 ± d. Then f is obtained in finitely many steps

from functions in I via compositions and arithmetic operations. Using induction, we

obtain the result immediately from the above.

Since the family of computer functions is closed under differentiation to any order

n, Theorem 7.2 holds for derivatives of computer functions as well.
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Definition 7.5 (Continuation of Real Computer Functions) Let f be a real computer

function with domain of definition D and let x0 ∈ D be such that f is extendable to

x0 ± d. Then f is given around x0 by a finite combination of roots and power series.

Since roots and power series have already been extended to R, f is extended to R
around x0 in a natural way similar to that of the extension of power series from R

to C. That is, if f(x0 ± x) = A±
0 (x) +

∑i±
k

i=1 xq±i A±
i (x) for 0 < x < σ, then we have

for the continued function f̄ that f̄(x0 ± x) = A±
0 (x) +

∑i±
k

i=1 xq±i A±
i (x) for all x ∈ R

satisfying 0 < x < σ and x 6≈ σ.

Theorem 7.3 Let f be a computer function that is differentiable at the point x0 ∈ R

and extendable to x0±d. Then the continued function f̄ is topologically differentiable

at x0, and the derivatives of f and f̄ at x0 agree.

Proof. Since f is differentiable at x0, there exists σ > 0 in R such that, for x ∈ R

and 0 < x < σ, f(x0 ± x) = f(x0) ± f ′(x0)x +
∑∞

i=2 α±i xi +
∑J±

j=1 xq±j A±
j (x); where

q±1 , . . . , q±J± are noninteger rational numbers greater than 1, and A±
0 , A±

1 , . . . , A±
J± are

power series in x. Thus we have for the continued function f̄ that f̄(x0 ± x) =

f(x0)± f ′(x0)x +
∑∞

i=2 α±i xi +
∑J±

j=1 xq±j A±
j (x) for all x ∈ R satisfying 0 < x < σ and

x 6≈ σ. Let

q± =

{
min{q±j ; 1 ≤ j ≤ J±} if {q±j ; 1 ≤ j ≤ J±} 6= ∅
∞ if {q±j ; 1 ≤ j ≤ J±} = ∅ ,

let q = min(q+, q−), and let k = min{1, q − 1}. Then 0 < k ≤ 1. We show that

the continued function f̄ is topologically differentiable at x0, with derivative f̄ ′(x0) =

f ′(x0).

Let x ∈ R satisfy 0 < x < σ and x 6≈ σ. Then we have that

∣∣∣∣∣
f̄(x0 ± x)− f(x0)

(±x)
− f ′(x0)

∣∣∣∣∣ =

∣∣∣∣∣∣
±

∞∑

i=2

α±i xi−1 ±
J±∑

j=1

xq±j −1A±
j (x)

∣∣∣∣∣∣
.
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Let ε > 0 be given in R. As a first case, assume ε is not infinitely small, and let εr =

<(ε), the real part of ε. Since the real limit of
∣∣∣±∑∞

i=2 α±i yi−1 ±∑J±
j=1 yq±j −1A±

j (y)
∣∣∣,

as y → 0+, y ∈ R, is equal to zero, there exists δ ∈ R, 0 < δ < σ/2, such that

∣∣∣∣∣
f(x0 ± y)− f(x0)

(±y)
− f ′(x0)

∣∣∣∣∣ <
εr

2
whenever y ∈ R and 0 < y < 2δ.

Now let x ∈ R be such that 0 < x < δ, and let xr = <(x). If xr = 0, then x

is infinitely small. Thus
∣∣∣{f̄(x0 ± x)− f(x0)}/(±x)− f ′(x0)

∣∣∣ is infinitely small, and

hence smaller than ε. If xr 6= 0, then 0 < xr < 2δ. Therefore,

∣∣∣∣∣
f̄(x0 ± x)− f(x0)

(±x)
− f ′(x0)

∣∣∣∣∣ =0

∣∣∣∣∣
f(x0 ± xr)− f(x0)

(±xr)
− f ′(x0)

∣∣∣∣∣ <
εr

2
.

Hence
∣∣∣{f̄(x0 + x)− f(x0)}/x− f ′(x0)

∣∣∣ < ε whenever 0 < |x| < δ.

As a second case, assume ε is infinitely small. Let

m± =

{
min{i ≥ 2 : α±i 6= 0} if {i ≥ 2 : α±i 6= 0} 6= ∅
∞ if {i ≥ 2 : α±i 6= 0} = ∅ .

If m± = ∞, let α±m± = 0. With the convention 1/0 = ∞, let

δ =
1

2
min

{(
ε/|A+

1 (0)|
)1/k

,
(
ε/|A−

1 (0)|
)1/k

,
(
ε/|α+

m+ |
)1/k

,
(
ε/|α−m−|

)1/k
}

.

Then δ > 0, and if 0 < |x| < δ then |{f̄(x0 + x)− f(x0)}/x− f ′(x0)| < ε. Thus f̄ is

topologically differentiable at x0, and f̄ ′(x0) = f ′(x0).

In the rest of this chapter we will use f instead of f̄ to represent the continuation

of a real computer function f .

7.3 Computation of Derivatives

In this section, we develop a criterion that will allow us not only to check the continuity

and the differentiability of a real computer function f at a point x0, but also to obtain

all existing derivatives of f at x0.
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Lemma 7.1 Let f be a computer function. Then f is defined at x0 ∈ Dc if and only

if f(x0) can be evaluated on a computer.

This lemma of course hinges on a careful implementation of the intrinsic functions

and operations, in particular in the sense that they should be executable for any

floating point number in the domain of definition that produces a result within the

range of allowed floating point numbers.

Lemma 7.2 Let f be a computer function, let D be the domain of definition of f in

R, let x0 ∈ D ∩ Dc, and let s ∈ R. Then f is extendable to x0 + s if and only if

f(x0 + s) can be evaluated on the computer.

Lemma 7.3 Let f be a computer function, and let x0 be such that f is defined at x0

and extendable to x0 ± d. Then f is continuous at x0 if and only if

f(x0 − d) =0 f(x0) =0 f(x0 + d).

Proof. Since f is a computer function, defined at x0 and extendable to x0 ± d, we

have that

f(x0 + x) = A0(x) +
Jr∑

j=1

xqjAj(x) and f(x0 − x) = B0(x) +
Jl∑

j=1

xtjBj(x)

for 0 < x < σ, where σ is a positive real number; where the Aj’s and the Bj’s are

power series in x, where Aj(0) 6= 0 for 1 ≤ j ≤ Jr and Bj(0) 6= 0 for 1 ≤ j ≤ Jl; and

where the qj’s and the tj’s are nonzero rational numbers that are not positive integers.

Let A0(x) =
∑∞

i=0 αix
i and B0(x) =

∑∞
i=0 βix

i. Then f is continuous at x0 if and only

if qj > 0 for all j ∈ {1, . . . , Jr}, tj > 0 for all j ∈ {1, . . . , Jl}, and α0 = β0 = f(x0);

that is, if and only if f(x0 + d) =0 f(x0) =0 f(x0 − d).
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Theorem 7.4 Let f be a computer function that is continuous at x0 and extendable

to x0 ± d. Then f is differentiable at x0 if and only if (f(x0 + d) − f(x0))/d and

(f(x0) − f(x0 − d))/d are both at most finite in absolute value, and their real parts

agree. In this case,

f(x0 + d)− f(x0)

d
=0 f ′(x0) =0

f(x0)− f(x0 − d)

d
.

If f is differentiable at x0 and extendable to x0±d, then f is twice differentiable at x0 if

and only if (f(x0+2d)−2f(x0+d)+f(x0))/d
2 and (f(x0)−2f(x0−d)+f(x0−2d))/d2

are both at most finite in absolute value, and their real parts agree. In this case

f(x0 + 2d)− 2f(x0 + d) + f(x0)

d2
=0 f (2)(x0) =0

f(x0)− 2f(x0 − d) + f(x0 − 2d)

d2
.

In general, if f is (n − 1) times differentiable at x0 and extendable to x0 ± d, then

f is n times differentiable at x0 if and only if d−n

(
∑n

j=0(−1)n−j

(
n
j

)
f (x0 + jd)

)

and d−n

(
∑n

j=0(−1)j

(
n
j

)
f (x0 − jd)

)
are both at most finite in absolute value, and

their real parts agree. In this case

d−n




n∑

j=0

(−1)n−j

(
n
j

)
f (x0 + jd)


 =0 f (n)(x0)

=0 d−n




n∑

j=0

(−1)j

(
n
j

)
f (x0 − jd)


 .

Proof. Since f is continuous at x0, we have that

f(x0 + x) = f(x0) +
∞∑

i=1

αix
i +

Jr∑

j=1

xqjAj(x)

f(x0 − x) = f(x0) +
∞∑

i=1

βix
i +

Jl∑

j=1

xtjBj(x) (7.7)

for 0 < x < σ, where σ is a positive real number, where the Aj’s and the Bj’s are

power series in x that do not vanish at x = 0, and where the qj’s and the tj’s are
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noninteger positive rational numbers. Observe that f is n times differentiable at x0

if and only if

qj > n for 1 ≤ j ≤ Jr, tj > n for 1 ≤ j ≤ Jl, and αj = (−1)jβj for 1 ≤ j ≤ n.

(7.8)

Assume f is differentiable at x0. Then, using Equation (7.8), we have that

qj > 1 for all j ∈ {1, . . . , Jr}, tj > 1 for all j ∈ {1, . . . , Jl}, and α1 = −β1 = f ′(x0).

Hence,

f(x0 + d)− f(x0)

d
=

∞∑

i=1

αid
i−1 +

Jr∑

j=1

dqj−1Aj(d) =0 α1 = f ′(x0).

Similarly,

f(x0)− f(x0 − d)

d
= −

∞∑

i=1

βid
i−1 −

Jl∑

j=1

dtj−1Bj(d) =0 −β1 = f ′(x0).

Combining the above two equations, we obtain that

f(x0 + d)− f(x0)

d
=0 f ′(x0) =0

f(x0)− f(x0 − d)

d
.

Now assume that (f(x0 + d) − f(x0))/d and (f(x0) − f(x0 − d))/d are both at

most finite in absolute value, and their real parts agree. Then, using Equation (7.7),

|∑∞
i=1 αid

i−1 +
∑Jr

j=1 dqj−1Aj(d)| and | − ∑∞
i=1 βid

i−1 − ∑Jl
j=1 dtj−1Bj(d)| are both at

most finite, and

∞∑

i=1

αid
i−1 +

Jr∑

j=1

dqj−1Aj(d) =0 −
∞∑

i=1

βid
i−1 −

Jl∑

j=1

dtj−1Bj(d).

Hence,

qj > 1 for all j ∈ {1, . . . , Jr}, tj > 1 for all j ∈ {1, . . . , Jl}, and α1 = −β1,

from which we infer, using Equation (7.8), that f is differentiable at x0 with

f ′(x0) = α1 = −β1 =0
f(x0 + d)− f(x0)

d
=0

f(x0)− f(x0 − d)

d
.
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This finishes the proof of the first part of the theorem.

Since the second part of the theorem is only a special case of the last one, with

n = 2, we will go directly to proving the last part of the theorem. Note that since f

is (n− 1) times differentiable at x0,

f(x0 + x) =
n−1∑

i=0

f (i)(x0)

i!
xi +

∞∑

i=n

αix
i +

Jr∑

j=1

xqjAj(x)

f(x0 − x) =
n−1∑

i=0

(−1)i f
(i)(x0)

i!
xi +

∞∑

i=n

βix
i +

Jl∑

j=1

xtjBj(x)

for 0 < x < σ, where σ is a positive real number, where the Aj’s and the Bj’s are as

before, and where the qj’s and the tj’s are noninteger rational numbers greater than

n− 1.

Assume f is n times differentiable at x0. Then

qj > n for all j ∈ {1, . . . , Jr}, tj > n for all j ∈ {1, . . . , Jl},

and

n! αn = (−1)nn! βn = f (n)(x0).

It can be shown by induction on n that

d−n




n∑

j=0

(−1)n−j

(
n
j

)
f (x0 + jd)


 =0 n! αn and

d−n




n∑

j=0

(−1)j

(
n
j

)
f (x0 − jd)


 =0 (−1)nn! βn.

Therefore,

d−n




n∑

j=0

(−1)n−j

(
n
j

)
f (x0 + jd)


 =0 f (n)(x0)

=0 d−n




n∑

j=0

(−1)j

(
n
j

)
f (x0 − jd)


 .
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Now assume that

d−n




n∑

j=0

(−1)n−j

(
n
j

)
f (x0 + jd)


 and d−n




n∑

j=0

(−1)j

(
n
j

)
f (x0 − jd)




are both at most finite in absolute value, and their real parts agree. Then

qj > n for all j ∈ {1, . . . , Jr}, tj > n for all j ∈ {1, . . . , Jl}, and n! αn = (−1)nn! βn,

from which we infer, again using Equation (7.8), that f is n times differentiable at

x0 with

f (n)(x0) = n! αn = (−1)nn! βn =0 d−n




n∑

j=0

(−1)n−j

(
n
j

)
f (x0 + jd)




=0 d−n




n∑

j=0

(−1)j

(
n
j

)
f (x0 − jd)


 .

This finishes the proof of the theorem.

Since knowledge of f(x0 − d) and f(x0 + d) gives us all the information about a

computer function f extendable to x0 ± d, in a real positive radius σ around x0, we

have the following result which states that, from the mere knowledge of f(x0 − d)

and f(x0 + d), we can find at once the order of differentiability of f at x0 and the

accurate values of all existing derivatives.

Theorem 7.5 Let f be a computer function that is continuous at x0 and extendable

to x0±d. Then f is n times differentiable at x0 if and only if there exist real numbers

α1, . . . , αn such that

f(x0 − d) =n f(x0) +
n∑

j=1

(−1)jαjd
j and f(x0 + d) =n f(x0) +

n∑

j=1

αjd
j.

Moreover, in this case f (j)(x0) = j! αj for 1 ≤ j ≤ n.
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7.4 Examples

As a first example, we consider a simple function and study its differentiability at

0. Let f(x) = x
√
|x| + exp(x). It is easy to see that f is differentiable at 0 with

f(0) = f ′(0) = 1 and that f is not twice differentiable at 0. We will show now how

using the result of Theorem 7.4 will lead us to the same conclusion. First we note

that f is defined at 0 and extendable to ±d.

It is useful to look at what goes on inside the computer for this simple example.

Altogether, we need six memory locations to store the variable, the intermediate

values, and the function value. These six memory locations are

x, S1 = abs(x), S2 = sqrt(S1),
S3 = x ∗ S2, S4 = exp(x), a = S3 + S4.

So we can look at ~F (f) as a function from R6 into R6. Let





~E : R → R6; ~E(x) = (x, 0, 0, 0, 0, 0)
~F : R6 → R6; ~F (x, p2, p3, p4, p5, p6) = (x, S1, S2, S3, S4, a)
P : R6 → R; P (x, S1, S2, S3, S4, a) = a

G : R → R; G(x) = P ◦ ~F ◦ ~E(x)

.

Then G(x) = a =M f(x), where M is an upper bound of the support points that can

be obtained on the computer.

If we input the value x = −d, then the six memory locations will be filled as

follows:

x = −d, S1 = d, S2 = d1/2,

S3 = −d3/2, S4 =
∑M

j=0(−1)jdj/j!, a = −d3/2 +
∑M

j=0(−1)jdj/j!.

So the output will be G(−d) = 1−d−d3/2 +d2/2!+
∑M

j=3(−1)jdj/j! =M f(−d). If we

input the value x = 0, the output is G(0) = 1. Since f(0) is real and f(0) =M G(0),
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we infer that f(0) = 1. Similarly, we find that

G(d) = 1 + d + d3/2 + d2/2! +
M∑

j=3

dj/j! =M f(d)

G(−2d) = 1− 2d− 23/2d3/2 + 2d2 +
M∑

j=3

(−2)jdj/j! =M f(−2d)

G(2d) = 1 + 2d + 23/2d3/2 + 2d2 +
M∑

j=3

2jdj/j! =M f(2d).

Note that f(−d) =0 1 = f(0) =0 f(d); hence f is continuous at 0. Since

f(d)− f(0)

d
=0 1 =0

f(0)− f(−d)

d
,

we infer that f is differentiable at 0, with f ′(0) = 1. However,

f(2d)− 2f(d) + f(0)

d2
=0

(
23/2 − 2

)
d−1/2 + 1,

which implies that |(f(2d)−2f(d)+f(0))/d2| is infinitely large. Hence f is not twice

differentiable at 0.

Next, we consider the two functions already mentioned in the introduction, Equa-

tion (7.2), which are clearly computer functions. Consider first the function g1(x). If

we input the values x = −3d,−2d,−d, 0, d, 2d, 3d, we obtain the following output up

to depth 3

g1(±3d) =3 15.66398831641272d5/2

g1(±2d) =3 5.684263512907927d5/2

g1(±d) =3 1.004845319007115d5/2

g1(0) = 0.

Since g1(−d) =0 g1(0) =0 g1(d), g1 is continuous at 0. A simple computation shows

that {g1(d) − g1(0)}/d =0 0 =0 {g1(0) − g1(−d)}/d, from which we infer that g1 is
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differentiable at 0, with g′1(0) = 0. Also {g1(2d)−2g1(d)+g1(0)}/d2 =0 0 =0 {g1(0)−
2g1(−d) + g1(−2d)}/d2, from which we conclude that g1 is twice differentiable at 0,

with g
(2)
1 (0) = 0. On the other hand, {g1(3d)− 3g1(2d) + 3g1(d)− g1(0)}/d3 ∼ d−1/2,

which entails that |(g1(3d) − 3g1(2d) + 3g1(d) − g1(0))/d3| is infinitely large. Hence

g1 is not three times differentiable at 0.

By evaluating g2(−d) and g2(d) up to any fixed depth and applying Theorem 7.5,

Order n g
(n)
2 (0) CPU Time

0 0. 3.400 msec
1 1.004845319007115 4.030 msec
2 0.9202876179268508 5.710 msec
3 −18.81282866172102 8.240 msec
4 −216.8082597872205 12.010 msec
5 −364.2615904917884 17.570 msec
6 101933.1724529188 25.150 msec
7 3798311.370563978 35.700 msec
8 60765353.84260825 49.790 msec
9 −1441371402.871872 67.210 msec
10 −156736847166.3961 89.840 msec
11 −6725706835826.155 118.950 msec
12 −131199307184575.8 154.530 msec
13 5770286440090848. 200.660 msec
14 0.7837443136320079× 1018 256.460 msec
15 0.4850429351252696× 1020 321.630 msec
16 0.1734774579876559× 1022 400.140 msec
17 −0.1757849296527536× 1023 478.940 msec
18 −0.9350429649226352× 1025 582.150 msec
19 −0.9521402181303937× 1027 702.390 msec

Table 7.4: g
(n)
2 (0), 0 ≤ n ≤ 19, computed with R calculus

we obtain that g2 is differentiable at 0 up to arbitrarily high orders. In Table 7.4,

we list only the function value and the first nineteen derivatives of g2 at 0, together

with the CPU time needed to compute all derivatives up to the respective order.

The numbers in Table 7.4 were obtained using the implementation of R in COSY

INFINITY [8, 12].
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7.5 Computer Functions of Many Variables

Since we know now how to compute the nth order derivative of a real computer

function of one variable at a given real point x0 whenever the nth order derivative

exists and the function is extendable to x0±d, the following lemma shows how to find

all nth order partial derivatives at a given real point ~p0 of a function f : Rm → R which

can be represented on a computer whenever all the nth order partial derivatives exist

and are continuous in a neighborhood of ~p0 and extendable to ~p0 + (±d,±d, . . . ,±d).

Lemma 7.4 Let f : Rm → R be a function representable on a computer whose

nth order partial derivatives exist and are continuous in the neighborhood of the point

~p0 = (x01, x02, . . . , x0m). Then the nth order partial derivatives of f at ~p0 can always be

computed in terms of nth order derivatives of real computer functions of one variable.

Proof. Let l be the number of nth order partial derivatives of f ; we note in passing

that it can be shown [2] by induction on n and m that l = (n+m− 1)!/(n! (m− 1)!).

Let k = l ·m and let p1, p2, . . . , pk denote the first k prime numbers. For j = 1, . . . , k,

let αj = n+1
√

pj. For i = 1, . . . , l, let

fi(x) = f(x01 + α(i−1)m+1x, x02 + α(i−1)m+2x, . . . , x0m + αimx).

Then fi, i = 1, . . . , l, are l real computer functions of x, n times differentiable at

0. Evaluating (dnfi/dxn)|x=0 for i = 1, . . . , l yields l equations in the l unkowns

∂nf

∂xn1
1 , ∂xn2

2 , . . . , ∂xnm
m

∣∣∣∣∣
~p=~p0

, with





n1, n2, . . . , nm ∈ {0, 1, . . . , n}
and
n1 + n2 + · · ·+ nm = n

.

The matrix M̂ of the coefficients has as entries products of the different α’s raised

to exponents between 0 and n. In the ith row, we have only products of the form
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cn;n1,n2,...,nmαn1

(i−1)m+1α
n2

(i−1)m+2 . . . αnm
im , where cn;n1,n2,...,nm is a positive integer. The

determinant of M̂ is the sum of l! terms, each of which is the product of a positive

integer and the α’s raised to exponents less than or equal to n, and such that not

all the exponents in any one term agree with those in any of the remaining (l! − 1)

terms. By our choice of the α’s, no cancellation in the evaluation of the determinant

could occur; hence det M̂ 6= 0.

It is worth noting that the choice of the α’s above is far from being the only one

possible. Let α1, α2, . . . , αk be any set of k real numbers. We look at det M̂ as a

function from Rk into R. A purely statistical argument shows that it is very unlikely

that det M̂ be zero for a given choice of numbers. We are led to believe that there

exist even uncountably many choices of (α1, α2, . . . , αk) ∈ Rk that give a nonvanishing

determinant. Here we provide simple choices of the α’s only in the case m = 2: For

m = 2, we have that l = n + 1 and k = 2(n + 1). For i = 1, 2, . . . , n + 1, let α2i−1 = 1

and α2i = βi−1, where β0 = 0 and βj1 6= βj2 if j1 6= j2 in {0, 1, . . . , n}. Then

M̂ =




1 0 0 . . . 0 0

1 nβ1
n(n−1)

2
β2

1 . . . nβn−1
1 βn

1
...

...
...

...
...

...

1 nβn
n(n−1)

2
β2

n . . . nβn−1
n βn

n




.

Therefore,

det M̂ = Cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2
1 . . . βn

1

β2 β2
2 . . . βn

2
...

...
...

...
βn β2

n . . . βn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= CnV (β1, β2, . . . , βn), where

Cn =
n∏

j=1

(
n
j

)
, and V (β1, β2, . . . , βn) =




n∏

k1=1

βk1




n−1∏

k2=1

n∏

k3=k2+1

(βk3 − βk2)



216

is the well-known Vandermonde determinant. Hence

det M̂ =




n∏

j1=1

(
n
j1

)





n∏

j2=1

βj2




n−1∏

j3=1

n∏

j4=j3+1

(βj4 − βj3) 6= 0.
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