Positive Operators on a Free Banach Space over the Complex Levi-Civita Field*

José Aguayo ${ }^{1 * *}$, Miguel Nova ${ }^{2 * * *}$, and Khodr Shamseddine ${ }^{3 * * * *}$
${ }^{l}$ Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepcion, Casilla 160-C, Concepción, Chile
${ }^{2}$ Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
${ }^{3}$ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Received March 9, 2016

Abstract

Let \mathcal{C} be the complex Levi-Civita field and let $c_{0}(\mathcal{C})$ or, simply, c_{0} denote the space of all null sequences of elements of \mathcal{C}. A non-Archimedean norm is defined naturally on c_{0} with respect to which c_{0} is a Banach space. In this paper, we study the properties of positive operators on c_{0} which are similar to those of positive operators in classical functional analysis; however the proofs of many of the results are nonclassical. Then we use our study of positive operators to introduce a partial order on the set of compact and self-adjoint operators on c_{0} and study the properties of that partial order.

DOI: 10.1134/S2070046617020029
Key words: non-Archimedean fields, Banach spaces, positive operators, partial order of operators.

1. INTRODUCTION

Two of the most useful and interesting mathematical theories in real or complex functional analysis have been Hilbert spaces and continuous linear operators. These theories have exactly matched the needs of many branches of physics, biology, and other fields of science.

The importance of Hilbert spaces over the real or complex fields has led many researchers to try and extend the concept to non-Archimedean fields. One of the first attempts to define an appropriate non-Archimedean inner product was made by G. K. Kalisch [2]. Two of the most recent papers about non-Archimedean Hilbert spaces are those of L. Narici and E. Beckenstein [3] and the authors [1]. They define a non-Archimedean inner product on a vector space E over a complete non-Archimedean and non-trivially valued field \mathbb{K} as a non-degenerated \mathbb{K}-function in $E \times E$, which is linear in the first variable and satisfies what they call the Cauchy-Schwarz type inequality. Recall that a vector space E is said to be orthomodular if for every closed subspace M of E, we have that E is the directed sum of M and its normal complement. The existence of infinite-dimensional non-classical orthomodular spaces was an open question until the following interesting theorem was proved by M. P. Solèr [7]: "Let X be an orthomodular space and suppose it contains an orthonormal sequence e_{1}, e_{2}, \cdots (in the sense of the inner product). Then the base field is \mathbb{R} or $\mathbb{C} "$. Based on the result of Solèr, if \mathbb{K} is a non-Archimedean, complete valued field and $\mathcal{L}\left(c_{0}\right)$ is the space of all continuous linear operators on c_{0}, then there exist $T \in \mathcal{L}\left(c_{0}\right)$ which does not have an adjoint. For example, $T(x)=\left(\sum_{i=1}^{\infty} x_{i}\right) e_{1}$ is such a linear operator; on the other hand, the normal projections (see the definition below) admit adjoints.

[^0]Throughout this paper, we will use the following notations: Given a valued field $(\mathbb{K},|\cdot|)$ and a subset B of \mathbb{K}, we denote by $|B|$ the set $\{|x|: x \in B\}$. Moreover, given a normed \mathbb{K}-vector space E and a subspace F of E, we denote by $\|F\|$ the set $\{\|x\|: x \in F\}$.

In this paper, we consider the complex Levi-Civita field \mathcal{C} as \mathbb{K}; in \mathcal{C}, we take the natural involution $z \rightarrow \bar{z}$ (complex conjugation) when defining an inner product on c_{0}. Recall that a free Banach space E is a non-Archimedean Banach space for which there exists a family $\left(e_{i}\right)_{i \in I}$ in $E \backslash\{\mathbf{0}\}$ such that any element $x \in E$ can be written in the form of a convergent $\operatorname{sum} x=\sum_{i \in I} x_{i} e_{i}, x_{i} \in \mathbb{K}$, i.e., $\lim _{i \in I} x_{i} e_{i}=$ 0 (the limit is with respect to the Fréchet filter on I) and $\|x\|=\sup _{i \in I}\left|x_{i}\right|\left\|e_{i}\right\|$. The family $\left(e_{i}\right)_{i \in I}$ is called an orthogonal basis. Now, if E is a free Banach space of countable type over \mathcal{C}, then it is known that E is isometrically isomorphic to

$$
c_{0}(\mathbb{N}, \mathcal{e}, s):=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in \mathcal{C} ; \lim _{n \rightarrow \infty}\left|x_{n}\right| s(n)=0\right\}
$$

where $s: \mathbb{N} \rightarrow(0, \infty)$. Of course, it could be that, for some $i \in \mathbb{N}, s(i) \notin|\mathcal{C} \backslash\{0\}|$. But, if the range of s is contained in $|\mathcal{C} \backslash\{0\}|$, it is enough to study $c_{0}(\mathbb{N}, \mathcal{C})$ [taking s to be the constant function 1], which will be denoted by $c_{0}(\mathrm{C})$ or, simply, c_{0}. We already know that c_{0} is not orthomodular.

In a previous paper [1], we characterized closed subspaces of c_{0} with a normal complement; that is, we characterized those non-trivial closed subspaces M which admit a non-trivial closed subspace N such that
a. $c_{0}=M \oplus N$, and
b. for $x \in M$ and $y \in N,\langle x, y\rangle=0$.
N is actually the subspace $M^{p}=\left\{y \in c_{0}:\langle x, y\rangle=0\right.$ for all $\left.x \in M\right\}$ and then $c_{0}=M \oplus M^{p}$. Such a subspace, together with its normal complement, defines a special kind of projection, the so-called normal projection; that is, a linear operator $P: c_{0} \rightarrow c_{0}$ such that
i. P is continuous;
ii. $P^{2}=P$;
iii. $\langle z, w\rangle=0$, for all $z \in N(P)$ and for all $w \in R(P)$.

Actually these concepts are not exclusive to c_{0}; if E is a vector space with an inner product, then "normal complements" and "normal projections" have similar meaning.

Throughout this paper \mathcal{R} (resp. \mathcal{C}) will denote the real (resp. complex) Levi-Civita field; for a detailed study of \mathcal{R} (and \mathcal{C}), we refer the reader to [5,6] and the references therein. Any $z \in \mathcal{C}($ resp. $\mathcal{R})$ is a function from \mathbb{Q} into \mathbb{C} (resp. \mathbb{R}) with left-finite support. For $w \in \mathcal{R}$ (resp. \mathcal{C}), we will denote by $\lambda(w)=\min (\operatorname{supp}(w))$, for $w \neq 0$, and $\lambda(0)=+\infty$. On the other hand, since each $z \in \mathcal{C}$ can be written as $z=x+i y$, where $x, y \in \mathcal{R}$, we have that $\lambda(z)=\min \{\lambda(x), \lambda(y)\}$. If we define

$$
|z|=\left\{\begin{array}{cc}
e^{-\lambda(z)} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array}\right.
$$

then $|\cdot|$ is a non-Archimedean absolute value in \mathcal{C}. It is not hard to prove that (\mathcal{C}, Δ), where Δ is the metric induced by $|\cdot|$, is a complete metric space. Now let $z=x+i y$ in \mathcal{C} be given. If $x \neq 0 \neq y$ then

$$
|z|=e^{-\lambda(z)}=e^{-\min \{\lambda(x), \lambda(y)\}}=\max \left\{e^{-\lambda(x)}, e^{-\lambda(y)}\right\}=\max \{|x|,|y|\}
$$

We can easily also check that $|z|=\max \{|x|,|y|\}$ when $x=0$ or $y=0$. Thus,

$$
|z|=\max \{|x|,|y|\} \text { for all } z=x+i y \in \mathcal{C} .
$$

In other words, \mathcal{C} is topologically isomorphic to \mathcal{R}^{2} provided with the product topology induced by $|\cdot|$ in \mathcal{R}.

We denote by $c_{0}(\mathcal{C})$, or simply c_{0}, the space

$$
c_{0}=\left\{z=\left(z_{n}\right)_{n \in \mathbb{N}}: z_{n} \in \mathcal{C} ; \lim _{n \rightarrow \infty} z_{n}=0\right\} .
$$

A natural non-Archimedean norm on c_{0} is $\|z\|_{\infty}=\sup \left\{\left|z_{n}\right|: n \in \mathbb{N}\right\}$. Writing $z_{n}=x_{n}+i y_{n}$ and $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}}$, we also have the equality

$$
\|z\|_{\infty}=\max \left\{\|x\|_{\infty},\|y\|_{\infty}\right\} .
$$

It follows that $\left(c_{0},\|\cdot\|_{\infty}\right)$ is a Banach space. For a detailed study of non-Archimedean Banach spaces, in general, we refer the reader to [8].

Recall that a topological space is called separable if it has a countable dense subset. In the class of real or complex Hilbert spaces, we can distinguish two types: those spaces which are separable and those which are not separable. If E is a separable normed space over \mathbb{K}, then each one-dimensional subspace is homeomorphic to \mathbb{K}, so \mathbb{K} must be separable too. Nevertheless, we know that there exist non-Archimedean fields which are not separable, for example, the Levi-Civita fields \mathcal{R} and \mathcal{C}. Thus, for non-Archimedean normed spaces the concept of separability cannot be used if \mathbb{K} is not separable. However, by linearizing the notion of separability, we obtain a generalization, useful for each nonArchimedean valued field \mathbb{K}. A normed space E over \mathbb{K} is said to be of countable type if it contains a countable subset whose linear hull is dense in E. An example of a normed space of countable type is $\left(c_{0}(\mathbb{K}),\|\cdot\|_{\infty}\right)$, for any non-Archimedean valued field \mathbb{K}, in particular, when \mathbb{K} is the complex Levi-Civita field C .

Let us consider the following form:

$$
\langle\cdot, \cdot\rangle: c_{0} \times c_{0} \rightarrow \mathcal{C} ;\langle z, w\rangle=\sum_{n=1}^{\infty} z_{n} \overline{w_{n}} .
$$

This form is well-defined since $\lim _{n \rightarrow \infty} z_{n} \overline{w_{n}}=0$ and, at the same time, $\langle\cdot, \cdot\rangle$ satisfies Definition 2.4.1, p. 38, in [4].

Let

$$
\|z\|:=\sqrt{|\langle z, z\rangle|} .
$$

Then, since $|2|=1,\|\cdot\|$ is a non-Archimedean norm on c_{0} (Theorem 2.4.2 (ii) in [4]).
It follows easily that

$$
\langle x, y\rangle=0, \forall y \in c_{0} \Rightarrow x=\mathbf{0}
$$

which is referred to as the non-degeneracy condition.
The next theorem was proved in [3] and tells us when the non-Archimedean norm in a Banach space is induced by an inner product.

Theorem 1.1. Let $(E,\|\cdot\|)$ be a \mathbb{K}-Banach space. Then, if $\|E\| \subset|\mathbb{K}|^{1 / 2}$ and every one-dimensional subspace of E admits a normal complement, then E has, at least, an inner product that induces the norm $\|\cdot\|$.

If $E=c_{0}$ and $\mathbb{K}=\mathcal{C}$, then the conditions of the theorem above are satisfied. In fact, if $z \in c_{0}, z \neq \mathbf{0}$, then $\lim _{n \rightarrow \infty} z_{n}=0$, which implies that there exists $j_{o} \in \mathbb{N}$ such that

$$
\|z\|_{\infty}=\max \left\{\left|z_{j}\right|: j \in \mathbb{N}\right\}=\left|z_{j_{0}}\right| \in|\mathcal{C}| .
$$

Now, since $|\mathcal{C}| \subset|\mathcal{C}|^{1 / 2},\left\|c_{0}\right\| \subset|\mathcal{C}|^{1 / 2}$. The other condition is guaranteed by Lemma 2.3.19, p. 34 in [4].
It was proved in [1] that $\langle\cdot, \cdot\rangle$ is one of the inner products that induce the $\|\cdot\|_{\infty}$ norm on c_{0}. Such a result was guaranteed thanks to the following lemma which will be useful also in this paper.

Lemma 1.2. If $\left\{z_{1}, z_{2}, \cdots, z_{n}\right\} \subset \mathcal{C}$, then

$$
\left|z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}+\cdots+z_{n} \overline{z_{n}}\right|=\max \left\{\left|z_{1} \overline{z_{1}}\right|,\left|z_{2} \overline{z_{2}}\right|, \cdots,\left|z_{n} \overline{z_{n}}\right|\right\}
$$

Definition 1.3. A subset D of c_{0} such that for all $x, y \in D, x \neq y \Rightarrow\langle x, y\rangle=0$, is called a normal family. A countable normal family $\left\{x_{n}: n \in \mathbb{N}\right\}$ of unit vectors is called an orthonormal sequence.

If $A \subset c_{0}$, then $[A]$ and $c l[A]$ will denote the linear and the closed linear span of A, respectively. If M is a subspace of c_{0}, then M^{p} will denote the subspace of all $y \in c_{0}$ such that $\langle y, x\rangle=0$, for all $x \in M$. Since the definition of the inner product given in [4], p.38, coincides with the definition of inner product given here, the Gram-Schmidt procedure can be used.
Theorem 1.4. If $\left(z_{n}\right)_{n \in \mathbb{N}}$ is a sequence of linearly independent vectors in c_{0}, then there exists an orthonormal sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ such that $\left[\left\{z_{1}, \cdots, z_{n}\right\}\right]=\left[\left\{y_{1}, \cdots, y_{n}\right\}\right]$ for every $n \in \mathbb{N}$.
Lemma 1.5. If $\left(z_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal sequence in c_{0}, then $\left(z_{n}\right)_{n \in \mathbb{N}}$ is orthogonal in the van Rooij's sense (see /8/ p. 57).

If E and F are normed spaces over \mathbb{K}, then $\mathcal{L}(E, F)$ will be the normed space consisting of all continuous linear maps from E into F. $\mathcal{L}(E, \mathbb{K})$ will be denoted by E^{\prime} and $\mathcal{L}(E, E)$ will be denoted by $\mathcal{L}(E)$. For a $T \in \mathcal{L}(E, F), N(T)$ and $R(T)$ will denote the Kernel and the range of T, respectively. It is well-known that the dual of c_{0} is $c_{0}^{\prime} \cong l^{\infty}$, where l^{∞} denotes the space of all bounded sequences of elements of \mathcal{C}.
Definition 1.6. A linear map T from E into F is said to be compact if, for each $\epsilon>0$, there exists a continuous linear map of finite-dimensional range S such that $\|T-S\| \leq \epsilon$.

Any continuous linear operator $u \in \mathcal{L}\left(c_{0}\right)$ can be identified with a bounded infinite matrix whose columns converge to 0 :

$$
[u]=\left(\begin{array}{cccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1 j} & \cdots \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 j} & \cdots \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \cdots & \alpha_{3 j} & \cdots \\
\vdots & & & \ddots & & \\
\alpha_{i 1} & \alpha_{i 2} & \alpha_{i 3} & \cdots & \alpha_{i j} & \cdots \\
\vdots & & & & & \ddots \\
\downarrow & \downarrow & \downarrow & \cdots & \downarrow & \cdots \\
0 & 0 & 0 & & 0 &
\end{array}\right)
$$

Definition 1.7. A linear operator $v: c_{0} \rightarrow c_{0}$ is said to be an adjoint of a given linear operator $u \in \mathcal{L}\left(c_{0}\right)$ if $\langle u(x), y\rangle=\langle x, v(y)\rangle$, for all $x, y \in c_{0}$. In that case, we will say that u admits an adjoint v. We will also say that u is self-adjoint if $v=u$.

In [1] we showed that if a continuous linear operator u has an adjoint, then the adjoint is unique and continuous.
Lemma 1.8. Let $u \in \mathcal{L}\left(c_{0}\right)$ with associated matrix $\left(\alpha_{i, j}\right)_{i, j \in \mathbb{N}}$. Then, u admits an adjoint operator v if and only if $\lim _{j \rightarrow \infty} \alpha_{i j}=0$, for each $i \in \mathbb{N}$. In terms of matrices, this means that

$$
[u]=\left(\begin{array}{ccccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1 j} & \cdots & \rightarrow 0 \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \cdots & \alpha_{2 j} & \cdots & \rightarrow 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \cdots & \alpha_{3 j} & \cdots & \rightarrow 0 \\
\vdots & & & \ddots & & & \\
\alpha_{i 1} & \alpha_{i 2} & \alpha_{i 3} & \cdots & \alpha_{i j} & \cdots & \rightarrow 0 \\
\vdots & & & & & \ddots & \\
\downarrow & \downarrow & \downarrow & \cdots & \downarrow & \cdots & \\
0 & 0 & 0 & & 0 & &
\end{array}\right)
$$

In the classical Hilbert space theory, any continuous linear operator admits an adjoint. This is not true in the non-Archimedean case. For example, the operator $u \in \mathcal{L}\left(c_{0}\right)$ given by the matrix:

$$
\left(\begin{array}{cccccc}
b & b^{2} & b^{3} & \cdots & b^{j} & \cdots \\
0 & 0 & 0 & \cdots & 0 & \cdots \\
0 & 0 & 0 & \cdots & 0 & \cdots \\
\vdots & & & \ddots & & \\
0 & 0 & 0 & \cdots & 0 & \cdots \\
\vdots & & & & & \ddots
\end{array}\right)
$$

with $1<|b|$, does not admit an adjoint, by Lemma 1.8.
The following theorem (proved in [1]) provides a way to construct compact and self-adjoint operators starting from an orthonormal sequence.
Theorem 1.9. Let $\left(y_{i}\right)_{i \in \mathbb{N}}$ be an orthonormal sequence in c_{0}. Then, for any $\lambda=\left(\lambda_{i}\right)_{i \in \mathbb{N}}$ in c_{0} such that $\lambda_{i} \in \mathcal{R}$, the map $T: c_{0} \rightarrow c_{0}$ defined by

$$
T(\cdot)=\sum_{i=1}^{\infty} \lambda_{i} P_{i}(\cdot),
$$

where $P_{i}(\cdot)=\frac{\left\langle\cdot, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle} y_{i}$, is a compact and self-adjoint operator.
The converse is also true, as the following theorem shows.
Theorem 1.10. Let $T: c_{0} \rightarrow c_{0}$ be a compact, self-adjoint linear operator of infinite dimensional range. Then there exists an element $\lambda=\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and an orthonormal sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ in c_{0} such that

$$
T=\sum_{n=1}^{\infty} \lambda_{n} P_{n}
$$

where

$$
P_{n}=\frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}
$$

is a normal projection defined by y_{n}.
The uniqueness of the element $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ of $c_{0}(\mathcal{R})$ in Theorem 1.10 is shown by the following proposition, also proved in [1].
Proposition 1.11. Let $T=\sum_{n=1}^{\infty} \lambda_{n} \frac{\left\langle, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}$ be a compact and self-adjoint operator and let $\mu \neq 0$ in \mathcal{C} be an eigenvalue of T. Then $\mu=\lambda_{n}$ for some n.

We use $\mathcal{A}_{0}, \mathcal{A}_{1}$, and \mathcal{A}_{2} to denote the following closed subsets of $\mathcal{L}\left(c_{0}\right)$:

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{T \in \mathcal{L}\left(c_{0}\right): T \text { has an adjoint }\right\} \\
& \mathcal{A}_{1}=\left\{T \in \mathcal{A}_{0}: T \text { is compact }\right\} \\
& \mathcal{A}_{2}=\left\{T \in \mathcal{A}_{1}: T=T^{*}\right\}=\left\{T \in \mathcal{L}\left(c_{0}\right): T \text { is compact and self-adjoint }\right\} .
\end{aligned}
$$

In this paper, we will study the properties of positive operators on $c_{0}(\mathcal{C})$, obtaining results that are similar to those from classical functional analysis but many of which have non-classical proofs. Then we will use our study of positive operators to introduce a partial order on \mathcal{A}_{2} and study the properties of that partial order.

2. POSITIVE OPERATORS

We recall that the Levi-Civita \mathcal{R} is a totally ordered field. The order on \mathcal{R} is defined as follows: $x \geq 0$ if and only if $x=0$ or $[x \neq 0$ and $x[\lambda(x)]>0]$.

Definition 2.1. For $T \in \mathcal{A}_{1}$, we say that T is positive and write $T \geq 0$ if $\langle T x, x\rangle \in \mathcal{R}$ and $\langle T x, x\rangle \geq 0$ for all $x \in c_{0}(\mathbb{C})$.

Lemma 2.2. Let $T \in \mathcal{A}_{1}$ be positive. Then T is self-adjoint; that is $T \in \mathcal{A}_{2}$. Moreover, all eigenvalues of T are in \mathcal{R} and non-negative.

Proof. For all $x, y \in c_{0}(\mathcal{C})$ we have that

$$
\begin{aligned}
\langle T x, y\rangle & =\frac{1}{4}[\langle T(x+y), x+y\rangle-\langle T(x-y), x-y\rangle] \\
& +\frac{i}{4}[\langle T(x+i y), x+i y\rangle-\langle T(x-i y), x-i y\rangle]
\end{aligned}
$$

and

$$
\begin{aligned}
\langle T y, x\rangle & =\frac{1}{4}[\langle T(x+y), x+y\rangle-\langle T(x-y), x-y\rangle] \\
& -\frac{i}{4}[\langle T(x+i y), x+i y\rangle-\langle T(x-i y), x-i y\rangle] .
\end{aligned}
$$

Since $T \geq 0$ it follows that $\langle T(x+y), x+y\rangle,\langle T(x-y), x-y\rangle,\langle T(x+i y), x+i y\rangle$ and $\langle T(x-i y), x-$ $i y\rangle$ are all (non-negative) elements of \mathcal{R}. Thus, for all $x, y \in c_{0}(\mathcal{C})$ we have that $\langle T y, x\rangle=\overline{\langle T x, y\rangle}=$ $\langle y, T x\rangle$; and hence $\left\langle y, T^{*} x\right\rangle=\langle y, T x\rangle$ for all $x, y \in c_{0}(\mathcal{C})$. Thus, given $x \in c_{0}(\mathcal{C})$, we have that

$$
\left\langle y,\left(T^{*}-T\right) x\right\rangle=0 \text { for all } y \in c_{0}(\mathcal{C}) .
$$

It follows, in particular, that

$$
\left\langle\left(T^{*}-T\right) x,\left(T^{*}-T\right) x\right\rangle=0, \text { and hence }\left(T^{*}-T\right) x=0
$$

This is true for all $x \in c_{0}(\mathcal{C})$. Thus, $T^{*}-T=0$, or $T^{*}=T$.
Now let λ be an eigenvalue of T and let $v \in c_{0}(\mathcal{C})$ be a corresponding eigenvector. Then $\langle T v, v\rangle \in \mathcal{R}$ and $0 \leq\langle T v, v\rangle=\langle\lambda v, v\rangle=\lambda\langle v, v\rangle$. Since $\langle v, v\rangle>0$, it follows that $\lambda \in \mathcal{R}$ and $\lambda \geq 0$.

The proofs of the following two lemmas are straightforward; therefore, we only state them without proof here but we note that, for the proof of Lemma 2.4, we need the fact that if $T \in \mathcal{A}_{1}$ then $T^{*} \in \mathcal{A}_{1}[1]$ and hence $T T^{*}$ and $T^{*} T$ are both elements of \mathcal{A}_{1}.
Lemma 2.3. Let $S, T \geq 0$ in \mathcal{A}_{1} and $\alpha \geq 0$ in \mathcal{R} be given. Then $\alpha S+T \geq 0$.
Lemma 2.4. For all $T \in \mathcal{A}_{1}$, both $T T^{*}$ and $T^{*} T$ are positive.
Proposition 2.5. Let $T \in \mathcal{A}_{1}$ be positive. Then

$$
|\langle T x, y\rangle|^{2} \leq|\langle T x, x\rangle||\langle T y, y\rangle|
$$

for all $x, y \in c_{0}(\mathcal{C})$, where $|\cdot|$ denotes the ultrametric absolute value; that is, $|z|=e^{-\lambda(z)}$ for $z \in \mathcal{C}$.
Proof. Let $x, y \in c_{0}(\mathcal{C})$ be given. First assume that $\langle T x, y\rangle \in \mathcal{R}$. Then for all $\lambda \in \mathcal{R}$ we have that (since $T \geq 0$):

$$
\begin{aligned}
0 & \leq\langle T(x+\lambda y), x+\lambda y\rangle \\
& =\lambda^{2}\langle T y, y\rangle+\lambda[\langle T x, y\rangle+\langle T y, x\rangle]+\langle T x, x\rangle \\
& =\lambda^{2}\langle T y, y\rangle+\lambda[\langle T x, y\rangle+\langle y, T x\rangle]+\langle T x, x\rangle \text { since } T \text { is self-adjoint } \\
& =\lambda^{2}\langle T y, y\rangle+\lambda[\langle T x, y\rangle+\overline{\langle T x, y\rangle}]+\langle T x, x\rangle \\
& =\lambda^{2}\langle T y, y\rangle+2 \lambda\langle T x, y\rangle+\langle T x, x\rangle .
\end{aligned}
$$

Note that $\lambda^{2}\langle T y, y\rangle+2 \lambda\langle T x, y\rangle+\langle T x, x\rangle$ is a quadratic expression in λ with coefficients in \mathcal{R}; and since this is ≥ 0 for all $\lambda \in \mathcal{R}$, it follows that

$$
\langle T x, y\rangle^{2}-\langle T x, x\rangle\langle T y, y\rangle \leq 0
$$

Hence $\langle T x, y\rangle^{2} \leq\langle T x, x\rangle\langle T y, y\rangle$, from which we get

$$
\left|\langle T x, y\rangle^{2}\right| \leq|\langle T x, x\rangle\langle T y, y\rangle|, \text { or }|\langle T x, y\rangle|^{2} \leq|\langle T x, x\rangle||\langle T y, y\rangle|
$$

Now assume that $\langle T x, y\rangle \in \mathcal{C} \backslash \mathcal{R}$; and write $\langle T x, y\rangle=\alpha+i \beta, \beta \neq 0$. Then

$$
\langle T x, y\rangle=\sqrt{\alpha^{2}+\beta^{2}}\left[\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}+i \frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}\right]
$$

Let

$$
x_{1}=x\left[\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}-i \frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}\right] .
$$

Then $\left\langle T x_{1}, x_{1}\right\rangle=\langle T x, x\rangle$ and

$$
\left\langle T x_{1}, y\right\rangle=\left[\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}}}-i \frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}}}\right]\langle T x, y\rangle=\sqrt{\alpha^{2}+\beta^{2}}=|\langle T x, y\rangle|_{o}
$$

is in \mathcal{R}, where $|\cdot|_{o}$ denotes the ordinary modulus in \mathcal{C}. By the above, it follows that $\left\langle T x_{1}, y\right\rangle^{2} \leq$ $\left\langle T x_{1}, x_{1}\right\rangle\langle T y, y\rangle$. Hence

$$
|\langle T x, y\rangle|_{o}^{2} \leq\langle T x, x\rangle\langle T y, y\rangle=|\langle T x, x\rangle\langle T y, y\rangle|_{o}
$$

It follows that $|\langle T x, y\rangle|^{2} \leq|\langle T x, x\rangle\langle T y, y\rangle|=|\langle T x, x\rangle||\langle T y, y\rangle|$.
Theorem 2.6. For $T \in \mathcal{A}_{1}$, the following are equivalent:

1. $T \geq 0$.
2. T is self-adjoint; and all of its eigenvalues are in \mathcal{R} and non-negative.
3. There exists $S \geq 0$ in \mathcal{A}_{1} such that $T=S^{2}$.
4. There exists $S \in \mathcal{A}_{1}$ such that $T=S^{*} S$.
5. There exists $M \in \mathcal{A}_{1}$ such that $T=M M^{*}$.

Proof. (1) $\Rightarrow(2)$: This follows from Lemma 2.2.
$(2) \Rightarrow(3)$: Assume (2) is true. Since T is compact and self-adjoint, then by Theorem 10 in [1] there exist $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and an orthonormal sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of elements $y_{n} \in c_{0}(\mathcal{C})$ such that

$$
T=\sum_{n=1}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} .
$$

For each $n \in \mathbb{N}$, we have that λ_{n} is an eigenvalue of T [1]; and hence $\lambda_{n} \in \mathcal{R}$ and $\lambda_{n} \geq 0$ for all $n \in \mathbb{N}$. Let $S: c_{0}(\mathrm{C}) \rightarrow c_{0}(\mathrm{C})$ be given by

$$
S=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} .
$$

Then S is compact and self-adjoint, by Theorem 8 in [1]; and hence $S \in \mathcal{A}_{1}$.

We show that $S \geq 0$ and $S^{2}=T$. For all $x \in c_{0}(\mathcal{C})$, we have that

$$
\langle S x, x\rangle=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}\left\langle y_{n}, x\right\rangle=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle x, y_{n}\right\rangle \overline{\left\langle x, y_{n}\right\rangle}}{\left\langle y_{n}, y_{n}\right\rangle} \geq 0 .
$$

Hence $S \geq 0$. Also, for all $x \in c_{0}(\mathcal{C})$, we have that

$$
\begin{aligned}
S^{2} x & =S(S x)=S\left(\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}\right)=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} S\left(y_{n}\right) \\
& =\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}\left(\sqrt{\lambda_{n}} y_{n}\right)=\sum_{n=1}^{\infty} \lambda_{n} \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}=T x .
\end{aligned}
$$

Hence $S^{2}=T$.
$(3) \Rightarrow(4)$: Assume there exists $S \geq 0$ in \mathcal{A}_{1} such that $T=S^{2}$. Then S is self-adjoint by Lemma 2.2. Thus, $S=S^{*}$ and hence $T=S^{2}=S S=S^{*} S$.
$(4) \Rightarrow(5)$: Assume there exists $S \in \mathcal{A}_{1}$ such that $T=S^{*} S$. Let $M=S^{*}$. Then $M \in \mathcal{A}_{1}$ and $M^{*}=$ S. Thus, $T=S^{*} S=M M^{*}$.
$(5) \Rightarrow(1)$: This follows from Lemma 2.4.
Remark 2.7. Let T and S be as in Theorem 2.6: $T \geq 0$ and $S \geq 0$ in \mathcal{A}_{1} such that $T=S^{2}$. Then S is unique. We say that S is the positive square root of T and write $S=\sqrt{T}$.
Proof. Let $M \geq 0$ in \mathcal{A}_{1} be such that $M^{2}=S^{2}=T$. We will show that $M=S$. Since $S \geq 0$ and $M \geq 0$, there exist $\left(\eta_{n}\right)_{n \in \mathbb{N}},\left(\mu_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and orthonormal sequences $\left(y_{n}\right)_{n \in \mathbb{N}},\left(z_{n}\right)_{n \in \mathbb{N}}$ of elements $y_{n}, z_{n} \in c_{0}(\mathcal{C})$ such that

$$
S=\sum_{n=1}^{\infty} \eta_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} \text { and } M=\sum_{m=1}^{\infty} \mu_{m} \frac{\left\langle\cdot, z_{m}\right\rangle}{\left\langle z_{m}, z_{m}\right\rangle} z_{m}
$$

with $\eta_{n}>0$ for all n and $\mu_{m}>0$ for all m. Then

$$
T=\sum_{n=1}^{\infty} \eta_{n}^{2} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}=\sum_{m=1}^{\infty} \mu_{m}^{2} \frac{\left\langle\cdot, z_{m}\right\rangle}{\left\langle z_{m}, z_{m}\right\rangle} z_{m} .
$$

Note that $T z_{1}=\mu_{1}^{2} z_{1}$. Hence z_{1} is an eigenvector of T with eigenvalue μ_{1}^{2}. Thus, $\mu_{1}^{2}=\eta_{n}^{2}$ for some n, by Proposition 6 in [1]. Without loss of generality, we may assume that $\mu_{1}^{2}=\eta_{1}^{2}$ and hence $\mu_{1}=\eta_{1}$. Let $\lambda_{1}=\mu_{1}^{2}=\eta_{1}^{2}$ and let n_{1} be the dimension of the eigenspace E_{1} of T corresponding to λ_{1}. Again, without loss of generality, we may assume that $E_{1}=\left[y_{1}, y_{2}, \ldots, y_{n_{1}}\right]=\left[z_{1}, z_{2}, \ldots, z_{n_{1}}\right]$.

Continuing inductively, we get

$$
T=\sum_{l=1}^{\infty} \lambda_{l}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right)=\sum_{l=1}^{\infty} \lambda_{l}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, z_{j}^{(l)}\right\rangle}{\left\langle z_{j}^{(l)}, z_{j}^{(l)}\right\rangle} z_{j}^{(l)}\right),
$$

where $\lambda_{l} \geq 0$ for $l=1,2, \ldots$ and $\lambda_{l} \neq \lambda_{k}$ for $l \neq k$; and the corresponding eigenspace $E_{l}=\left[y_{1}^{(l)}, y_{2}^{(l)}, \ldots, y_{n_{l}}^{(l)}\right]=\left[z_{1}^{(l)}, z_{2}^{(l)}, \ldots, z_{n_{l}}^{(l)}\right]$. It follows that

$$
S=\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right)=\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, z_{j}^{(l)}\right\rangle}{\left\langle z_{j}^{(l)}, z_{j}^{(l)}\right\rangle} z_{j}^{(l)}\right)=M .
$$

Proposition 2.8. Let $T \geq 0$ in \mathcal{A}_{1} and let $S=\sqrt{T}$. Then

$$
\|S\|=\|T\|^{1 / 2}
$$

Proof. Since $T \geq 0$, there exist $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and an orthonormal sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of elements $y_{n} \in c_{0}(\mathcal{C})$ such that

$$
T=\sum_{n=1}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n},
$$

where $\lambda_{n}>0$ for all n. It follows that

$$
S=\sum_{n=1}^{\infty} \sqrt{\lambda_{n}} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} .
$$

By Remark 4 in [1], we have that $\|T\|=\left\|\left(\lambda_{n}\right)\right\|=\max _{n \in \mathbb{N}}\left|\lambda_{n}\right|$. Similarly,

$$
\|S\|=\left\|\left(\sqrt{\lambda_{n}}\right)\right\|=\max _{n \in \mathbb{N}}\left\{\left|\lambda_{n}\right|^{1 / 2}\right\}=\left[\max _{n \in \mathbb{N}}\left\{\left|\lambda_{n}\right|\right\}\right]^{1 / 2}=\left\|\left(\lambda_{n}\right)\right\|^{1 / 2}=\|T\|^{1 / 2}
$$

Proposition 2.9. Let $T \geq 0$ in \mathcal{A}_{1} and $x \in c_{0}(\mathcal{C})$ be given. Then $\langle T x, x\rangle=0$ if and only if $T x=0$.
Proof. If $T x=0$ then $\langle T x, x\rangle=0$ by definition of the inner product. Now assume $\langle T x, x\rangle=0$. Then, since $T \geq 0$, there exists $S \in \mathcal{A}_{1}$ such that $T=S^{*} S$, by Theorem 2.6. Thus, $\left\langle S^{*} S x, x\right\rangle=0$, and hence $\langle S x, S x\rangle=0$, from which we get $S x=0$. It follows that $T x=S^{*} S x=S^{*} 0=0$.

Corollary 2.10. Let $T \geq 0$ in \mathcal{A}_{1}. Then $\langle T x, x\rangle=0$ for all $x \in c_{0}(\mathrm{C})$ if and only if $T=0$.
Proposition 2.11. Let $T \geq 0$ in \mathcal{A}_{1}, let $S=\sqrt{T}$, and let $R \in \mathcal{A}_{1}$ be given. Then $T R=R T \Leftrightarrow S R=$ $R S$.

Proof. (\Leftarrow) : Assume $S R=R S$. Then

$$
R T=R S^{2}=(R S) S=(S R) S=S(R S)=S(S R)=S^{2} R=T R
$$

(\Rightarrow) : Assume that $T R=R T$. We show that $S R=R S$. Write T and S as in the proof of Remark 2.7:

$$
\begin{aligned}
T & =\sum_{l=1}^{\infty} \lambda_{l}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right) \\
S & =\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle\cdot, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right) .
\end{aligned}
$$

Now let $x \in c_{0}(\mathcal{C})$ be given. Then from $T R x=R T x$, we get

$$
\begin{equation*}
\sum_{l=1}^{\infty} \lambda_{l}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle R x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right)=\sum_{l=1}^{\infty} \lambda_{l}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} R y_{j}^{(l)}\right) . \tag{2.1}
\end{equation*}
$$

But from $T R y_{j}^{(l)}=R T y_{j}^{(l)}$, we get that $T R y_{j}^{(l)}=\lambda_{l} R y_{j}^{(l)}$, which shows that $R y_{j}^{(l)} \in E_{l}$, where $E_{l}=$ $\left[y_{1}^{(l)}, y_{2}^{(l)}, \ldots, y_{n_{l}}^{(l)}\right]$ is the eigenspace of T corresponding to the eigenvalue λ_{l}. It follows then from Equation (2.1) that

$$
\begin{equation*}
\sum_{j=1}^{n_{l}} \frac{\left\langle R x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}=\sum_{j=1}^{n_{l}} \frac{\left\langle x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} R y_{j}^{(l)} \tag{2.2}
\end{equation*}
$$

for each $l \in \mathbb{N}$. Hence

$$
\begin{aligned}
S R x & =\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle R x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right)=\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} R y_{j}^{(l)}\right) \\
& =R\left(\sum_{l=1}^{\infty} \sqrt{\lambda_{l}}\left(\sum_{j=1}^{n_{l}} \frac{\left\langle x, y_{j}^{(l)}\right\rangle}{\left\langle y_{j}^{(l)}, y_{j}^{(l)}\right\rangle} y_{j}^{(l)}\right)\right)=R S x,
\end{aligned}
$$

where in the second equality we made use of Equation (2.2). This is true for all $x \in c_{0}(\mathcal{C})$; hence $S R=R S$.

Proposition 2.12. Let $S, T \in \mathcal{A}_{1}$ be positive. Then $S T \geq 0 \Leftrightarrow S T=T S$.
Proof. (\Rightarrow) : Assume that $S T \geq 0$. Then $S T$ is self-adjoint by Lemma 2.2. It follows that

$$
S T=(S T)^{*}=T^{*} S^{*}=T S,
$$

since T and S are both positive and hence self-adjoint.
(\Leftarrow) : Assume $S T=T S$. Let $N=\sqrt{T}$. Applying Proposition 2.11, we have that $N S=S N$. Now let $x \in c_{0}(\mathcal{C})$ be given. Then

$$
\begin{aligned}
\langle S T x, x\rangle & =\langle S(N N) x, x\rangle=\langle(S N) N x, x\rangle=\langle(N S) N x, x\rangle \\
& =\langle N(S N) x, x\rangle=\left\langle S N x, N^{*} x\right\rangle=\langle S(N x), N x\rangle \geq 0,
\end{aligned}
$$

since $S \geq 0$. Hence $S T \geq 0$.
Proposition 2.13. Let $T \in \mathcal{A}_{2}$ be given. Then there exist unique positive operators $A, B \in \mathcal{A}_{2}$ such that $T=A-B$ and $A B=B A=0$.

Proof. Since T is compact and self-adjoint, there exist $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and an orthonormal sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of elements $y_{n} \in c_{0}(\mathcal{C})$ such that

$$
T=\sum_{n=1}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} .
$$

Thus,

$$
\begin{aligned}
T & =\sum_{\substack{n=1 \\
\lambda_{n}>0}}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}+\sum_{\substack{n=1 \\
\lambda_{n}<0}}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} \\
& =\sum_{\substack{n=1 \\
\lambda_{n}>0}}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}-\sum_{\substack{n=1 \\
\lambda_{n}<0}}^{\infty}\left(-\lambda_{n}\right) \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} \\
& =A-B
\end{aligned}
$$

where

$$
A=\sum_{\substack{n=1 \\ \lambda_{n}>0}}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} \text { and } B=\sum_{\substack{n=1 \\ \lambda_{n}<0}}^{\infty}\left(-\lambda_{n}\right) \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n},
$$

are both positive by Theorem 2.6 since they are both self-adjoint and have positive eigenvalues. That $A B=B A=0$ then follows from the fact that the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ is orthonormal: Let $x \in c_{0}(\mathcal{C})$ be given. Then

$$
\begin{aligned}
A B x= & \sum_{\substack{n=1 \\
\lambda_{n}<0}}^{\infty}\left(-\lambda_{n}\right) \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} A\left(y_{n}\right) \\
= & \sum_{\substack{n=1 \\
\lambda_{n}<0}}^{\infty}\left(-\lambda_{n}\right) \frac{\left\langle x, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}\left(\sum_{\substack{l=1 \\
\lambda_{l}>0}}^{\infty} \lambda_{l} \frac{\left\langle y_{n}, y_{l}\right\rangle}{\left\langle y_{l}, y_{l}\right\rangle} y_{l}\right)=0 .
\end{aligned}
$$

Hence $A B=0$. A similar calculation as above or application of Proposition 2.12 show that $B A=0$ too.
Finally, to show the uniqueness of A and B, assume that $T=A_{1}-B_{1}$ with A_{1} and B_{1} positive operators in \mathcal{A}_{2} and $A_{1} B_{1}=B_{1} A_{1}=0$; we will show that $A_{1}=A$ and $B_{1}=B$. Since $A_{1} \geq 0$ and since $B_{1} \geq 0$, then there exist $\left(\alpha_{l}\right)_{l \in \mathbb{N}},\left(\beta_{j}\right)_{j \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and orthonormal sequences $\left(x_{l}\right)_{l \in \mathbb{N}}$ and $\left(z_{j}\right)_{j \in \mathbb{N}}$ of elements $x_{l}, z_{j} \in c_{0}(\mathrm{C})$ such that $\alpha_{l}>0$ for all $l \in \mathbb{N}, \beta_{j}>0$ for all $j \in \mathbb{N}$,

$$
A_{1}=\sum_{l=1}^{\infty} \alpha_{l} \frac{\left\langle\cdot, x_{l}\right\rangle}{\left\langle x_{l}, x_{l}\right\rangle} x_{l} \text { and } B_{1}=\sum_{j=1}^{\infty} \beta_{j} \frac{\left\langle\cdot, z_{j}\right\rangle}{\left\langle z_{j}, z_{j}\right\rangle} z_{j} .
$$

Fix $l_{0} \in \mathbb{N}$. Then

$$
\begin{aligned}
T x_{l_{0}} & =\left(A_{1}-B_{1}\right) x_{l_{0}}=A_{1} x_{l_{0}}-B_{1} x_{l_{0}}=\alpha_{l_{0}} x_{l_{0}}-B_{1}\left(\frac{1}{\alpha_{l_{0}}} A_{1} x_{l_{0}}\right) \\
& =\alpha_{l_{0}} x_{l_{0}}-B_{1} A_{1}\left(\frac{1}{\alpha_{l_{0}}} x_{l_{0}}\right)=\alpha_{l_{0}} x_{l_{0}}, \text { since } B_{1} A_{1}=0 .
\end{aligned}
$$

This shows that $\alpha_{l_{0}}$ is an eigenvalue of T; and hence $\alpha_{l_{0}}$ is equal to some $\lambda_{n}>0$ by Proposition 6 in [1]. Similarly we show that, for each $j \in \mathbb{N},-\beta_{j}$ is equal to some $\lambda_{n}<0$. It follows that

$$
\left\{\alpha_{l}: l \in \mathbb{N}\right\}=\left\{\lambda_{n}: n \in \mathbb{N}, \lambda_{n}>0\right\} \text { and }\left\{-\beta_{j}: j \in \mathbb{N}\right\}=\left\{\lambda_{n}: n \in \mathbb{N}, \lambda_{n}<0\right\}
$$

Using an argument similar to that of the proof of Remark 2.7, it then follows that $A_{1}=A$ and $B_{1}=B$.

Remark 2.14. Let T, A and B be as in Proposition 2.13 above. Then $\|T\|=\max \{\|A\|,\|B\|\}$.
Proof. As in the proof of Proposition 2.13 above, write

$$
T=\sum_{\substack{n=1 \\ \lambda_{n}>0}}^{\infty} \lambda_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}-\sum_{\substack{n=1 \\ \lambda_{n}<0}}^{\infty}\left(-\lambda_{n}\right) \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n}=A-B .
$$

Then using the fact that

$$
\|T\|=\max _{n \in \mathbb{N}}\left|\lambda_{n}\right|,\|A\|=\max _{\substack{n \in \mathbb{N} \\ \lambda_{n}>0}}\left|\lambda_{n}\right|, \text { and }\|B\|=\max _{\substack{n \in \mathbb{N} \\ \lambda_{n}<0}}\left|-\lambda_{n}\right|=\max _{\substack{n \in \mathbb{N} \\ \lambda_{n}<0}}\left|\lambda_{n}\right|,
$$

it follows that $\|T\|=\max \{\|A\|,\|B\|\}$.
Proposition 2.15. The set $\mathcal{P}:=\left\{T \in \mathcal{A}_{2}: T \geq 0\right\}$ is closed in \mathcal{A}_{2}.

Proof. Let $T \in \overline{\mathcal{P}}$. Then there exists a sequence $\left\{T_{n}\right\}$ in \mathcal{P} such that $\lim _{n \rightarrow \infty} T_{n}=T$. Since

$$
\langle T x, y\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, y\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, T_{n} y\right\rangle=\langle x, T y\rangle,
$$

for all $x, y \in c_{0}(\mathrm{C}), T$ is self-adjoint. That T is compact follows from the fact that the space of compact operators is closed in $\mathcal{L}\left(c_{0}\right)$. Hence $T \in \mathcal{A}_{2}$. To show that $T \in \mathcal{P}$, it remains to show that $T \geq 0$. So let $x \in c_{0}(\mathcal{C})$ be given. Then

$$
\langle T x, x\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, x\right\rangle \geq 0
$$

since $\left\langle T_{n} x, x\right\rangle \geq 0$ for all $n \in \mathbb{N}\left(T_{n} \geq 0\right)$.
Remark 2.16. Given $a=\left(a_{1}, a_{2}, \ldots\right) \in c_{0}$, then M_{a} is the operator defined by

$$
M_{a}(\cdot)=\sum_{j=1}^{\infty} a_{j}\left\langle\cdot, e_{j}\right\rangle e_{j} .
$$

Note that the operator $\Phi: c_{0} \rightarrow\left\{M_{a}: a \in c_{0}\right\}$ defined by $\Phi(a)=M_{a}$ is a linear isometry. Moreover,

$$
\begin{aligned}
M_{b} \circ M_{a}(x) & =M_{b}\left(\sum_{j=1}^{\infty} a_{j}\left\langle x, e_{j}\right\rangle e_{j}\right)=\sum_{j=1}^{\infty} a_{j}\left\langle x, e_{j}\right\rangle M_{b}\left(e_{j}\right) \\
& =\sum_{j=1}^{\infty} a_{j}\left\langle x, e_{j}\right\rangle b_{j} e_{j}=\sum_{j=1}^{\infty} a_{j} b_{j}\left\langle x, e_{j}\right\rangle e_{j} .
\end{aligned}
$$

So, if we define $a b=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots\right)$, then $M_{b} \circ M_{a}=M_{a b}$.
Using Theorem 2.6, we readily obtain the following result.
Proposition 2.17. Let $a=\left(a_{j}\right)_{j \in \mathbb{N}}$ be given. Then $M_{a} \geq 0$ if and only if $a_{j} \in \mathcal{R}$ and $a_{j} \geq 0$ for all $j \in \mathbb{N}$.

Remark 2.18. By virtue of Proposition 2.17, we say, for $a=\left(a_{j}\right)_{j \in \mathbb{N}}$ in c_{0} that a is positive and write $a \geq 0$ if $a_{j} \in \mathcal{R}$ and $a_{j} \geq 0$ for all $j \in \mathbb{N}$. Then it follows from our work on positive operators above that

1. $a \geq 0$ in $c_{0} \Rightarrow$ there exists a unique $b \geq 0$ in c_{0} such that $a=b b$; and
2. $a \in c_{0}(\mathcal{R}) \Rightarrow$ there exist unique $b, c \geq 0$ in $c_{0}(\mathcal{R})$ such that $a=b-c$ and $b c=c b=\mathbf{0}$.

The proof of (1) and (2) follows from the facts that $a \geq 0$ if and only if M_{a} is positive and $a \in c_{0}(\mathcal{R})$ if and only if $M_{a} \in \mathcal{A}_{2}$, and from using Theorem 2.6 and Proposition 2.13 and their proofs.

3. PARTIAL ORDER ON \mathcal{A}_{2}

In this section we introduce a relation on \mathcal{A}_{2}, we show it is a partial order and we study some of its properties.

Definition 3.1. For $S, T \in \mathcal{A}_{2}$, we say that $S \geq T$ (or $T \leq S$) if $S-T \geq 0$ in the sense of Definition 2.1.

Proposition 3.2. The relation \geq in Definition 3.1 defines a partial order on \mathcal{A}_{2}.

Proof. The reflexivity and transitivity of \geq are straightforward. To show that \geq is antisymmetric, let $S, T \in \mathcal{A}_{2}$ be such that $S \geq T$ and $T \geq S$. Then $S-T \geq 0$ and $T-S \geq 0$. Thus, for all $x \in c_{0}(\mathcal{C})$ we have that $\langle(S-T) x, x\rangle \geq 0$ and $\langle(T-S) x, x\rangle \geq 0$, from which we get

$$
\langle(S-T) x, x\rangle=0 \text { for all } x \in c_{0}(\mathcal{C})
$$

Thus, by Corollary 2.10, $S-T=0$ and hence $S=T$.
That the order is not total is shown by the following example.
Example 3.3. Let $S, T \in \mathcal{A}_{2}$ be the operators given by the matrix representations

$$
[S]=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \text { and }[T]=\left[\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 2 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Then

$$
[S-T]=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & -1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \text { and }[T-S]=\left[\begin{array}{cccc}
-1 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Since both $S-T$ and $T-S$ have a negative eigenvalue (-1), it follows from Theorem 2.6 that neither $S-T \geq 0$ nor $T-S \geq 0$ and hence neither $S \geq T$ nor $T \geq S$.

The following result follows immediately from Lemma 2.3 and Definition 3.1; so we state it without proof.
Proposition 3.4. If $S \geq T$ and $U \geq V$ in \mathcal{A}_{2} and if $\alpha \geq 0$ in \mathcal{R} then $S+U \geq T+V, \alpha S \geq \alpha T$, and $-T \geq-S$.

However, the following example shows that, for $R, S, T \in \mathcal{A}_{2}$,

$$
R \geq 0 \text { and } S \geq T \nRightarrow S R \geq T R .
$$

Example 3.5. Let $R, S, T \in \mathcal{A}_{2}$ be the operators given by their matrix representations:

$$
[R]=\left[\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right], \quad[S]=\left[\begin{array}{cccc}
2 & -1 & 0 & \cdots \\
-1 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right], \quad[T]=\left[\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Then $R \geq 0$ by Theorem 2.6. Moreover, $S-T$, given by the matrix representation

$$
[S-T]=\left[\begin{array}{cccc}
1 & -1 & 0 & \cdots \\
-1 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

is positive since, for all $x \in c_{0}(\mathcal{C})$, we have that

$$
\langle(S-T) x, x\rangle=\overline{x_{1}}\left(x_{1}-x_{2}\right)+\overline{x_{2}}\left(x_{2}-x_{1}\right)=\left|x_{1}\right|_{o}^{2}-\overline{x_{1}} x_{2}-\overline{x_{2}} x_{1}+\left|x_{2}\right|_{o}^{2}
$$

$$
\begin{aligned}
& =\left|x_{1}\right|_{o}^{2}-2 \mathcal{R}\left(\overline{x_{1}} x_{2}\right)+\left|x_{2}\right|_{o}^{2} \\
& \geq\left|x_{1}\right|_{o}^{2}-2\left|x_{1}\right|_{o}\left|x_{2}\right|_{o}+\left|x_{2}\right|_{o}^{2}=\left(\left|x_{1}\right|_{o}-\left|x_{2}\right|_{o}\right)^{2} \geq 0
\end{aligned}
$$

where, for $z=\alpha+i \beta \in \mathcal{C}, \mathcal{R}(z)=\alpha$ denotes the \mathcal{R}-part of the \mathcal{C}-number z. However,

$$
[S R]=\left[\begin{array}{cccc}
0 & -1 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \text { and }[T R]=0
$$

Thus,

$$
[S R-T R]=\left[\begin{array}{cccc}
0 & -1 & 0 & \cdots \\
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

and hence $S R-T R \nsupseteq 0$ since it is not self-adjoint. It follows that $S R \nsupseteq T R$.
Proposition 3.6. Let $S, T \in \mathcal{A}_{2}$ be given. Then $S \geq T$ if and only if $\langle S x, x\rangle \geq\langle T x, x\rangle$ for all $x \in c_{0}(\mathcal{C})$.

Proof. First note that, since S, T and $S-T$ are self-adjoint (being elements of \mathcal{A}_{2}), we have that $\langle S x, x\rangle,\langle T x, x\rangle$ and $\langle(S-T) x, x\rangle$ are elements of \mathcal{R} for all $x \in c_{0}(\mathcal{C})$. Thus,

$$
\begin{aligned}
S \geq T & \Leftrightarrow S-T \geq 0 \\
& \Leftrightarrow\langle(S-T) x, x\rangle \geq 0 \text { for all } x \in c_{0}(\mathcal{C}) \\
& \Leftrightarrow\langle S x, x\rangle-\langle T x, x\rangle \geq 0 \text { for all } x \in c_{0}(\mathcal{C}) \\
& \Leftrightarrow\langle S x, x\rangle \geq\langle T x, x\rangle \text { for all } x \in c_{0}(\mathcal{C}) .
\end{aligned}
$$

Proposition 3.7. Let $S, T \in \mathcal{A}_{2}$ be such that $S \geq T \geq 0$. Then $\|S\| \geq\|T\|$.
Proof. Since $S, T \in \mathcal{A}_{2}$, there exist $\left(\alpha_{n}\right)_{n \in \mathbb{N}},\left(\beta_{n}\right)_{n \in \mathbb{N}} \in c_{0}(\mathcal{R})$ and orthonormal sequences $\left(y_{n}\right)_{n \in \mathbb{N}}$ and $\left(z_{n}\right)_{n \in \mathbb{N}}$ of elements $y_{n}, z_{n} \in c_{0}(\mathcal{C})$ such that

$$
S=\sum_{n=1}^{\infty} \alpha_{n} \frac{\left\langle\cdot, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle} y_{n} \text { and } T=\sum_{j=1}^{\infty} \beta_{j} \frac{\left\langle\cdot, z_{j}\right\rangle}{\left\langle z_{j}, z_{j}\right\rangle} z_{j}
$$

with $\alpha_{n}>0$ for all $n \in \mathbb{N}, \beta_{j}>0$ for all $j \in \mathbb{N}$,

$$
\|S\|=\max _{n \in \mathbb{N}}\left|\alpha_{n}\right|, \text { and }\|T\|=\max _{j \in \mathbb{N}}\left|\beta_{j}\right|
$$

Fix $j \in \mathbb{N}$. Since $S \geq T$ we have by Proposition 3.6 that $\left\langle S z_{j}, z_{j}\right\rangle \geq\left\langle T z_{j}, z_{j}\right\rangle$, and hence

$$
\sum_{n=1}^{\infty} \alpha_{n} \frac{\left\langle z_{j}, y_{n}\right\rangle}{\left\langle y_{n}, y_{n}\right\rangle}\left\langle y_{n}, z_{j}\right\rangle \geq \beta_{j}\left\langle z_{j}, z_{j}\right\rangle
$$

that is,

$$
\sum_{n=1}^{\infty} \alpha_{n} \frac{\left|\left\langle z_{j}, y_{n}\right\rangle\right|_{o}^{2}}{\left\langle y_{n}, y_{n}\right\rangle} \geq \beta_{j}\left\langle z_{j}, z_{j}\right\rangle
$$

It follows that

$$
\begin{aligned}
\left|\beta_{j}\right| & =\left|\beta_{j}\left\langle z_{j}, z_{j}\right\rangle\right| \\
& \leq\left|\sum_{n=1}^{\infty} \alpha_{n} \frac{\left|\left\langle z_{j}, y_{n}\right\rangle\right|_{o}^{2}}{\left\langle y_{n}, y_{n}\right\rangle}\right|=\max _{n \in \mathbb{N}}\left|\alpha_{n} \frac{\left|\left\langle z_{j}, y_{n}\right\rangle\right|_{o}^{2}}{\left\langle y_{n}, y_{n}\right\rangle}\right| \\
& =\max _{n \in \mathbb{N}}\left|\alpha_{n}\right| \frac{\left|\left\langle z_{j}, y_{n}\right\rangle\right|^{2}}{\left|\left\langle y_{n}, y_{n}\right\rangle\right|}=\max _{n \in \mathbb{N}}\left|\alpha_{n}\right|\left|\left\langle z_{j}, y_{n}\right\rangle\right|^{2} \\
& \leq \max _{n \in \mathbb{N}}\left|\alpha_{n}\right|\left|\left\langle z_{j}, z_{j}\right\rangle\right|\left|\left\langle y_{n}, y_{n}\right\rangle\right| \text { (Cauchy-Schwartz Inequality) } \\
& =\max _{n \in \mathbb{N}}\left|\alpha_{n}\right|=\|S\| .
\end{aligned}
$$

Thus, $\left|\beta_{j}\right| \leq\|S\|$ for all $j \in \mathbb{N}$; and hence $\|T\|=\max _{j \in \mathbb{N}}\left|\beta_{j}\right| \leq\|S\|$.
Corollary 3.8. Let $S, T \in \mathcal{A}_{2}$ be such that $S \leq T \leq 0$. Then $\|S\| \geq\|T\|$.
Proof. Since $S \leq T \leq 0$, it follows from Proposition 3.4 that $-S \geq-T \geq 0$. Hence, by Proposition 3.7, we obtain that $\|-S\| \geq\|-T\|$; that is, $\|S\| \geq\|T\|$.

Proposition 3.9. Let $S \geq T$ in \mathcal{A}_{2} and let $R \in \mathcal{A}_{1}$ be given. Then

$$
R^{*} S R \geq R^{*} T R
$$

Proof. First note that $R^{*} S R$ and $R^{*} T R$ are both self-adjoint since S and T are. Thus, $R^{*} S R, R^{*} T R \in$ \mathcal{A}_{2}. Now let $x \in c_{0}(\mathrm{C})$ be given. Then

$$
\left\langle\left(R^{*} S R-R^{*} T R\right) x, x\right\rangle=\left\langle R^{*}(S-T) R x, x\right\rangle=\langle(S-T) R x, R x\rangle \geq 0
$$

since $S-T \geq 0$. Thus $R^{*} S R-R^{*} T R \geq 0$, and hence $R^{*} S R \geq R^{*} T R$.
Remark 3.10. As a follow-up to Remark 2.18, we can introduce a partial order on $c_{0}(\mathcal{R})$ (which is isometrically isomorphic to \mathcal{A}_{2} [1]) as follows: for $a=\left(a_{j}\right)_{j \in \mathbb{N}}$ and $b=\left(b_{j}\right)_{j \in \mathbb{N}}$ in $c_{0}(\mathcal{R})$, we say that $a \geq b$ if $a-b \geq 0$; that is, if $a_{j}-b_{j} \geq 0$ for all $j \in \mathbb{N}$ (or equivalently $a_{j} \geq b_{j}$ for all $j \in \mathbb{N}$.) Then $a \geq b$ in $c_{0}(\mathcal{R})$ if and only if $M_{a} \geq M_{b}$ in \mathcal{A}_{2}.

We finish the paper with the following result which gives equivalent conditions for two normal projections $P_{1}, P_{2} \in \mathcal{A}_{2}$ to be related by the order relation defined above (Definition 3.1).

Theorem 3.11. Let $P_{1}, P_{2} \in \mathcal{A}_{2}$ be normal projections and let $M_{1}=R\left(P_{1}\right)$ and $M_{2}=R\left(P_{2}\right)$. Then the following are equivalent.
(1) $P_{2} \geq P_{1}$;
(2) $M_{2} \supseteq M_{1}$;
(3) $P_{2} P_{1}=P_{1}$;
(4) $P_{1} P_{2}=P_{1}$.

Proof. (1) \Rightarrow (2): Assume that $P_{2} \geq P_{1}$. Then $\left\langle P_{2} x, x\right\rangle \geq\left\langle P_{1} x, x\right\rangle$ for all $x \in c_{0}$. Since P_{1} and P_{2} are normal projections (hence idempotent and self-adjoint), it follows that

$$
\left\langle P_{2} x, P_{2} x\right\rangle=\left\langle P_{2} x, x\right\rangle \geq\left\langle P_{1} x, x\right\rangle=\left\langle P_{1} x, P_{1} x\right\rangle \text { for all } x \in c_{0} .
$$

Now let $x \in M_{1}$ be given. Then $P_{1} x=x$ and hence it follows that

$$
\langle x, x\rangle=\left\langle P_{1} x, P_{1} x\right\rangle \leq\left\langle P_{2} x, P_{2} x\right\rangle \leq\langle x, x\rangle ;
$$

and hence

$$
\langle x, x\rangle=\left\langle P_{2} x, P_{2} x\right\rangle .
$$

Using the Pythagorian Theorem, it follows that

$$
\left\langle x-P_{2} x, x-P_{2} x\right\rangle=0 ; \text { and hence } P_{2} x=x .
$$

This shows that $x \in M_{2}$. Thus, $M_{1} \subseteq M_{2}$.
$(2) \Rightarrow(3)$: Assume that $M_{1} \subseteq M_{2}$. Let $x \in c_{0}$ be given; then $P_{1} x \in M_{1}$ and hence $P_{1} x \in M_{2}$. It follows that

$$
P_{2} P_{1} x=P_{2}\left(P_{1} x\right)=P_{1} x .
$$

Since this is true for all $x \in c_{0}$, it follows that

$$
P_{2} P_{1}=P_{1} .
$$

$(3) \Leftrightarrow(4)$: This follows from taking adjoints of the left- and right-hand sides of the last equation above.
$(4) \Rightarrow(1)$: Assume that $P_{1} P_{2}=P_{1}$. Then $P_{2} P_{1}=P_{1}$ too. Let $x \in c_{0}$ be given. Then

$$
\left\langle P_{2} x, x\right\rangle-\left\langle P_{1} x, x\right\rangle=\left\langle P_{2} x, x\right\rangle-\left\langle P_{2} P_{1} x, x\right\rangle=\left\langle P_{2}\left(I-P_{1}\right) x, x\right\rangle .
$$

Since P_{1} and P_{2} commute, so do P_{2} and $I-P_{1}$. Let $P=P_{2}\left(I-P_{1}\right)$; we show that $P^{2}=P$ and $P^{*}=P$ and hence P itself is a normal projection. Thus,

$$
\begin{aligned}
P^{2} & =\left(P_{2}\left(I-P_{1}\right)\right)\left(P_{2}\left(I-P_{1}\right)\right)=P_{2}\left(I-P_{1}\right)^{2} P_{2}=P_{2}\left(I-P_{1}\right) P_{2}=P_{2}^{2}\left(I-P_{1}\right) \\
& =P_{2}\left(I-P_{1}\right)=P
\end{aligned}
$$

and

$$
\left(P_{2}\left(I-P_{1}\right)\right)^{*}=\left(I-P_{1}\right)^{*} P_{2}^{*}=\left(I-P_{1}\right) P_{2}=P_{2}\left(I-P_{1}\right)=P .
$$

Thus, it follows that P is a normal projection. Therefore,

$$
\left\langle P_{2} x, x\right\rangle-\left\langle P_{1} x, x\right\rangle=\langle P x, x\rangle=\langle P x, P x\rangle \geq 0 ; \text { and hence }\left\langle P_{2} x, x\right\rangle \geq\left\langle P_{1} x, x\right\rangle .
$$

Since the last equation holds for all $x \in c_{0}$, it follows that $P_{2} \geq P_{1}$.

ACKNOWLEDGMENTS

This work was partially supported by Proyecto DIUC, No. 209.013.033-1.0 .

REFERENCES

1. J. Aguayo, M. Nova and K. Shamseddine, "Characterization of compact and self-adjoint operators on free Banach spaces of countable type over the complex Levi-Civita field," J. Math. Phys. 54 (2), 023503, 19 pp. (2013).
2. G. K. Kalisch, "On p-adic Hilbert spaces," Ann. Math. 48 (1), 180-192 (1947).
3. L. Narici and E. Beckenstein, "A non-Archimedean inner product," Contemp. Math. 384, 187-202 (2005).
4. C. Perez-Garcia and W. H. Schikhof, Locally Convex Spaces over Non-Archimedean Valued Fields (Cambridge Univ. Press, Cambridge, 2010).
5. K. Shamseddine, New Elements of Analysis on the Levi-Civita Field, PhD thesis, Michigan State University, East Lansing, Michigan, USA (1999), also Michigan State University report MSUCL-1147.
6. K. Shamseddine and M. Berz, "Analysis on the Levi-Civita field, a brief overview," Contemp. Math. 508, 215237 (2010).
7. M. P. Solèr, "Characterization of Hilbert spaces by orthomodular spaces," Comm. Algebra 23 (1), 219-243 (1995).
8. A. C. M. van Rooij, Non-Archimedean Functional Analysis (Marcel Dekker, New York, 1978).

[^0]: *The text was submitted by the authors in English.
 ${ }^{* *}$ E-mail: jaguayo@udec.cl
 ${ }^{* * *}$ E-mail: mnova@ucsc.cl
 ${ }^{* * * *}$ E-mail: khodr.shamseddine@umanitoba.ca

