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Abstract—Let C be the complex Levi-Civita field and let c0(C) or, simply, c0 denote the space of all
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which c0 is a Banach space. In this paper, we study the properties of positive operators on c0 which
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of the results are nonclassical. Then we use our study of positive operators to introduce a partial
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1. INTRODUCTION

Two of the most useful and interesting mathematical theories in real or complex functional analysis
have been Hilbert spaces and continuous linear operators. These theories have exactly matched the
needs of many branches of physics, biology, and other fields of science.

The importance of Hilbert spaces over the real or complex fields has led many researchers to try
and extend the concept to non-Archimedean fields. One of the first attempts to define an appropriate
non-Archimedean inner product was made by G. K. Kalisch [2]. Two of the most recent papers about
non-Archimedean Hilbert spaces are those of L. Narici and E. Beckenstein [3] and the authors [1]. They
define a non-Archimedean inner product on a vector space E over a complete non-Archimedean and
non-trivially valued field K as a non-degenerated K-function inE×E, which is linear in the first variable
and satisfies what they call the Cauchy-Schwarz type inequality. Recall that a vector space E is said to
be orthomodular if for every closed subspace M of E, we have that E is the directed sum of M and
its normal complement. The existence of infinite-dimensional non-classical orthomodular spaces was
an open question until the following interesting theorem was proved by M. P. Solèr [7]: "Let X be an
orthomodular space and suppose it contains an orthonormal sequence e1, e2, · · · (in the sense of the
inner product). Then the base field is R or C”. Based on the result of Solèr, if K is a non-Archimedean,
complete valued field and L (c0) is the space of all continuous linear operators on c0, then there exist
T ∈ L (c0) which does not have an adjoint. For example, T (x) = (

∑∞
i=1 xi) e1 is such a linear operator;

on the other hand, the normal projections (see the definition below) admit adjoints.
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POSITIVE OPERATORS 123

Throughout this paper, we will use the following notations: Given a valued field (K, | · |) and a subset
B of K, we denote by |B| the set {|x| : x ∈ B}. Moreover, given a normed K-vector space E and a
subspace F of E, we denote by ‖F‖ the set {‖x‖ : x ∈ F}.

In this paper, we consider the complex Levi-Civita field C as K; in C, we take the natural involution
z → z (complex conjugation) when defining an inner product on c0. Recall that a free Banach space E
is a non-Archimedean Banach space for which there exists a family (ei)i∈I in E \ {0} such that any
element x ∈ E can be written in the form of a convergent sum x =

∑
i∈I xiei, xi ∈ K, i.e., limi∈I xiei =

0 (the limit is with respect to the Fréchet filter on I) and ‖x‖ = supi∈I |xi| ‖ei‖ . The family (ei)i∈I is
called an orthogonal basis. Now, if E is a free Banach space of countable type over C, then it is known
that E is isometrically isomorphic to

c0 (N,C, s) :=
{
(xn)n∈N : xn ∈ C; lim

n→∞
|xn|s(n) = 0

}
,

where s : N → (0,∞) . Of course, it could be that, for some i ∈ N, s (i) /∈ |C \ {0}|. But, if the range of
s is contained in |C \ {0}| , it is enough to study c0 (N,C) [taking s to be the constant function 1], which
will be denoted by c0(C) or, simply, c0. We already know that c0 is not orthomodular.

In a previous paper [1], we characterized closed subspaces of c0 with a normal complement; that is,
we characterized those non-trivial closed subspaces M which admit a non-trivial closed subspace N
such that

a. c0 = M ⊕N , and

b. for x ∈ M and y ∈ N, 〈x, y〉 = 0.

N is actually the subspace Mp = {y ∈ c0 : 〈x, y〉 = 0 for all x ∈ M} and then c0 = M ⊕Mp. Such a
subspace, together with its normal complement, defines a special kind of projection, the so-called normal
projection; that is, a linear operator P : c0 → c0 such that

i. P is continuous;

ii. P 2 = P ;

iii. 〈z, w〉 = 0, for all z ∈ N (P ) and for all w ∈ R (P ) .

Actually these concepts are not exclusive to c0; if E is a vector space with an inner product, then
“normal complements” and “normal projections” have similar meaning.

Throughout this paper R (resp. C) will denote the real (resp. complex) Levi-Civita field; for a detailed
study of R (and C), we refer the reader to [5, 6] and the references therein. Any z ∈ C (resp. R) is
a function from Q into C (resp. R) with left-finite support. For w ∈ R (resp. C) , we will denote by
λ (w) = min (supp (w)), for w 
= 0, and λ (0) = +∞. On the other hand, since each z ∈ C can be written
as z = x+ iy, where x, y ∈ R, we have that λ (z) = min {λ (x) , λ (y)} . If we define

|z| =

⎧
⎨

⎩

e−λ(z) if z 
= 0

0 if z = 0
,

then |·| is a non-Archimedean absolute value in C. It is not hard to prove that (C,Δ) , where Δ is the
metric induced by |·| , is a complete metric space. Now let z = x+ iy in C be given. If x 
= 0 
= y then

|z| = e−λ(z) = e−min{λ(x),λ(y)} = max
{
e−λ(x), e−λ(y)

}
= max {|x| , |y|} .

We can easily also check that |z| = max{|x|, |y|} when x = 0 or y = 0. Thus,

|z| = max {|x|, |y|} for all z = x+ iy ∈ C.

In other words, C is topologically isomorphic to R2 provided with the product topology induced by |·| in
R.
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We denote by c0 (C) , or simply c0, the space

c0 =
{
z = (zn)n∈N : zn ∈ C; lim

n→∞
zn = 0

}
.

A natural non-Archimedean norm on c0 is ‖z‖∞ = sup {|zn| : n ∈ N}. Writing zn = xn + iyn and
x = (xn)n∈N, y = (yn)n∈N, we also have the equality

‖z‖∞ = max {‖x‖∞ , ‖y‖∞} .
It follows that (c0, ‖·‖∞) is a Banach space. For a detailed study of non-Archimedean Banach spaces,
in general, we refer the reader to [8].

Recall that a topological space is called separable if it has a countable dense subset. In the class
of real or complex Hilbert spaces, we can distinguish two types: those spaces which are separable and
those which are not separable. If E is a separable normed space over K, then each one-dimensional
subspace is homeomorphic to K, so K must be separable too. Nevertheless, we know that there exist
non-Archimedean fields which are not separable, for example, the Levi-Civita fields R and C. Thus,
for non-Archimedean normed spaces the concept of separability cannot be used if K is not separable.
However, by linearizing the notion of separability, we obtain a generalization, useful for each non-
Archimedean valued field K. A normed space E over K is said to be of countable type if it contains
a countable subset whose linear hull is dense in E. An example of a normed space of countable type is
(c0(K), ‖·‖∞) , for any non-Archimedean valued field K, in particular, whenK is the complex Levi-Civita
field C.

Let us consider the following form:

〈·, ·〉 : c0 × c0 → C; 〈z, w〉 =
∞∑

n=1

znwn.

This form is well-defined since limn→∞ znwn = 0 and, at the same time, 〈·, ·〉 satisfies Definition 2.4.1,
p. 38, in [4].

Let

‖z‖ :=
√

|〈z, z〉|.
Then, since |2| = 1, ‖·‖ is a non-Archimedean norm on c0 (Theorem 2.4.2 (ii) in [4]).

It follows easily that

〈x, y〉 = 0, ∀y ∈ c0 ⇒ x = 0

which is referred to as the non-degeneracy condition.
The next theorem was proved in [3] and tells us when the non-Archimedean norm in a Banach space

is induced by an inner product.

Theorem 1.1. Let (E, ‖·‖) be a K-Banach space. Then, if ‖E‖ ⊂ |K|1/2 and every one-dimensional
subspace of E admits a normal complement, then E has, at least, an inner product that induces
the norm ‖·‖.

If E = c0 and K = C, then the conditions of the theorem above are satisfied. In fact, if z ∈ c0, z 
= 0,
then limn→∞ zn = 0, which implies that there exists jo ∈ N such that

‖z‖∞ = max {|zj| : j ∈ N} = |zj0 | ∈ |C| .

Now, since |C| ⊂ |C|1/2 , ‖c0‖ ⊂ |C|1/2 . The other condition is guaranteed by Lemma 2.3.19, p. 34 in [4].
It was proved in [1] that 〈·, ·〉 is one of the inner products that induce the ‖·‖∞ norm on c0. Such a

result was guaranteed thanks to the following lemma which will be useful also in this paper.

Lemma 1.2. If {z1, z2, · · · , zn} ⊂ C, then

|z1z1 + z2z2 + · · ·+ znzn| = max {|z1z1| , |z2z2| , · · · , |znzn|} .
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Definition 1.3. A subset D of c0 such that for all x, y ∈ D, x 
= y ⇒ 〈x, y〉 = 0, is called a normal
family. A countable normal family {xn : n ∈ N} of unit vectors is called an orthonormal sequence.

If A ⊂ c0, then [A] and cl [A] will denote the linear and the closed linear span of A, respectively. If M
is a subspace of c0, then Mp will denote the subspace of all y ∈ c0 such that 〈y, x〉 = 0, for all x ∈ M.
Since the definition of the inner product given in [4], p.38, coincides with the definition of inner product
given here, the Gram-Schmidt procedure can be used.

Theorem 1.4. If (zn)n∈N is a sequence of linearly independent vectors in c0, then there exists an
orthonormal sequence (yn)n∈N such that [{z1, · · · , zn}] =[{y1, · · · , yn}] for every n ∈ N.

Lemma 1.5. If (zn)n∈N is an orthonormal sequence in c0, then (zn)n∈N is orthogonal in the van
Rooij’s sense (see [8] p. 57).

If E and F are normed spaces over K, then L (E,F ) will be the normed space consisting of all
continuous linear maps from E into F. L (E,K) will be denoted by E′ and L (E,E) will be denoted
by L (E). For a T ∈ L (E,F ) , N(T ) and R(T ) will denote the Kernel and the range of T , respectively.
It is well-known that the dual of c0 is c′0

∼= l∞, where l∞ denotes the space of all bounded sequences of
elements of C.

Definition 1.6. A linear map T from E into F is said to be compact if, for each ε > 0, there exists
a continuous linear map of finite-dimensional range S such that ‖T − S‖ ≤ ε.

Any continuous linear operator u ∈ L (c0) can be identified with a bounded infinite matrix whose
columns converge to 0:

[u] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α11 α12 α13 · · · α1j · · ·

α21 α22 α23 · · · α2j · · ·

α31 α32 α33 · · · α3j · · ·
...

. . .

αi1 αi2 αi3 · · · αij · · ·
...

. . .

↓
0

↓
0

↓
0

· · · ↓
0

· · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Definition 1.7. A linear operator v : c0 → c0 is said to be an adjoint of a given linear operator
u ∈ L (c0) if 〈u (x) , y〉 = 〈x, v (y)〉 , for all x, y ∈ c0. In that case, we will say that u admits an
adjoint v. We will also say that u is self-adjoint if v = u.

In [1] we showed that if a continuous linear operator u has an adjoint, then the adjoint is unique and
continuous.

Lemma 1.8. Let u ∈ L (c0) with associated matrix (αi,j)i,j∈N . Then, u admits an adjoint operator
v if and only if limj→∞ αij = 0, for each i ∈ N. In terms of matrices, this means that

[u] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α11 α12 α13 · · · α1j · · · → 0

α21 α22 α23 · · · α2j · · · → 0

α31 α32 α33 · · · α3j · · · → 0
...

. . .

αi1 αi2 αi3 · · · αij · · · → 0
...

. . .

↓
0

↓
0

↓
0

· · · ↓
0

· · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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In the classical Hilbert space theory, any continuous linear operator admits an adjoint. This is not
true in the non-Archimedean case. For example, the operator u ∈ L(c0) given by the matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b b2 b3 · · · bj · · ·

0 0 0 · · · 0 · · ·

0 0 0 · · · 0 · · ·
...

. . .

0 0 0 · · · 0 · · ·
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with 1 < |b| , does not admit an adjoint, by Lemma 1.8.
The following theorem (proved in [1]) provides a way to construct compact and self-adjoint operators

starting from an orthonormal sequence.

Theorem 1.9. Let (yi)i∈N be an orthonormal sequence in c0. Then, for any λ = (λi)i∈N in c0 such
that λi ∈ R, the map T : c0 → c0 defined by

T (·) =
∞∑

i=1

λiPi (·) ,

where Pi (·) = 〈·,yi〉
〈yi,yi〉yi, is a compact and self-adjoint operator.

The converse is also true, as the following theorem shows.

Theorem 1.10. Let T : c0 → c0 be a compact, self-adjoint linear operator of infinite dimensional
range. Then there exists an element λ = (λn)n∈N ∈ c0 (R) and an orthonormal sequence (yn)n∈N
in c0 such that

T =

∞∑

n=1

λnPn,

where

Pn =
〈·, yn〉
〈yn, yn〉

yn

is a normal projection defined by yn.

The uniqueness of the element (λn)n∈N of c0(R) in Theorem 1.10 is shown by the following
proposition, also proved in [1].

Proposition 1.11. Let T =
∑∞

n=1 λn
〈·,yn〉
〈yn,yn〉yn be a compact and self-adjoint operator and let μ 
= 0

in C be an eigenvalue of T . Then μ = λn for some n.

We use A0, A1, and A2 to denote the following closed subsets of L (c0):

A0 = {T ∈ L (c0) : T has an adjoint} ;

A1 = {T ∈ A0 : T is compact} ;

A2 = {T ∈ A1 : T = T ∗} = {T ∈ L (c0) : T is compact and self-adjoint} .
In this paper, we will study the properties of positive operators on c0(C), obtaining results that are

similar to those from classical functional analysis but many of which have non-classical proofs. Then we
will use our study of positive operators to introduce a partial order on A2 and study the properties of that
partial order.
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2. POSITIVE OPERATORS

We recall that the Levi-Civita R is a totally ordered field. The order on R is defined as follows: x ≥ 0
if and only if x = 0 or [x 
= 0 and x [λ (x)] > 0].

Definition 2.1. ForT ∈ A1, we say thatT is positive and write T ≥ 0 if 〈Tx, x〉 ∈ R and 〈Tx, x〉 ≥ 0
for all x ∈ c0(C).

Lemma 2.2. Let T ∈ A1 be positive. Then T is self-adjoint; that is T ∈ A2. Moreover, all eigen-
values of T are in R and non-negative.

Proof. For all x, y ∈ c0(C) we have that

〈Tx, y〉 = 1

4
[〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉]

+
i

4
[〈T (x+ iy), x+ iy〉 − 〈T (x− iy), x− iy〉]

and

〈Ty, x〉 = 1

4
[〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉]

− i

4
[〈T (x+ iy), x+ iy〉 − 〈T (x− iy), x− iy〉] .

Since T ≥ 0 it follows that 〈T (x+ y), x+ y〉, 〈T (x− y), x− y〉, 〈T (x+ iy), x+ iy〉 and 〈T (x− iy), x−
iy〉 are all (non-negative) elements of R. Thus, for all x, y ∈ c0(C) we have that 〈Ty, x〉 = 〈Tx, y〉 =
〈y, Tx〉; and hence 〈y, T ∗x〉 = 〈y, Tx〉 for all x, y ∈ c0(C). Thus, given x ∈ c0(C), we have that

〈y, (T ∗ − T )x〉 = 0 for all y ∈ c0(C).

It follows, in particular, that

〈(T ∗ − T )x, (T ∗ − T )x〉 = 0, and hence (T ∗ − T )x = 0.

This is true for all x ∈ c0(C). Thus, T ∗ − T = 0, or T ∗ = T .
Now let λ be an eigenvalue of T and let v ∈ c0(C) be a corresponding eigenvector. Then 〈Tv, v〉 ∈ R

and 0 ≤ 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉. Since 〈v, v〉 > 0, it follows that λ ∈ R and λ ≥ 0.

The proofs of the following two lemmas are straightforward; therefore, we only state them without
proof here but we note that, for the proof of Lemma 2.4, we need the fact that if T ∈ A1 then T ∗ ∈ A1 [1]
and hence TT ∗ and T ∗T are both elements of A1.

Lemma 2.3. Let S, T ≥ 0 in A1 and α ≥ 0 in R be given. Then αS + T ≥ 0.

Lemma 2.4. For all T ∈ A1, both TT ∗ and T ∗T are positive.

Proposition 2.5. Let T ∈ A1 be positive. Then

|〈Tx, y〉|2 ≤ |〈Tx, x〉||〈Ty, y〉|

for all x, y ∈ c0(C), where | · | denotes the ultrametric absolute value; that is, |z| = e−λ(z) for z ∈ C.

Proof. Let x, y ∈ c0(C) be given. First assume that 〈Tx, y〉 ∈ R. Then for all λ ∈ R we have that (since
T ≥ 0):

0 ≤ 〈T (x+ λy), x+ λy〉
= λ2〈Ty, y〉+ λ[〈Tx, y〉+ 〈Ty, x〉] + 〈Tx, x〉
= λ2〈Ty, y〉+ λ[〈Tx, y〉+ 〈y, Tx〉] + 〈Tx, x〉 since T is self-adjoint

= λ2〈Ty, y〉+ λ[〈Tx, y〉+ 〈Tx, y〉] + 〈Tx, x〉
= λ2〈Ty, y〉+ 2λ〈Tx, y〉 + 〈Tx, x〉.
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Note that λ2〈Ty, y〉+2λ〈Tx, y〉+ 〈Tx, x〉 is a quadratic expression in λ with coefficients inR; and since
this is ≥ 0 for all λ ∈ R, it follows that

〈Tx, y〉2 − 〈Tx, x〉〈Ty, y〉 ≤ 0.

Hence 〈Tx, y〉2 ≤ 〈Tx, x〉〈Ty, y〉, from which we get
∣
∣〈Tx, y〉2

∣
∣ ≤ |〈Tx, x〉〈Ty, y〉| , or |〈Tx, y〉|2 ≤ |〈Tx, x〉| |〈Ty, y〉| .

Now assume that 〈Tx, y〉 ∈ C \R; and write 〈Tx, y〉 = α+ iβ, β 
= 0. Then

〈Tx, y〉 =
√
α2 + β2

[
α

√
α2 + β2

+ i
β

√
α2 + β2

]

.

Let

x1 = x

[
α

√
α2 + β2

− i
β

√
α2 + β2

]

.

Then 〈Tx1, x1〉 = 〈Tx, x〉 and

〈Tx1, y〉 =
[

α
√

α2 + β2
− i

β
√

α2 + β2

]

〈Tx, y〉 =
√

α2 + β2 = |〈Tx, y〉|o

is in R, where | · |o denotes the ordinary modulus in C. By the above, it follows that 〈Tx1, y〉2 ≤
〈Tx1, x1〉〈Ty, y〉. Hence

|〈Tx, y〉|2o ≤ 〈Tx, x〉〈Ty, y〉 = |〈Tx, x〉〈Ty, y〉|o.

It follows that |〈Tx, y〉|2 ≤ |〈Tx, x〉〈Ty, y〉| = |〈Tx, x〉||〈Ty, y〉|.

Theorem 2.6. For T ∈ A1, the following are equivalent:

1. T ≥ 0.

2. T is self-adjoint; and all of its eigenvalues are in R and non-negative.

3. There exists S ≥ 0 in A1 such that T = S2.

4. There exists S ∈ A1 such that T = S∗S.

5. There exists M ∈ A1 such that T = MM∗.

Proof. (1) ⇒ (2): This follows from Lemma 2.2.

(2) ⇒ (3): Assume (2) is true. Since T is compact and self-adjoint, then by Theorem 10 in [1] there
exist (λn)n∈N ∈ c0(R) and an orthonormal sequence (yn)n∈N of elements yn ∈ c0(C) such that

T =

∞∑

n=1

λn
〈·, yn〉
〈yn, yn〉

yn.

For each n ∈ N, we have that λn is an eigenvalue of T [1]; and hence λn ∈ R and λn ≥ 0 for all n ∈ N.
Let S : c0(C) → c0(C) be given by

S =
∞∑

n=1

√
λn

〈·, yn〉
〈yn, yn〉

yn.

Then S is compact and self-adjoint, by Theorem 8 in [1]; and hence S ∈ A1.
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We show that S ≥ 0 and S2 = T . For all x ∈ c0(C), we have that

〈Sx, x〉 =
∞∑

n=1

√
λn

〈x, yn〉
〈yn, yn〉

〈yn, x〉 =
∞∑

n=1

√
λn

〈x, yn〉〈x, yn〉
〈yn, yn〉

≥ 0.

Hence S ≥ 0. Also, for all x ∈ c0(C), we have that

S2x = S(Sx) = S

( ∞∑

n=1

√
λn

〈x, yn〉
〈yn, yn〉

yn

)

=
∞∑

n=1

√
λn

〈x, yn〉
〈yn, yn〉

S (yn)

=

∞∑

n=1

√
λn

〈x, yn〉
〈yn, yn〉

(√
λnyn

)
=

∞∑

n=1

λn
〈x, yn〉
〈yn, yn〉

yn = Tx.

Hence S2 = T .
(3) ⇒ (4): Assume there exists S ≥ 0 in A1 such that T = S2. Then S is self-adjoint by Lemma 2.2.

Thus, S = S∗ and hence T = S2 = SS = S∗S.
(4) ⇒ (5): Assume there exists S ∈ A1 such that T = S∗S. Let M = S∗. Then M ∈ A1 and M∗ =

S. Thus, T = S∗S = MM∗.
(5) ⇒ (1): This follows from Lemma 2.4.

Remark 2.7. Let T and S be as in Theorem 2.6: T ≥ 0 and S ≥ 0 in A1 such that T = S2. Then S is
unique. We say that S is the positive square root of T and write S =

√
T .

Proof. Let M ≥ 0 in A1 be such that M2 = S2 = T . We will show that M = S. Since S ≥ 0 and
M ≥ 0, there exist (ηn)n∈N, (μn)n∈N ∈ c0(R) and orthonormal sequences (yn)n∈N , (zn)n∈N of elements
yn, zn ∈ c0(C) such that

S =

∞∑

n=1

ηn
〈·, yn〉
〈yn, yn〉

yn and M =

∞∑

m=1

μm
〈·, zm〉
〈zm, zm〉zm

with ηn > 0 for all n and μm > 0 for all m. Then

T =

∞∑

n=1

η2n
〈·, yn〉
〈yn, yn〉

yn =

∞∑

m=1

μ2
m

〈·, zm〉
〈zm, zm〉zm.

Note that Tz1 = μ2
1z1. Hence z1 is an eigenvector of T with eigenvalue μ2

1. Thus, μ2
1 = η2n for some n,

by Proposition 6 in [1]. Without loss of generality, we may assume that μ2
1 = η21 and hence μ1 = η1. Let

λ1 = μ2
1 = η21 and let n1 be the dimension of the eigenspace E1 of T corresponding to λ1. Again, without

loss of generality, we may assume that E1 = [y1, y2, . . . , yn1 ] = [z1, z2, . . . , zn1 ].
Continuing inductively, we get

T =
∞∑

l=1

λl

⎛

⎝
nl∑

j=1

〈·, y(l)j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠ =
∞∑

l=1

λl

⎛

⎝
nl∑

j=1

〈·, z(l)j 〉

〈z(l)j , z
(l)
j 〉

z
(l)
j

⎞

⎠ ,

where λl ≥ 0 for l = 1, 2, . . . and λl 
= λk for l 
= k; and the corresponding eigenspace

El =
[
y
(l)
1 , y

(l)
2 , . . . , y

(l)
nl

]
=
[
z
(l)
1 , z

(l)
2 , . . . , z

(l)
nl

]
. It follows that

S =
∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈·, y(l)j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠ =
∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈·, z(l)j 〉

〈z(l)j , z
(l)
j 〉

z
(l)
j

⎞

⎠ = M.

Proposition 2.8. Let T ≥ 0 in A1 and let S =
√
T . Then

‖S‖ = ‖T‖1/2.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 2 2017



130 AGUAYO et al.

Proof. Since T ≥ 0, there exist (λn)n∈N ∈ c0(R) and an orthonormal sequence (yn)n∈N of elements
yn ∈ c0(C) such that

T =
∞∑

n=1

λn
〈·, yn〉
〈yn, yn〉

yn,

where λn > 0 for all n. It follows that

S =

∞∑

n=1

√
λn

〈·, yn〉
〈yn, yn〉

yn.

By Remark 4 in [1], we have that ‖T‖ = ‖(λn)‖ = maxn∈N |λn|. Similarly,

‖S‖ = ‖(
√

λn)‖ = max
n∈N

{
|λn|1/2

}
=

[

max
n∈N

{|λn|}
]1/2

= ‖(λn)‖1/2 = ‖T‖1/2.

Proposition 2.9. Let T ≥ 0 in A1 and x ∈ c0(C) be given. Then 〈Tx, x〉 = 0 if and only if Tx = 0.

Proof. If Tx = 0 then 〈Tx, x〉 = 0 by definition of the inner product. Now assume 〈Tx, x〉 = 0. Then,
since T ≥ 0, there exists S ∈ A1 such that T = S∗S, by Theorem 2.6. Thus, 〈S∗Sx, x〉 = 0, and hence
〈Sx, Sx〉 = 0, from which we get Sx = 0. It follows that Tx = S∗Sx = S∗0 = 0.

Corollary 2.10. Let T ≥ 0 in A1. Then 〈Tx, x〉 = 0 for all x ∈ c0(C) if and only if T = 0.

Proposition 2.11. Let T ≥ 0 in A1, let S =
√
T , and let R ∈ A1 be given. Then TR = RT ⇔ SR =

RS.

Proof. (⇐): Assume SR = RS. Then

RT = RS2 = (RS)S = (SR)S = S(RS) = S(SR) = S2R = TR.

(⇒): Assume that TR = RT . We show that SR = RS. Write T and S as in the proof of Remark 2.7:

T =

∞∑

l=1

λl

⎛

⎝
nl∑

j=1

〈·, y(l)j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠

S =
∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈·, y(l)j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠ .

Now let x ∈ c0(C) be given. Then from TRx = RTx, we get

∞∑

l=1

λl

⎛

⎝
nl∑

j=1

〈Rx, y
(l)
j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠ =

∞∑

l=1

λl

⎛

⎝
nl∑

j=1

〈x, y(l)j 〉

〈y(l)j , y
(l)
j 〉

Ry
(l)
j

⎞

⎠ . (2.1)

But from TRy
(l)
j = RTy

(l)
j , we get that TRy

(l)
j = λlRy

(l)
j , which shows that Ry

(l)
j ∈ El, where El =[

y
(l)
1 , y

(l)
2 , . . . , y

(l)
nl

]
is the eigenspace of T corresponding to the eigenvalue λl. It follows then from

Equation (2.1) that

nl∑

j=1

〈Rx, y
(l)
j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j =

nl∑

j=1

〈x, y(l)j 〉

〈y(l)j , y
(l)
j 〉

Ry
(l)
j (2.2)
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for each l ∈ N. Hence

SRx =

∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈Rx, y
(l)
j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠ =

∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈x, y(l)j 〉

〈y(l)j , y
(l)
j 〉

Ry
(l)
j

⎞

⎠

= R

⎛

⎝
∞∑

l=1

√
λl

⎛

⎝
nl∑

j=1

〈x, y(l)j 〉

〈y(l)j , y
(l)
j 〉

y
(l)
j

⎞

⎠

⎞

⎠ = RSx,

where in the second equality we made use of Equation (2.2). This is true for all x ∈ c0(C); hence
SR = RS.

Proposition 2.12. Let S, T ∈ A1 be positive. Then ST ≥ 0 ⇔ ST = TS.

Proof. (⇒): Assume that ST ≥ 0. Then ST is self-adjoint by Lemma 2.2. It follows that

ST = (ST )∗ = T ∗S∗ = TS,

since T and S are both positive and hence self-adjoint.

(⇐): Assume ST = TS. Let N =
√
T . Applying Proposition 2.11, we have that NS = SN . Now let

x ∈ c0(C) be given. Then

〈STx, x〉 = 〈S(NN)x, x〉 = 〈(SN)Nx, x〉 = 〈(NS)Nx, x〉
= 〈N(SN)x, x〉 = 〈SNx,N∗x〉 = 〈S(Nx), Nx〉 ≥ 0,

since S ≥ 0. Hence ST ≥ 0.

Proposition 2.13. Let T ∈ A2 be given. Then there exist unique positive operators A,B ∈ A2 such
that T = A−B and AB = BA = 0.

Proof. Since T is compact and self-adjoint, there exist (λn)n∈N ∈ c0(R) and an orthonormal sequence
(yn)n∈N of elements yn ∈ c0(C) such that

T =
∞∑

n=1

λn
〈·, yn〉
〈yn, yn〉

yn.

Thus,

T =
∞∑

n = 1

λn > 0

λn
〈·, yn〉
〈yn, yn〉

yn +
∞∑

n = 1

λn < 0

λn
〈·, yn〉
〈yn, yn〉

yn

=
∞∑

n = 1

λn > 0

λn
〈·, yn〉
〈yn, yn〉

yn −
∞∑

n = 1

λn < 0

(−λn)
〈·, yn〉
〈yn, yn〉

yn

= A−B

where

A =
∞∑

n = 1

λn > 0

λn
〈·, yn〉
〈yn, yn〉

yn and B =
∞∑

n = 1

λn < 0

(−λn)
〈·, yn〉
〈yn, yn〉

yn,
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are both positive by Theorem 2.6 since they are both self-adjoint and have positive eigenvalues. That
AB = BA = 0 then follows from the fact that the sequence (yn)n∈N is orthonormal: Let x ∈ c0(C) be
given. Then

ABx =

∞∑

n = 1

λn < 0

(−λn)
〈x, yn〉
〈yn, yn〉

A(yn)

=

∞∑

n = 1

λn < 0

(−λn)
〈x, yn〉
〈yn, yn〉

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞∑

l = 1

λl > 0

λl
〈yn, yl〉
〈yl, yl〉

yl

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

Hence AB = 0. A similar calculation as above or application of Proposition 2.12 show that BA = 0 too.
Finally, to show the uniqueness of A and B, assume that T = A1 −B1 with A1 and B1 positive

operators in A2 and A1B1 = B1A1 = 0; we will show that A1 = A and B1 = B. Since A1 ≥ 0 and since
B1 ≥ 0, then there exist (αl)l∈N, (βj)j∈N ∈ c0(R) and orthonormal sequences (xl)l∈N and (zj)j∈N of
elements xl, zj ∈ c0(C) such that αl > 0 for all l ∈ N, βj > 0 for all j ∈ N,

A1 =
∞∑

l=1

αl
〈·, xl〉
〈xl, xl〉

xl and B1 =
∞∑

j=1

βj
〈·, zj〉
〈zj , zj〉

zj.

Fix l0 ∈ N. Then

Txl0 = (A1 −B1) xl0 = A1xl0 −B1xl0 = αl0xl0 −B1

(
1

αl0

A1xl0

)

= αl0xl0 −B1A1

(
1

αl0

xl0

)

= αl0xl0 , since B1A1 = 0.

This shows that αl0 is an eigenvalue of T ; and hence αl0 is equal to some λn > 0 by Proposition 6 in [1].
Similarly we show that, for each j ∈ N, −βj is equal to some λn < 0. It follows that

{αl : l ∈ N} = {λn : n ∈ N, λn > 0} and {−βj : j ∈ N} = {λn : n ∈ N, λn < 0} .
Using an argument similar to that of the proof of Remark 2.7, it then follows that A1 = A and B1 = B.

Remark 2.14. Let T , A and B be as in Proposition 2.13 above. Then ‖T‖ = max {‖A‖ , ‖B‖}.

Proof. As in the proof of Proposition 2.13 above, write

T =

∞∑

n = 1

λn > 0

λn
〈·, yn〉
〈yn, yn〉

yn −
∞∑

n = 1

λn < 0

(−λn)
〈·, yn〉
〈yn, yn〉

yn = A−B.

Then using the fact that

‖T‖ = max
n∈N

|λn|, ‖A‖ = max
n ∈ N

λn > 0

|λn|, and ‖B‖ = max
n ∈ N

λn < 0

| − λn| = max
n ∈ N

λn < 0

|λn|,

it follows that ‖T‖ = max {‖A‖ , ‖B‖}.

Proposition 2.15. The set P := {T ∈ A2 : T ≥ 0} is closed in A2.
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Proof. Let T ∈ P. Then there exists a sequence {Tn} in P such that limn→∞ Tn = T. Since

〈Tx, y〉 = lim
n→∞

〈Tnx, y〉 = lim
n→∞

〈x, Tny〉 = 〈x, Ty〉 ,

for all x, y ∈ c0(C), T is self-adjoint. That T is compact follows from the fact that the space of compact
operators is closed in L(c0). Hence T ∈ A2. To show that T ∈ P, it remains to show that T ≥ 0. So let
x ∈ c0(C) be given. Then

〈Tx, x〉 = lim
n→∞

〈Tnx, x〉 ≥ 0,

since 〈Tnx, x〉 ≥ 0 for all n ∈ N (Tn ≥ 0).

Remark 2.16. Given a = (a1, a2, . . .) ∈ c0, then Ma is the operator defined by

Ma (·) =
∞∑

j=1

aj 〈·, ej〉 ej .

Note that the operator Φ : c0 → {Ma : a ∈ c0} defined by Φ (a) = Ma is a linear isometry. More-
over,

Mb ◦Ma (x) = Mb

⎛

⎝
∞∑

j=1

aj 〈x, ej〉 ej

⎞

⎠ =

∞∑

j=1

aj 〈x, ej〉Mb (ej)

=

∞∑

j=1

aj 〈x, ej〉 bjej =
∞∑

j=1

ajbj 〈x, ej〉 ej .

So, if we define ab = (a1b1, a2b2, . . .), then Mb ◦Ma = Mab.

Using Theorem 2.6, we readily obtain the following result.

Proposition 2.17. Let a = (aj)j∈N be given. Then Ma ≥ 0 if and only if aj ∈ R and aj ≥ 0 for all
j ∈ N.

Remark 2.18. By virtue of Proposition 2.17, we say, for a = (aj)j∈N in c0 that a is positive and
write a ≥ 0 if aj ∈ R and aj ≥ 0 for all j ∈ N. Then it follows from our work on positive operators
above that

1. a ≥ 0 in c0 ⇒ there exists a unique b ≥ 0 in c0 such that a = bb; and

2. a ∈ c0(R) ⇒ there exist unique b, c ≥ 0 in c0(R) such that a = b− c and bc = cb = 0.

The proof of (1) and (2) follows from the facts that a ≥ 0 if and only if Ma is positive and a ∈ c0(R) if
and only if Ma ∈ A2, and from using Theorem 2.6 and Proposition 2.13 and their proofs.

3. PARTIAL ORDER ON A2

In this section we introduce a relation on A2, we show it is a partial order and we study some of its
properties.

Definition 3.1. For S, T ∈ A2, we say that S ≥ T (or T ≤ S) if S − T ≥ 0 in the sense of Definition
2.1.

Proposition 3.2. The relation ≥ in Definition 3.1 defines a partial order on A2.
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Proof. The reflexivity and transitivity of ≥ are straightforward. To show that ≥ is antisymmetric, let
S, T ∈ A2 be such that S ≥ T and T ≥ S. Then S − T ≥ 0 and T − S ≥ 0. Thus, for all x ∈ c0(C) we
have that 〈(S − T )x, x〉 ≥ 0 and 〈(T − S)x, x〉 ≥ 0, from which we get

〈(S − T )x, x〉 = 0 for all x ∈ c0(C).

Thus, by Corollary 2.10, S − T = 0 and hence S = T .
That the order is not total is shown by the following example.

Example 3.3. Let S, T ∈ A2 be the operators given by the matrix representations

[S] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · ·

0 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and [T ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · ·

0 2 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

[S − T ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · ·

0 −1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and [T − S] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 0 · · ·

0 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since both S − T and T − S have a negative eigenvalue (-1), it follows from Theorem 2.6 that
neither S − T ≥ 0 nor T − S ≥ 0 and hence neither S ≥ T nor T ≥ S.

The following result follows immediately from Lemma 2.3 and Definition 3.1; so we state it without
proof.

Proposition 3.4. If S ≥ T and U ≥ V in A2 and if α ≥ 0 in R then S + U ≥ T + V , αS ≥ αT , and
−T ≥ −S.

However, the following example shows that, for R,S, T ∈ A2,

R ≥ 0 and S ≥ T 
⇒ SR ≥ TR.

Example 3.5. Let R,S, T ∈ A2 be the operators given by their matrix representations:

[R] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · ·

0 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [S] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 0 · · ·

−1 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, [T ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · ·

0 0 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then R ≥ 0 by Theorem 2.6. Moreover, S − T , given by the matrix representation

[S − T ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 · · ·

−1 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

is positive since, for all x ∈ c0(C), we have that

〈(S − T )x, x〉 = x1(x1 − x2) + x2(x2 − x1) = |x1|2o − x1x2 − x2x1 + |x2|2o
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= |x1|2o − 2R (x1x2) + |x2|2o
≥ |x1|2o − 2|x1|o|x2|o + |x2|2o = (|x1|o − |x2|o)2 ≥ 0,

where, for z = α+ iβ ∈ C, R(z) = α denotes the R-part of the C-number z. However,

[SR] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0 · · ·

0 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and [TR] = 0.

Thus,

[SR − TR] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0 · · ·

0 1 0 · · ·

0 0 0 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and hence SR− TR 
≥ 0 since it is not self-adjoint. It follows that SR 
≥ TR.

Proposition 3.6. Let S, T ∈ A2 be given. Then S ≥ T if and only if 〈Sx, x〉 ≥ 〈Tx, x〉 for all
x ∈ c0(C).

Proof. First note that, since S, T and S − T are self-adjoint (being elements of A2), we have that
〈Sx, x〉, 〈Tx, x〉 and 〈(S − T )x, x〉 are elements of R for all x ∈ c0(C). Thus,

S ≥ T ⇔ S − T ≥ 0

⇔ 〈(S − T )x, x〉 ≥ 0 for all x ∈ c0(C)

⇔ 〈Sx, x〉 − 〈Tx, x〉 ≥ 0 for all x ∈ c0(C)

⇔ 〈Sx, x〉 ≥ 〈Tx, x〉 for all x ∈ c0(C).

Proposition 3.7. Let S, T ∈ A2 be such that S ≥ T ≥ 0. Then ‖S‖ ≥ ‖T‖.

Proof. Since S, T ∈ A2, there exist (αn)n∈N, (βn)n∈N ∈ c0(R) and orthonormal sequences (yn)n∈N and
(zn)n∈N of elements yn, zn ∈ c0(C) such that

S =

∞∑

n=1

αn
〈·, yn〉
〈yn, yn〉

yn and T =

∞∑

j=1

βj
〈·, zj〉
〈zj , zj〉

zj,

with αn > 0 for all n ∈ N, βj > 0 for all j ∈ N,

‖S‖ = max
n∈N

|αn| , and ‖T‖ = max
j∈N

|βj | .

Fix j ∈ N. Since S ≥ T we have by Proposition 3.6 that 〈Szj , zj〉 ≥ 〈Tzj , zj〉, and hence
∞∑

n=1

αn
〈zj , yn〉
〈yn, yn〉

〈yn, zj〉 ≥ βj〈zj , zj〉;

that is,
∞∑

n=1

αn
|〈zj , yn〉|2o
〈yn, yn〉

≥ βj〈zj , zj〉.
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It follows that

|βj | = |βj〈zj , zj〉|

≤
∣
∣
∣
∣
∣

∞∑

n=1

αn
|〈zj , yn〉|2o
〈yn, yn〉

∣
∣
∣
∣
∣
= max

n∈N

∣
∣
∣
∣
∣
αn

|〈zj , yn〉|2o
〈yn, yn〉

∣
∣
∣
∣
∣

= max
n∈N

|αn|
|〈zj , yn〉|2

|〈yn, yn〉|
= max

n∈N
|αn| |〈zj , yn〉|2

≤ max
n∈N

|αn| |〈zj , zj〉| |〈yn, yn〉| (Cauchy-Schwartz Inequality)

= max
n∈N

|αn| = ‖S‖.

Thus, |βj | ≤ ‖S‖ for all j ∈ N; and hence ‖T‖ = maxj∈N |βj | ≤ ‖S‖.

Corollary 3.8. Let S, T ∈ A2 be such that S ≤ T ≤ 0. Then ‖S‖ ≥ ‖T‖.

Proof. Since S ≤ T ≤ 0, it follows from Proposition 3.4 that −S ≥ −T ≥ 0. Hence, by Proposition 3.7,
we obtain that ‖ − S‖ ≥ ‖ − T‖; that is, ‖S‖ ≥ ‖T‖.

Proposition 3.9. Let S ≥ T in A2 and let R ∈ A1 be given. Then

R∗SR ≥ R∗TR.

Proof. First note that R∗SR and R∗TR are both self-adjoint since S and T are. Thus, R∗SR,R∗TR ∈
A2. Now let x ∈ c0(C) be given. Then

〈(R∗SR−R∗TR)x, x〉 = 〈R∗(S − T )Rx, x〉 = 〈(S − T )Rx,Rx〉 ≥ 0

since S − T ≥ 0. Thus R∗SR−R∗TR ≥ 0, and hence R∗SR ≥ R∗TR.

Remark 3.10. As a follow-up to Remark 2.18, we can introduce a partial order on c0(R) (which is
isometrically isomorphic to A2 [1]) as follows: for a = (aj)j∈N and b = (bj)j∈N in c0(R), we say
that a ≥ b if a− b ≥ 0; that is, if aj − bj ≥ 0 for all j ∈ N (or equivalently aj ≥ bj for all j ∈ N.)
Then a ≥ b in c0(R) if and only if Ma ≥ Mb in A2.

We finish the paper with the following result which gives equivalent conditions for two normal
projections P1, P2 ∈ A2 to be related by the order relation defined above (Definition 3.1).

Theorem 3.11. Let P1, P2 ∈ A2 be normal projections and let M1 = R (P1) and M2 = R (P2). Then
the following are equivalent.

(1) P2 ≥ P1;

(2) M2 ⊇ M1;

(3) P2P1 = P1;

(4) P1P2 = P1.

Proof. (1) ⇒ (2): Assume that P2 ≥ P1. Then 〈P2x, x〉 ≥ 〈P1x, x〉 for all x ∈ c0. Since P1 and P2 are
normal projections (hence idempotent and self-adjoint), it follows that

〈P2x, P2x〉 = 〈P2x, x〉 ≥ 〈P1x, x〉 = 〈P1x, P1x〉 for all x ∈ c0.

Now let x ∈ M1 be given. Then P1x = x and hence it follows that

〈x, x〉 = 〈P1x, P1x〉 ≤ 〈P2x, P2x〉 ≤ 〈x, x〉;
and hence

〈x, x〉 = 〈P2x, P2x〉.
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Using the Pythagorian Theorem, it follows that

〈x− P2x, x− P2x〉 = 0; and hence P2x = x.

This shows that x ∈ M2. Thus, M1 ⊆ M2.
(2) ⇒ (3): Assume that M1 ⊆ M2. Let x ∈ c0 be given; then P1x ∈ M1 and hence P1x ∈ M2. It

follows that

P2P1x = P2(P1x) = P1x.

Since this is true for all x ∈ c0, it follows that

P2P1 = P1.

(3) ⇔ (4): This follows from taking adjoints of the left- and right-hand sides of the last equation
above.

(4) ⇒ (1): Assume that P1P2 = P1. Then P2P1 = P1 too. Let x ∈ c0 be given. Then

〈P2x, x〉 − 〈P1x, x〉 = 〈P2x, x〉 − 〈P2P1x, x〉 = 〈P2(I − P1)x, x〉.
Since P1 and P2 commute, so do P2 and I −P1. Let P = P2(I −P1); we show that P 2 = P and P ∗ = P
and hence P itself is a normal projection. Thus,

P 2 = (P2(I − P1)) (P2(I − P1)) = P2 (I − P1)
2 P2 = P2 (I − P1)P2 = P 2

2 (I − P1)

= P2 (I − P1) = P ;

and

(P2(I − P1))
∗ = (I − P1)

∗P ∗
2 = (I − P1)P2 = P2 (I − P1) = P.

Thus, it follows that P is a normal projection. Therefore,

〈P2x, x〉 − 〈P1x, x〉 = 〈Px, x〉 = 〈Px, Px〉 ≥ 0; and hence 〈P2x, x〉 ≥ 〈P1x, x〉.
Since the last equation holds for all x ∈ c0, it follows that P2 ≥ P1.
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