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Abstract—In this paper, we develop a theory of integrable delta functions on the Levi-Civita field R

as well as on R2 and R3 with similar properties to the one-dimensional, two-dimensional and three-
dimensional Dirac Delta functions and which reduce to them when restricted to points in R, R2

and R
3, respectively. First we review the recently developed Lebesgue-like measure and integration

theory over R, R2 and R3. Then we introduce delta functions on R, R2 and R3 that are integrable
in the context of the aforementioned integration theory; and we study their properties and some
applications.
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1. INTRODUCTION

In various branches of physics, one encounters sources which are nearly instantaneous (if time is
the independent variable) or almost localized (if the independent variable is a space coordinate). To
avoid the cumbersome studies of the detailed functional dependencies of such sources, one would like
to replace them with idealized sources that are truly instantaneous or localized. Typical examples of
such sources are the concentrated forces and moments in solid mechanics, the point masses in the
theory of the gravitational potential, and the point charges in electrostatics. The field of real numbers
R does not permit a direct representation of the (improper) delta functions used for the description
of impulsive (instantaneous) or concentrated (localized) sources. Of course, within the framework of
distributions, these concepts can be accounted for in a rigorous fashion, but at the expense of the intuitive
interpretation.

The existence of infinitely small numbers and infinitely large numbers in the non-Archimedean Levi-
Civita field R allows us to have well-behaved delta functions. For example, the function δ : R → R, given
by δ(x) = 3

4d
−3
(
d2 − x2

)
if |x| < d and 0 otherwise, where d is a positive infinitely small number, is

a (one-dimensional) continuous (and piece-wise infinitely differentiable) delta function; it assumes an
infinitely large value (3/4d−1) at 0, it vanishes at all other real points and its integral is equal to one.

We recall that the elements of the Levi-Civita field R and its complex counterpart C are functions
from Q to R and C, respectively, with left-finite support (denoted by supp). That is, below every rational
number q, there are only finitely many points where the given function does not vanish. For the further
discussion, it is convenient to introduce the following terminology.
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Definition 1.1. (λ, ∼, ≈, =q) For x �= 0 in R or C, we let λ(x) = min(supp(x)), which exists because
of the left-finiteness of supp(x); and we let λ(0) = +∞. Moreover, we denote the value of x at
q ∈ Q with brackets like x[q].

Given x, y �= 0 in R or C, we say x ∼ y if λ(x) = λ(y); and we say x ≈ y if λ(x) = λ(y) and
x[λ(x)] = y[λ(y)]. Finally, for any q ∈ Q, we say x =q y if x[p] = y[p] for all p ≤ q in Q.

At this point, these definitions may feel somewhat arbitrary; but after having introduced an order
on R, we will see that λ describes orders of magnitude, the relation ≈ corresponds to agreement up to
infinitely small relative error, while ∼ corresponds to agreement of order of magnitude.

The sets R and C are endowed with formal power series multiplication and componentwise addition,
which make them into fields [6, 9] in which we can isomorphically embed R and C (respectively) as
subfields via the map Π : R,C → R,C defined by

Π(x)[q] =

⎧
⎨

⎩
x if q = 0

0 else
. (1.1)

Definition 1.2. (Order in R) Let x, y ∈ R be given. Then we say that x > y (or y < x) if x �= y and
(x− y)[λ(x− y)] > 0; and we say x ≥ y (or y ≤ x) if x = y or x > y.

It follows that the relation ≥ (or ≤) defines a total order on R which makes it into an ordered field.
Note that, given a < b in R, we define the R-interval [a, b] = {x ∈ R : a ≤ x ≤ b}, with the obvious
adjustments in the definitions of the intervals [a, b), (a, b], and (a, b). Moreover, the embedding Π in
Equation (1.1) of R into R is compatible with the order.

The order leads to the definition of an ordinary absolute value on R:

|x| = max{x,−x} =

⎧
⎨

⎩
x if x ≥ 0

−x if x < 0;

which induces the same topology on R (called the order topology or valuation topology) as that induced
by the ultrametric absolute value:

|x|u =

⎧
⎨

⎩
e−λ(x) if x �= 0

0 if x = 0,

as was shown in [13]. Moreover, two corresponding absolute values are defined on C in the natural way:

|x+ iy| =
√

x2 + y2; and |x+ iy|u = e−λ(x+iy) = max{|x|u, |y|u}.

Thus, C is topologically isomorphic to R2 provided with the product topology induced by |·| (or |·|u) in R.

We note in passing here that |·|u is a non-Archimedean valuation on R (resp. C); that is, it satisfies
the following properties

1. |v|u ≥ 0 for all v ∈ R (resp. v ∈ C) and |v|u = 0 if and only if v = 0;

2. |vw|u = |v|u|w|u for all v,w ∈ R (resp. v,w ∈ C); and

3. |v + w|u ≤ max{|v|u, |w|u} for all v,w ∈ R (resp. v,w ∈ C): the strong triangle inequality.

Thus, (R, | · |u) and (C, | · |u) are non-Archimedean valued fields.

Besides the usual order relations on R, some other notations are convenient.
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Definition 1.3. (�,�) Let x, y ∈ R be non-negative. We say x is infinitely smaller than y (and
write x � y) if nx < y for all n ∈ N; we say x is infinitely larger than y (and write x � y) if
y � x. If x � 1, we say x is infinitely small; if x � 1, we say x is infinitely large. Infinitely small
numbers are also called infinitesimals or differentials. Infinitely large numbers are also called
infinite. Non-negative numbers that are neither infinitely small nor infinitely large are also called
finite.

Definition 1.4. (The Number d) Let d be the element of R given by d[1] = 1 and d[t] = 0 for t �= 1.

Remark 1.5. Given m ∈ Z, then dm is the positive R-number given by

dm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dd · · · d︸ ︷︷ ︸
m times

if m > 0

1 if m = 0

1
d−m if m < 0

.

Moreover, given a rational number q = m/n (with n ∈ N and m ∈ Z), then dq is the positive nth
root of dm in R (that is, (dq)n = dm) and it is given by

dq[t] =

⎧
⎨

⎩
1 if t = q

0 otherwise
.

It is easy to check that dq � 1 if q > 0 and dq � 1 if q < 0 in Q. Moreover, for all x ∈ R (resp.
C), the elements of supp(x) can be arranged in ascending order, say supp(x) = {q1, q2, . . .} with

qj < qj+1 for all j; and x can be written as x =
∞∑

j=1
x[qj]d

qj , where the series converges in the

valuation topology.

Altogether, it follows that R (resp. C) is a non-Archimedean field extension of R (resp. C). For a
detailed study of these fields, we refer the reader to the survey paper [9] and the references therein. In
particular, it is shown that R and C are complete with respect to the natural (valuation) topology.

It follows therefore that the fields R and C are just special cases of the class of fields discussed in
[5]. For a general overview of the algebraic properties of formal power series fields in general, we refer
the reader to the comprehensive overview by Ribenboim [4], and for an overview of the related valuation
theory to the books by Krull [2], Schikhof [5] and Alling [1]. A thorough and complete treatment of
ordered structures can also be found in [3].

Besides being the smallest ordered non-Archimedean field extension of the real numbers that is
both complete in the order topology and real closed, the Levi-Civita field R is of particular interest
because of its practical usefulness. Since the supports of the elements of R are left-finite, it is possible to
represent these numbers on a computer; and having infinitely small numbers in the field allows for many
computational applications. One such application is the computation of derivatives of real functions
representable on a computer [10], where both the accuracy of formula manipulators and the speed of
classical numerical methods are achieved.

2. MEASURE THEORY AND INTEGRATION ON R, R2 AND R3

Using the nice smoothness properties of power series (see [7] and the references therein), we
developed a Lebesgue-like measure and integration theory on R in [8, 12] that uses the R-analytic
functions (functions given locally by power series- Definition 2.4) as the building blocks for measurable
functions instead of the step functions used in the real case. This was possible in particular because the
family S(a, b) of analytic functions on a given interval I(a, b) ⊂ R (where I(a, b) denotes any one of the
intervals [a, b], (a, b], [a, b) or (a, b)) satisfies the following crucial properties.
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1. S(a, b) is an algebra that contains the identity function;

2. for all f ∈ S(a, b), f is Lipschitz on I(a, b) and there exists an anti-derivative F of f in S(a, b),
which is unique up to a constant;

3. for all differentiable f ∈ S(a, b), if f ′ = 0 on (a, b) then f is constant on I(a, b); moreover, if f ′ ≥ 0
on (a, b) then f is nondecreasing on I(a, b).

Notation 2.1. Let a < b in R be given. Then by l(I(a, b)) we will denote the length of the interval
I(a, b), that is

l(I(a, b)) = length of I(a, b) = b− a.

Definition 2.2. Let A ⊂ R be given. Then we say that A is measurable if for every ε > 0 in
R, there exist a sequence of mutually disjoint intervals (In) and a sequence of mutually dis-

joint intervals (Jn) such that
∞⋃

n=1
In ⊂ A ⊂

∞⋃

n=1
Jn,

∞∑

n=1
l(In) and

∑∞
n=1 l(Jn) converge in R, and

∞∑

n=1
l(Jn)−

∞∑

n=1
l(In) ≤ ε.

Given a measurable set A, then for every k ∈ N, we can select a sequence of mutually disjoint intervals
(
Ikn
)

and a sequence of mutually disjoint intervals
(
Jk
n

)
such that

∞∑

n=1
l
(
Ikn
)

and
∞∑

n=1
l
(
Jk
n

)
converge in

R for all k,
∞⋃

n=1

Ikn ⊂
∞⋃

n=1

Ik+1
n ⊂ A ⊂

∞⋃

n=1

Jk+1
n ⊂

∞⋃

n=1

Jk
n and

∞∑

n=1

l
(
Jk
n

)
−

∞∑

n=1

l
(
Ikn

)
≤ dk

for all k ∈ N. Since R is Cauchy-complete in the order topology, it follows that lim
k→∞

∑∞
n=1 l

(
Ikn
)

and

lim
k→∞

∞∑

n=1
l
(
Jk
n

)
both exist and they are equal. We call the common value of the limits the measure of A

and we denote it by m(A). Thus,

m(A) = lim
k→∞

∞∑

n=1

l
(
Ikn

)
= lim

k→∞

∞∑

n=1

l
(
Jk
n

)
.

Contrary to the real case,

sup

{ ∞∑

n=1

l(In) : In’s are mutually disjoint intervals and
∞⋃

n=1

In ⊂ A

}

and

inf

{ ∞∑

n=1

l(Jn) : Jn’s are mutually disjoint intervals and A ⊂
∞⋃

n=1

Jn

}

need not exist for a given set A ⊂ R. However, as shown in [12], if A is measurable then both the
supremum and infimum exist and they are equal to m(A). This shows that the definition of measurable
sets in Definition 2.2 is a natural generalization of that of the Lebesgue measurable sets of real analysis
that corrects for the lack of suprema and infima in non-Archimedean ordered fields.

It follows directly from the definition that m(A) ≥ 0 for any measurable set A ⊂ R and that any
interval I(a, b) is measurable with measure m(I(a, b)) = l(I(a, b)) = b− a. It also follows that if A is

a countable union of mutually disjoint intervals (In(an, bn)) such that
∞∑

n=1
(bn − an) converges then A is
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measurable with m(A) =
∞∑

n=1
(bn − an). Moreover, if B ⊂ A ⊂ R and if A and B are measurable, then

m(B) ≤ m(A).
In [12] we show that the measure defined on R above has similar properties to those of the Lebesgue

measure on R. For example, we show that any subset of a measurable set of measure 0 is itself
measurable and has measure 0. We also show that any countable unions of measurable sets whose
measures form a null sequence is measurable and the measure of the union is less than or equal to the
sum of the measures of the original sets; moreover, the measure of the union is equal to the sum of the
measures of the original sets if the latter are mutually disjoint. Furthermore, we show that any finite
intersection of measurable sets is also measurable and that the sum of the measures of two measurable
sets is equal to the sum of the measures of their union and intersection.

It is worth noting that the complement of a measurable set in a measurable set need not be
measurable. For example, [0, 1] and [0, 1] ∩Q are both measurable with measures 1 and 0, respectively.
However, the complement of [0, 1] ∩Q in [0, 1] is not measurable. On the other hand, if B ⊂ A ⊂ R and
if A, B and A \B are all measurable, then m(A) = m(B) +m(A \B).

The example of [0, 1] \ [0, 1] ∩Q above shows that the axiom of choice is not needed here to
construct a nonmeasurable set, as there are many simple examples of nonmeasurable sets. Indeed, any
uncountable real subset of R, like [0, 1] ∩ R for example, is not measurable.

Then we define in [12] a measurable function on a measurable set A ⊂ R using Definition 2.2 and
analytic functions (Definition 2.4 below).

Definition 2.3. A sequence (an)
∞
n=1 in R (or C) is said to be regular if the union of the supports of

all members of the sequence is a left-finite subset of Q.

Definition 2.4. Let a < b in R be given and let f : I(a, b) → R. Then we say that f is analytic on
I(a, b) if for all x ∈ I(a, b) there exists a positive δ ∼ b− a in R, and there exists a regular sequence
(an (x))

∞
n=1 in R such that, under weak convergence,

f (y) =

∞∑

n=0

an (x) (y − x)n for all y ∈ (x− δ, x+ δ) ∩ I(a, b).

Definition 2.5. Let a < b in R be given and let f : I(a, b) → R be analytic. Then there is a rational
number i(f) called the index of f and defined by

i(f) := min {λ(f(x))|x ∈ I(a, b)} .
It is shown in [13] that the above minimum must exist and that λ(f(x)) = i(f) for almost every
x ∈ I(a, b) ∩ dλ(b−a)

R. Moreover, if x ∈ I(a, b) ∩ dλ(b−a)
R satisfies λ(f(x)) = i(f), then λ(f(y)) =

i(f) for all y satisfying |y − x| � dλ(b−a).

Definition 2.6. Let A ⊂ R be a measurable subset of R and let f : A → R be bounded on A. Then
we say that f is measurable on A if for all ε > 0 in R, there exists a sequence of mutually disjoint

intervals (In) such that In ⊂ A for all n,
∞∑

n=1
l (In) converges in R, m(A)−

∞∑

n=1
l(In) ≤ ε and f is

analytic on In for all n.

In [12], we derive a simple characterization of measurable functions and we show that they form an
algebra. Then we show that a measurable function is differentiable almost everywhere and that a function
measurable on two measurable subsets of R is also measurable on their union and intersection.

We define the integral of an analytic function over an interval I(a, b) and we use that to define the
integral of a measurable function f over a measurable set A. Before we do that, we recall the following
result whose proof can be found in [6].

Proposition 2.7. Let a < b in R and let f : I(a, b) → R be analytic on I(a, b). Then

• f is Lipschitz on I(a, b);
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• lim
x→a+

f(x) and lim
x→b−

f(x) exist;

• the function g : [a, b] → R, given by

g(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(x) if x ∈ I(a, b)

lim
ξ→a+

f(ξ) if x = a

lim
ξ→b−

f(ξ) if x = b,

extends f to an analytic function on [a, b] when I(a, b) � [a, b].

Definition 2.8. Let a < b in R, let f : I(a, b) → R be analytic on I(a, b), and let F be an analytic
anti-derivative of f on I(a, b). Then the integral of f over I(a, b) is the R number

∫

I(a,b)
f = lim

x→b−
F (x)− lim

x→a+
F (x).

The limits in Definition 2.8 account for the case when the interval I(a, b) does not include one or both
of the end points; and these limits exist by Proposition 2.7 above.

Now let A ⊂ R be measurable, let f : A → R be measurable and let M be a bound for |f | on A. Then

for every k ∈ N, there exists a sequence of mutually disjoint intervals
(
Ikn
)∞
n=1

such that
∞⋃

n=1
Ikn ⊂ A,

∞∑

n=1
l
(
Ikn
)

converges, m(A)−
∞∑

n=1
l
(
Ikn
)
≤ dk, and f is analytic on Ikn for all n ∈ N. Without loss of

generality, we may assume that Ikn ⊂ Ik+1
n for all n ∈ N and for all k ∈ N. Since lim

n→∞
l
(
Ikn
)
= 0, and

since
∣
∣∣
∫
Ikn

f
∣
∣∣ ≤ Ml

(
Ikn
)

(proved in [12] for analytic functions), it follows that

lim
n→∞

∫

Ikn

f = 0 for all k ∈ N.

Thus,
∞∑

n=1

∫
Ikn

f converges in R for all k ∈ N [11].

We show that the sequence
( ∞∑

n=1

∫
Ikn

f

)∞

k=1

converges in R; and we define the unique limit as the

integral of f over A.

Definition 2.9. Let A ⊂ R be measurable and let f : A → R be measurable. Then the integral of f
over A, denoted by

∫
A f , is given by

∫

A
f = lim

∞∑

n=1
l(In) → m(A)

∞⋃

n=1
In ⊂ A

I′ns are mutually disjoint

f is analytic on In ∀n

∞∑

n=1

∫

In

f.

It turns out that the integral in Definition 2.9 satisfies similar properties to those of the Lebesgue
integral on R [12]. In particular, we prove the linearity property of the integral and that if |f | ≤ M on A
then

∣∣∫
A f
∣∣ ≤ Mm(A), where m(A) is the measure of A. We also show that the sum of the integrals of a

measurable function over two measurable sets is equal to the sum of its integrals over the union and the
intersection of the two sets.
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In [8], which is a continuation of the work done in [12] and complements it, we show, among other
results, that the uniform limit of a sequence of convergent power series on an interval I(a, b) is again a
power series that converges on I(a, b). Then we use that to prove the uniform convergence theorem in
R.

Theorem 2.10. Let A ⊂ R be measurable, let f : A → R, for each k ∈ N let fk : A → R be measur-
able on A, and let the sequence (fk) converge uniformly to f on A. Then f is measurable on A,
lim
k→∞

∫
A fk exists, and

lim
k→∞

∫

A
fk =

∫

A
f.

In [14] we generalize the results of [8, 12] to two and three dimensions. In particular, we define a
Lebesgue-like measure on R2 (resp. R3). Then we define measurable functions on measurable sets using
analytic functions in two (resp. three) variables and show how to integrate those measurable functions
using iterated integration. The resulting double (resp. triple) integral satisfies similar properties to those
of the single integral in [8, 12] as well as those properties satisfied by the double and triple integrals of
real calculus. In order to have basic regions, like disks for example, measurable, it turns out that the so-
called simple regions defined below, rather than rectangles, are the best choice for the building blocks for
measurable sets. We recall the following definitions from [14] which will be needed later in this paper.

Definition 2.11 (Simple Region). Let G ⊂ R2. Then we say that G is a simple region if there exist
a � b in R and analytic functions h1, h2 : I(a, b) → R, with h1 ≤ h2 on I(a, b) such that

G = {(x, y) ∈ R2 : y ∈ I(h1(x), h2(x)), x ∈ I(a, b)}
or

G = {(x, y) ∈ R2 : x ∈ I(h1(y), h2(y)), y ∈ I(a, b)}.

Definition 2.12 (λx and λy of a simple region). Let A ⊂ R2 be a simple region. If A = {(x, y) ∈ R2 :
y ∈ I(h1(x), h2(x)), x ∈ I(a, b)} we define λx(A) = λ(b− a) and λy(A) = i(h2(x)− h1(x)) on I(a, b)
where i(h2(x)− h1(x)) is the index of the analytic function h2 − h1 on I(a, b).

On the other hand, if A = {(x, y) ∈ R2 : x ∈ I(h1(y), h2(y)), y ∈ I(a, b)}, we define λy(A) =
λ(b− a) and λx(A) = i(h2(y)− h1(y)) on I(a, b).

If λx(A) = λy(A) = 0 then we say that A is finite.

Definition 2.13 (Analytic Functions on R2). Let A ⊂ R2 be a simple region. Then we say that
f : A → R2 is an analytic function on A if, for every (x0, y0) ∈ A, there exist a simple region
A0 containing (x0, y0) that satisfies λx(A0) = λx(A) and λy(A0) = λy(A), and a regular sequence
(aij)

∞
i,j=0 such that for every s, t ∈ R, if (x0 + s, y0 + t) ∈ A ∩A0 then

f(x0 + s, y0 + t) =
∞∑

i,j=0

aijs
itj = f(x0, y0) +

∞∑

i,j=0
i+j �=0

aijs
itj,

where the power series converges in the weak topology.

Given a simple region S ⊂ R2 and an analytic function f : S → R, we define the index of f on S by

i(f) = min {λ(f(x, y))|(x, y) ∈ S} ,
which is shown to exist [14]. We note that λ(f(x, y)) = i(f) for almost every (x, y) ∈ S ∩ (dλx(S)R×
dλy(S)R) and for any such point (x, y) ∈ S ∩ (dλx(S)R× dλy(S)R), we have that λ(f(x′, y′)) = i(f) for
all (x′, y′) ∈ S satisfying |x′ − x| � dλx(S) and |y′ − y| � dλy(S).

With the above definitions, we can proceed to define measurable sets, measurable functions, and
integration just as we did in R, replacing intervals by simple regions. We can then extend the measure
theory and integration to R3, R4, etc. in an inductive way and obtain similar properties for the resulting
integrals as those for the single integral defined above.
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3. THE DELTA FUNCTION ON THE LEVI-CIVITA FIELD

In the following, capitalizing on the existence of infinitely small and infinitely large numbers and the
newly developed integration theory on R, R2 and R3, we will introduce a measurable function that has
similar properties to the Dirac Delta function and reduces to it when restricted to R.

Definition 3.1. Let δ : R → R be given by

δ(x) =

{
3
4d

−3(d2 − x2) if |x| < d

0 if |x| � d
.

Proposition 3.2. Let I ⊂ R be an interval. If (−d, d) ⊂ I then
∫

x∈I
δ(x) = 1.

Moreover, if (−d, d) ∩ I = ∅ then
∫

x∈I
δ(x) = 0.

Proof. Note that δ(x) is measurable on I [12]. If (−d, d) ⊂ I then
∫

x∈I

δ(x) =

∫

x∈(−d,d)

δ(x)

=

∫

x∈(−d,d)

3

4
d−3(d2 − x2)

=
3

4
d−3

(
[
d2x
]d
−d

−
[
1

3
x3
]d

−d

)

=
3

4
d−3

(
2d3 − 2

3
d3
)

= 1.

If (−d, d) ∩ I = ∅ then δ(x) = 0 for all x ∈ I; and hence
∫

x∈I
δ(x) =

∫

x∈I
0 = 0.

Proposition 3.3. Let I ⊂ R be an interval containing (−d, d). Then δ(x) has a measurable anti-
derivative on I that is equal to the Heaviside function on I ∩ R.

Proof. Let H : I → R be given by

H(x) =

⎧
⎪⎨

⎪⎩

0 if x � −d
3
4d

−3(d2x− 1
3x

3) + 1
2 if − d < x < d

1 if x � d

.

Then H(x) is measurable and differentiable on I with H ′(x) = δ(x) on I. Moreover,

H(x)|R =

⎧
⎪⎨

⎪⎩

0 if x < 0

1/2 if x = 0

1 if x > 0

,

which is the so-called Heaviside function.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 10 No. 1 2018



40 FLYNN, SHAMSEDDINE

Proposition 3.4. Let α ∈ R \ {0} be given, and let I ⊂ R be any interval satisfying
(
− d

|α| ,
d
|α|

)
⊂ I.

Then
∫

x∈I
δ(αx) =

1

|α| .

Proof. Note that, by definition of the delta function, we have that

δ(αx) =

{
3
4d

−3
(
d2 − (αx)2

)
if |αx| < d

0 if |αx| � d

=

{
3
4d

−3
(
d2 − (αx)2

)
if |x| < d

|α|
0 if |x| � d

|α|
.

It follows that
∫

x∈I

δ(αx) =

∫

x∈
(
− d

|α| ,
d
|α|

)

3

4
d−3(d2 − (αx)2) =

[
3

4
d−1

(
x− d−2α

2x3

3

)] ∣∣
∣∣

d
|α|

− d
|α|

=
1

|α| .

Lemma 3.5. Let f : I(0, 1) → R be analytic with i(f) = 0. Then for every x ∈ I(0, 1) and for every
n ∈ N, we have that λ(f (n)(x)) ≥ 0.

Proof. Let x ∈ I(0, 1) and let q < 0 in Q be given. Since f is analytic on the finite interval I(0, 1), there
exists δ > 0 in R such that for all y ∈ (x− δ, x+ δ) ∩ I(0, 1), we have that

f(y) =

∞∑

n=0

f (n)(x)

n!
(y − x)n.

Since i(f) = 0, it follows that, for almost every h ∈ (0, δ) ∩R, we have λ(f(x+ h)) = 0. In other words,
for almost every h ∈ (0, δ) ∩ R we have that f(x+ h)[q] = 0. But

f(x+ h)[q] =

( ∞∑

n=0

f (n)(x)

n!
hn

)

[q] =

∞∑

n=0

f (n)(x)[q]

n!
hn[0] =

∞∑

n=0

f (n)(x)[q]

n!
hn.

So for almost every h ∈ (0, δ) ∩ R we have
∞∑

n=0

f (n)(x)[q]

n!
hn = 0.

Since the above is a real power series, this is possible only if f (n)(x)[q] = 0 for all n ∈ N. Therefore, for
any n ∈ N and x ∈ I(0, 1), we have that λ(f (n)(x)) ≥ 0.

Theorem 3.6. Let a < b in R be given and let f : I(a, b) → R be analytic on I(a, b) with i(f) = 0.
Then for any x ∈ I(a, b) and for any n ∈ N, we have that

λ(f (n)(x)) ≥ −nλ(b− a).

Proof. Define F : I(0, 1) → R by

F (x) = f((b− a)x+ a).

Then F is analytic on I(0, 1) and i(F ) = i(f) = 0; hence, by the previous lemma, for all x ∈ I(0, 1) and
n ∈ N, we have that

λ
(
F (n)(x)

)
≥ 0.
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Note that, for all x ∈ I(0, 1) and n ∈ N, we have that

F (n)(x) = (b− a)nf (n)((b− a)x+ a).

It follows that

0 ≤λ(F (n)(x)) = λ((b− a)nf (n)((b− a)x+ a))

= nλ(b− a) + λ(f (n)((b− a)x+ a));

and hence λ(f (n)((b− a)x+ a)) ≥ −nλ(b− a).

Proposition 3.7. Let a < b in R be such that λ(b− a) < 1 and let f : I(a, b) → R be analytic on
I(a, b) with i(f) = 0. Then for any x0 ∈ [a+ d, b− d], we have that

∫

x∈I(a,b)
f(x)δ(x− x0) =0 f(x0).

Proof. Fix x0 ∈ [a+ d, b− d]. Since f is a finite analytic function, there exists a η > 0 in R with λ(η) =

λ(b− a) such that, for any x ∈ I(a, b) satisfying |x− x0| < η, we have that f(x) =
∞∑

k=0

f(k)(x0)
k! (x− x0)

k.

Therefore,
∫

x∈I(a,b)

f(x)δ(x− x0) =

∫

x∈(x0−d,x0+d)

f(x)δ(x − x0)

=

∫

x∈(x0−d,x0+d)

∞∑

k=0

f (k)(x0)

k!
(x− x0)

kδ(x − x0)

=

∫

x∈(x0−d,x0+d)

f(x0)δ(x − x0)

+

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x − x0)

= f(x0) +

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x− x0).

Now, for any x ∈ (x0 − d, x0 + d), we have that |x− x0| < d, and hence
∣
∣∣
∣
∣∣
∣

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x − x0)

∣
∣∣
∣
∣∣
∣
�

∫

x∈[x0−d,x0+d]

∞∑

k=1

|f (k)(x0)|
k!

dkδ(x − x0).

It follows that
∣
∣∣
∣∣
∣
∣

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x− x0)

∣
∣∣
∣∣
∣
∣
�

∞∑

k=1

|f (k)(x0)|
k!

dk.

Thus

λ

⎛

⎜
⎝

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x− x0)

⎞

⎟
⎠ � λ

( ∞∑

k=1

|f (k)(x0)|
k!

dk

)

.
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However, since i(f) = 0 we can apply Theorem 3.6 to get that for all k ∈ N, λ(f (k)(x0)) > −k and hence

λ

( ∞∑

k=1

|f(k)(x0)|
k! dk

)
> 0. Thus,

λ

⎛

⎜
⎝

∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x − x0)

⎞

⎟
⎠ > 0.

Therefore,
∫

x∈(x0−d,x0+d)

∞∑

k=1

f (k)(x0)

k!
(x− x0)

kδ(x− x0) =0 0.

It follows that
∫

x∈I(a,b)

f(x)δ(x− x0) =0 f(x0).

Proposition 3.8. Let a < b < c in R be such λ(b− a) < 1 and λ(c− b) < 1; let g : [a, b] → R and
h : [b, c] → R be analytic functions satisfying g(b) = h(b) and i(h) = i(g) = 0; and let f : [a, c] → R
be given by

f(x) =

{
g(x) if x ∈ [a, b)

h(x) if x ∈ [b, c]
.

Then for any x0 ∈ [a+ d, c− d], we have that
∫

x∈[a,c]

f(x)δ(x − x0) =0 f(x0).

Proof. Without loss of generality, we may assume that b = 0. Fix x0 ∈ [a+ d, c− d]. If |x0| � d then by
Proposition 3.7 we are done; so without loss of generality we may assume that |x0| < d. Thus, we have
that

∫

x∈[a,c]

f(x)δ(x− x0) =

∫

x∈[x0−d,0]

g(x)δ(x − x0) +

∫

x∈[0,x0+d]

h(x)δ(x − x0).

Both g and h are analytic functions defined on [a, 0] and [0, c], respectively; and hence they both can be
expanded as power series centered at 0. Thus,

g(x) =
∞∑

k=0

αkx
k

and

h(x) =

∞∑

k=0

βkx
k,

where

αk =
g(k)(0)

k!
and βk =

h(k)(0)

k!
for k = 0, 1, 2, . . . .
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Since λ(b− a) = λ(−a) = λ(a) < 1 and λ(c− b) = λ(c) < 1 both power series will have radii of con-
vergence infinitely larger than d, and hence they will converge everywhere on [x0 − d, 0] and [0, x0 + d],
respectively. Thus,

∫

x∈[x0−d,0]

g(x)δ(x − x0) =

∫

x∈[x0−d,0]

∞∑

k=0

αkx
kδ(x− x0)

and
∫

x∈[0,x0+d]

h(x)δ(x − x0) =

∫

x∈[0,x0+d]

∞∑

k=0

βkx
kδ(x− x0).

Therefore,
∫

x∈[a,c]

f(x)δ(x− x0) =

∫

x∈[x0−d,0]

∞∑

k=0

αkx
kδ(x− x0) +

∫

x∈[0,x0+d]

∞∑

k=0

βkx
kδ(x− x0)

= α0

∫

x∈[x0−d,0]

δ(x− x0) + β0

∫

x∈[0,x0+d]

δ(x − x0)

+

∫

x∈[x0−d,0]

∞∑

k=1

αkx
kδ(x− x0)

+

∫

x∈[0,x0+d]

∞∑

k=1

βkx
kδ(x− x0).

However, α0 = g(0) = f(0) = h(0) = β0, and hence

α0

∫

x∈[x0−d,0]

δ(x − x0) + β0

∫

x∈[0,x0+d]

δ(x − x0) = f(0)

∫

x∈[x0−d,x0+d]

δ(x− x0) = f(0).

Thus,
∫

x∈[a,c]

f(x)δ(x− x0) = f(0) +

∫

x∈[x0−d,0]

∞∑

k=1

αkx
kδ(x− x0) +

∫

x∈[0,x0+d]

∞∑

k=1

βkx
kδ(x− x0).

But

λ

⎛

⎜
⎝

∫

x∈[x0−d,0]

∞∑

k=1

αkx
kδ(x− x0) +

∫

x∈[0,x0+d]

∞∑

k=1

βkx
kδ(x − x0)

⎞

⎟
⎠

� λ

⎛

⎜
⎝

∞∑

k=1

|αk| (2d)k
∫

x∈[x0−d,0]

δ(x− x0) +
∞∑

k=1

|βk| (2d)k
∫

x∈[0,x0+d]

δ(x − x0)

⎞

⎟
⎠ > 0

as in the proof of Proposition 3.7. Thus,
∫

x∈[x0−d,0]

∞∑

k=1

αkx
kδ(x− x0) +

∫

x∈[0,x0+d]

∞∑

k=1

βkx
kδ(x− x0) =0 0,
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and hence
∫

x∈[a,c]
f(x)δ(x− x0) =0 f(0). However, f(0) =0 f(x0) [6]; therefore

∫

x∈[a,c]

f(x)δ(x − x0) =0 f(x0).

Uniform differentiability on an interval of R is defined in the same way as in the real case.

Definition 3.9. Let a < b in R be given and let f : I(a, b) → R be differentiable with derivative f ′

on I(a, b). Then we say that f is uniformly differentiable on I(a, b) if for every ε > 0 in R there
exists δ > 0 in R such that for all x, y ∈ I(a, b)

0 < |y − x| < δ ⇒
∣∣
∣∣
f(y)− f(x)

y − x
− f ′(x)

∣∣
∣∣ < ε.

Lemma 3.10. Let f : I(0, 1) → R be analytic with i(f) = 0. Then f is uniformly differentiable on
I(0, 1).

Proof. First we note that, by Theorem 3.6, we have that λ(f (n)(x)) ≥ 0 for all n ∈ N and for all
x ∈ I(0, 1). Now let ε > 0 in R be given and let

δ = min
{
d4ε, d

}
.

Then for x, y ∈ I(0, 1) satisfying 0 < |y − x| < δ, we have that

f(y) = f(x) + f ′(x)(y − x) +

∞∑

n=2

f (n)(x)

n!
(y − x)n,

where the power series converges in the order topology since λ(f (n)(x)) ≥ 0 for all n ∈ N and since
0 < |y − x| < δ � 1 so that

lim
n→∞

f (n)(x)

n!
(y − x)n = 0.

It follows that

∣∣f(y)− f(x)− f ′(x)(y − x)
∣∣ =

∣∣
∣∣
∣

∞∑

n=2

f (n)(x)

n!
(y − x)n

∣∣
∣∣
∣
<

∞∑

n=2

d−1

n!
dn−2(y − x)2;

and hence
∣
∣
∣∣
f(y)− f(x)

y − x
− f ′(x)

∣
∣
∣∣ <

∞∑

n=0

dn−3

n!
|y − x| <

( ∞∑

n=0

dn−3

n!

)

d4ε

=

( ∞∑

n=0

dn

n!

)

dε =
d

1− d
ε

< ε.

Theorem 3.11. Let a < b in R be given and let f : I(a, b) → R be analytic on I(a, b). Then f is
uniformly differentiable on I(a, b).
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Proof. Let F : I(0, 1) → R be given by F (x) = d−i(f)f(a+ (b− a)x). Then F is analytic on I(0, 1)
with i(F ) = 0; and hence, by Lemma 3.10 above, F is uniformly differentiable on I(0, 1). Now fix ε > 0
in R. Since F is uniformly differentiable on I(0, 1), there is a δ > 0 in R such that if x, y ∈ I(0, 1) and
|y − x| < δ

b−a then |F (y)− F (x)− F ′(x)(y − x)| < d−i(f)ε. However,

|F (y)− F (x)− F ′(x)(y − x)|
= |d−i(f)f(a+ (b− a)y)− d−i(f)f(a− (b− a)x)− d−i(f)f ′(a+ (b− a)x)(b− a)(y − x)|
= d−i(f)|f(a+ (b− a)y)− f(a+ (b− a)x)− f ′(a+ (b− a)x)(b− a)(y − x)|.

Thus, if x, y ∈ I(0, 1) and |y − x| < δ
b−a then we have that

|f(a+ (b− a)y)− f(a+ (b− a)x)− f ′(a+ (b− a)x)(b− a)(y − x)| < ε.

Now let u, v ∈ I(a, b) be such that |v − u| < δ; and let

x =
u− a

b− a
and y =

v − a

b− a
.

Then u = a+ (b− a)x, v = a+ (b− a)y, x, y ∈ I(0, 1) and |y − x| < δ
b−a . It follows that

|f(v)− f(u)− f ′(u)(v − u)|
= |f(a+ (b− a)y)− f(a+ (b− a)x)− f ′(a+ (b− a)x)(b− a)(y − x)|
< ε.

Thus, f is uniformly differentiable on I(a, b).

Notation 3.12. In the following, and to avoid confusion with the number d, we will use Dx to
denote the differential operator d

dx , moreover we will use Dn
x to denote dn

dxn .

Proposition 3.13. Let x0, a < b, and ε > 0 in R be given; and let f : [x0 − ε, x0 + ε]× [a, b] → R be
a (double) power series. Then

Dx

∫

y∈[a,b]

f(x, y) =

∫

y∈[a,b]

∂

∂x
f(x, y).

Proof. Let N ∈ N be such that dN < ε. By Theorem 3.11 above we have that f is uniformly differentiable
with respect to x and hence

lim
k→∞

f(x+ dN+k, y)− f(x, y)

dN+k
=

∂

∂x
f(x, y) (uniformly).

Moreover, by definition

Dx

∫

y∈[a,b]

f(x, y) = lim
k→∞

∫

y∈[a,b]

f(x+ dN+k, y)− f(x, y)

dN+k
.

However, by Theorem 3.9 in [8] we have that

lim
k→∞

∫

y∈[a,b]

f(x+ dN+k, y)− f(x, y)

dN+k
=

∫

y∈[a,b]

lim
k→∞

f(x+ dN+k, y)− f(x, y)

dN+k

=

∫

y∈[a,b]

∂

∂x
f(x, y).

This completes the proof of the proposition.
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Corollary 3.14. Let x0, a < b, and ε > 0 in R be given; and let f : [x0 − ε, x0 + ε]× [a, b] → R be
analytic on : [x0 − ε, x0 + ε]× [a, b]. Then

Dx

∫

y∈[a,b]

f(x, y) =

∫

y∈[a,b]

∂

∂x
f(x, y).

Proof. This follows immediately from the fact that analytic functions are given locally by power series.

Proposition 3.15 (Leibniz’s Rule). Fix x0 ∈ R and let ε > 0 inR be given. Let α, β : [x0 − ε, x0 + ε] →
R be analytic functions with α(x) ≤ β(x) for all x ∈ [x0 − ε, x0 + ε]. Let S be the simple region
given by

S = {(x, y) ∈ R2 : y ∈ [α(x), β(x)], x ∈ [x0 − ε, x0 + ε]}
and let f : S → R be analytic. Then

Dx

∫

y∈[α(x),β(x)]

f(x, y) = f(x, β(x))β′(x)− f(x, α(x))α′(x) +

∫

y∈[α(x),β(x)]

∂

∂x
f(x, y).

Proof. The proof is identical to that of the real case.

Proposition 3.16. Let x0, a < b, and ε > 0 in R be given and let μ : [x0 − ε, x0 + ε] → [a, b] be
a non-constant analytic function. Let g : [x0 − ε, x0 + ε]× [a, μ(x)] → R and h : [x0 − ε, x0 + ε]×
[μ(x), b] → R be analytic and let f : [x0 − ε, x0 + ε]× [a, b] be given by

f(x, y) =

{
g(x, y) if y ≤ μ(x)

h(x, y) if y > μ(x)
.

Then

Dx

∫

y∈[a,b]

f(x, y) =

∫

y∈[a,b]

∂

∂x
f(x, y)

if and only if f(x, y) is continuous.

Proof. Observe that

Dx

∫

y∈[a,b]

f(x, y) = Dx

∫

y∈[a,μ(x)]

g(x, y) +Dx

∫

y∈[μ(x),b]

h(x, y).

But by proposition (3.15) we have that

Dx

∫

y∈[a,μ(x)]

g(x, y) = g(x, μ(x))μ′(x) +

∫

y∈[a,μ(x)]

∂

∂x
g(x, y)

and

Dx

∫

y∈[μ(x),b]
h(x, y) =

∫

y∈[μ(x),b]

∂

∂x
h(x, y) − h(x, μ(x))μ′(x).

So

Dx

∫

y∈[a,b]

f(x, y) = g(x, μ(x))μ′(x) +

∫

y∈[a,μ(x)]

∂

∂x
g(x, y)
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+

∫

y∈[μ(x),b]

∂

∂x
h(x, y) − h(x, μ(x))μ′(x)

=

∫

y∈[a,b]

∂

∂x
f(x, y) + [g(x, μ(x)) − h(x, μ(x))] μ′(x).

Since μ is a non-constant analytic function we know that μ′ �= 0; and it follows that the above expression
equals

∫
y∈[a,b]

∂
∂xf(x, y) if and only if g(x, μ(x)) = h(x, μ(x)) for all x ∈ [x0 − ε, x0 + ε], that is if and only

if f is continuous at y = μ(x) and hence everywhere (since g and h are analytic).

4. EXAMPLES IN ONE DIMENSION

In this section, we present two simple examples in which we illustrate the applications of the delta
function defined on R above.

Example 4.1. [Solving Poisson’s Equation in One Dimension] Suppose that we wish to find the
solution to the real differential equation ẍ(t) = f(t) on the interval [0,+∞) and subject to the
initial conditions x(0) = 0, ẋ(0) = 0. To begin, we observe that the piecewise analytic solution to
∂2

∂t2
G(t, t′) = δ(t− t′) is

G(t, t′) =

⎧
⎪⎨

⎪⎩

A1(t− t′) +B1 t′ ≤ t− d

A2(t− t′) +B2 +
3
8d

−3(d2(t− t′)2 − 1
6(t− t′)4) t− d < t′ < t+ d

A3(t− t′) +B3 t′ ≥ t+ d

,

where A1, A2, A3, B1, B2 and B3 are constants to be determined.
To ensure that our solution satisfies the given initial conditions we must have that the real

parts of G(0, t′) and ∂G
∂t (0, t

′) equal zero; and to accomplish that, it is enough to set G(r, t′) = 0

and ∂G
∂t (r, t

′) = 0 where r ∈ R is any number that is infinitely small in absolute value (we will
use r = −d since that turns out to be a convenient choice). In order to apply Proposition 3.16 we
require that G be continuous (so that Dt

∫
t′ G(t, t′) =

∫
t′

∂
∂tG(t, t′)) and that ∂G

∂t (t, t
′) be continuous

(so that Dt

∫
t′

∂
∂tG(t, t′) =

∫
t′

∂2

∂t2G(t, t′)). Using the initial conditions and continuity of G(t, t′)
and its derivative at t = t′ ± d, we can solve for A1, B1, A2, B2, A3, and B3, to get

G(t, t′) =

⎧
⎪⎨

⎪⎩

t− t′ − d t′ ≤ t− d
1
2(t− t′)− 13

16d+
3
8d

−3(d2(t− t′)2 − 1
6 (t− t′)4) t− d < t′ < t+ d

0 t′ ≥ t+ d

.

Note that when restricted to real points, the real part of G(t, t′) reduces to the classical Green’s
function for D2

t . Applying Proposition 3.16, we obtain that

D2
t

∫

t′∈[0,d−
1
2 ]

G(t, t′)f(t′) =

∫

t′∈[0,d−
1
2 ]

∂2

∂t2
G(t, t′)f(t′)

=

∫

t′∈[0,d−
1
2 ]

δ(t− t′)f(t′)

=0 f(t).

It follows that

⎛

⎝
∫

t′∈[0,d−
1
2 ]

G(t, t′)f(t′)

⎞

⎠ [0] is a (real) solution to the equation

ü(t) = f(t)
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with the initial conditions
⎛

⎜⎜
⎝

∫

t′∈[0,d−
1
2 ]

G(0, t′)f(t′)

⎞

⎟⎟
⎠ [0] =

⎛

⎜⎜
⎝

∫

t′∈[0,d−
1
2 ]

∂G

∂t
(0, t′)f(t′)

⎞

⎟⎟
⎠ [0] = 0;

and hence we must have that

x(t) =

⎛

⎜
⎜
⎝

∫

t′∈[0,d−
1
2 ]

G(t, t′)f(t′)

⎞

⎟
⎟
⎠ [0].

Now, if we set f(t) = t then we see that
∫

t′∈[0,d−
1
2 ]

G(t, t′)f(t′) =

∫

t′∈[0,t+d]

G(t, t′)f(t′)

=

∫

t′∈[0,t−d]

(t− t′ − d)t′ +

∫

t′∈[t−d,t+d]

(
1

2
(t− t′) +

3

16
d+

3

8
d−3

(
d2(t− t′)2 − 1

6
(t− t′)4

))
t′.

But
∫

t′∈[0,t−d]

(t− t− d′)t =
1

6
(t− d)3

and
∫

t′∈[t−d,t+d]

(
1

2
(t− t′) +

3

16
d+

3

8
d−3

(
d2(t− t′)2 − 1

6
(t− t′)4

))
t′ =

7

5
td2 +

1

3
d3.

Thus,
∫

t′∈[0,d−
1
2 ]

G(t, t′)f(t′) = 1
6(t− d)3 + 7

5td
2 + 1

3d
3 =0

1
6t

3 and hence the real solution is x(t) =

1
6t

3.

Example 4.2 (Damped Driven Harmonic Oscillator). Consider now an underdamped, driven har-
monic oscillator with mass m, viscous damping constant c, spring constant k, and driving force
f(t). Let x(t) be the position of the oscillator at time t with x(0) = 0 and ẋ(0) = 0. The oscillator’s
equation of motion is

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) =

f(t)

m
. (4.1)

With the following change of variables

γ =
c

2
√
mk

and ω0 =

√
k

m
,

equation (4.1) takes the form

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) =

f(t)

m
.

Since the oscillator is underdamped we have that γ2ω2
0 − ω2

0 < 0 which is equivalent to γ < 1.
To solve the equation of motion we first find the Green’s function for the differential operator
(D2

t + 2γω0Dt + ω2
0); that is, we find a solution for the differential equation

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
G(t, t′) = δ(t− t′).
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First we observe that the analytic solution to the homogeneous partial differential equation
(

∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
Ghom(t, t′) = 0

is

Ghom(t, t′) = e−γω0(t−t′)
(
A sin(ω(t− t′)) +B cos(ω(t− t′))

)
,

where ω =
√

1− γ2ω0 and where A and B are arbitrary constants.
One particular solution to the inhomogeneous partial differential equation

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
Ginhom(t, t′) =

3

4
d−3(d2 − t2)

is given by

Ginhom(t, t′) =
3

ω2
0

d−3

(
d2 − (t− t′)2

4
+

γ(t− t′)

ω0
+

1− 4γ2

2ω2
0

)
.

Since

δ(t) =

⎧
⎪⎨

⎪⎩

0 if t � −d
3
4d

−3(d2 − t2) if − d < t < d

0 if d � t

,

we must have

G(t, t′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−γω0(t−t′)(A1 sin(ω(t− t′)) +B1 cos(ω(t− t′))) if t′ � t− d

e−γω0(t−t′)(A2 sin(ω(t− t′)) +B2 cos(ω(t− t′)))

+ 3
ω2
0
(d

2−(t−t′)2

4 + γ(t−t′)
ω0

+ 1−4γ2

2ω2
0
)

if t− d < t′ < t+ d

e−γω0(t−t′)(A3 sin(ω(t− t′)) +B3 cos(ω(t− t′))) if t′ � t+ d

where A1, A2, A3, B1, B2, B3 are constants to be determined by the initial conditions.
As in the previous example the real part of our Green’s function must satisfy the same initial

conditions as the desired solution. To this end we require

G(−d, t′) = 0 and
∂G

∂t
(−d, t′) = 0.

Solving for the relevant constants yields

A3 = 0 and B3 = 0.

Again, as in the previous example, requiring continuity of G and ∂G/∂t gives us the remaining 4
constants:

A1 =
3

ω2
0

d−3e−γω0d

((
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
cos(ωd)

ω
−
(

γ

ω0
d− 1− 4γ2

2ω2
0

)
sin(ωd)

)

+
3

ω2
0

d−3e−γω0d

((
3γ

2ω0
− 2γ3

ω0
+

(
γ2 − 1

2

)
d

)
cos(ωd)

ω
+

(
γ

ω0
d− 1− 4γ2

2ω2
0

)
sin(ωd)

)

B1 =
3

ω2
0

d−3e−γω0d

((
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
sin(ωd)

ω
+

(
γ

ω0
d− 1− 4γ2

2ω2
0

)
cos(ωd)

)

− 3

ω2
0

d−3e−γω0d

((
3γ

2ω0
− 2γ3

ω0
+

(
γ2 − 1

2

)
d

)
sin(ωd)

ω
−
(

γ

ω0
d− 1− 4γ2

2ω2
0

)
cos(ωd)

)

A2 =
3

ω2
0

d−3e−γω0d

((
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
cos(ωd)

ω
−
(

γ

ω0
d− 1− 4γ2

2ω2
0

)
sin(ωd)

)
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B2 =
3

ω2
0

d−3e−γω0d

((
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
sin(ωd)

ω
+

(
γ

ω0
d− 1− 4γ2

2ω2
0

)
cos(ωd)

)
.

While at first glance these constants seem too cumbersome, we have that

A1 =0
1

ω
and B1 =0 0;

and hence

G(t, t′)|R =0

{
1
ωe

−γω0(t−t′) sin(ω(t− t′)) if t > t′

0 if t � t′

which is the classical Green’s function for this problem.
Now, suppose that the driving force is given by

f(t) = me−γω0t.

Then the equation of motion becomes

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) = e−γω0t.

Thus, as in the previous example, we can obtain the real solution as the real part of
∫

t′∈[0,d−
1
2 ]

G(t, t′)
f(t′)

m
.

Therefore,

x(t) =0

∫

t′∈[0,d−
1
2 ]

G(t, t′)
f(t′)

m
.

But G(t, t′) = 0 for t′ > t+ d, and hence
∫

t′∈[0,d−
1
2 ]

G(t, t′)
f(t′)

m
=

∫

t′∈[0,t+d]

G(t, t′)e−γω0t′ .

Thus,

x(t) =0

∫

t′∈[0,t+d]

G(t, t′)e−γω0t′

= e−γω0t

∫

t′∈[t−d,t+d]

(A2 sin(ω(t− t′)) +B2 cos(ω(t− t′)))

+ e−γω0t

∫

t′∈[t−d,t+d]

(
3

ω2
0

(
d2 − (t− t′)2

4
+

γ(t− t′)

ω0
+

1− 4γ2

2ω2
0

)

+ e−γω0t

∫

t′∈[0,t−d]

(A1 sin(ω(t− t′)) +B1 cos(ω(t− t′)))

= e−γω0t

[
2A2 sin(ωd)

ω
+A1

sin(ωt)− sin(ωd)

ω
+B1

cos(ωt)− cos(ωd)

ω

− 3

ω2
0

d−3

(
2

4γ3ω3
0

+
1 + 4γ2

2γω3
0

)
(eγω0d − e−γω0d) +

3

ω2
0

(
d

2γ2ω2
0

+
d

ω2
0

)
(eγω0d + e−γω0d)

]

=0 e
−γω0t cos(ωt)− 1

ω2
,

which agrees with the classical solution.
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5. THE DELTA FUNCTION ON R2 AND R3

Using the integration theory developed in [14] it is possible to define integrable delta functions on R2

and R3.

Definition 5.1. Let δ2 : R2 → R be given by

δ2(x, y) = δ(x)δ(y),

where δ is the delta function defined above on R.

Proposition 5.2. Let S ⊂ R2 be measurable. If (−d, d) × (−d, d) ⊂ S then
∫∫

S
δ2(x, y) = 1.

If (−d, d) × (−d, d) ∩ S = ∅ then
∫∫

S
δ2(x, y) = 0.

Proof. If (−d, d) × (−d, d) ⊂ S then
∫∫

S

δ2(x, y) =

∫∫

(x,y)∈(−d,d)×(−d,d)

δ(x)δ(y)

=

∫

x∈(−d,d)

⎛

⎜
⎝δ(x)

∫

y∈(−d,d)

δ(y)

⎞

⎟
⎠

=

∫

x∈(−d,d)

δ(x) = 1.

If (−d, d)× (−d, d) ∩ S = ∅, then δ2(x, y) = 0 everywhere on S; and hence
∫∫

S

δ2(x, y) =

∫∫

S

0 = 0.

Proposition 5.3. Let S ⊂ R2 be a simple region with λx(S) < 1 and λy(S) < 1, let f : S → R be an
analytic function with index i(f) = 0 on S. Then, for any (x0, y0) ∈ S that satisfies (x0 − a, x0 +
a)× (y0 − a, y0 + a) ⊂ S for some positive a � d in R, we have that

∫∫

(x,y)∈S

f(x, y)δ2(x− x0, y − y0) =0 f(x0, y0).

Proof. First we note that δ2(x− x0, y − y0) = 0 everywhere except on the simple region (x0 − d, x0 +
d)× (y0 − d, y0 + d). Thus,

∫∫

(x,y)∈S

f(x, y)δ2(x− x0, y − y0) =

∫

x∈(x0−d,x0+d)

∫

y∈(y0−d,y0+d)

f(x, y)δ2(x− x0, y − y0).

Now, for a fixed x ∈ (x0 − d, x0 + d), h(y) := f(x, y) is an analytic function on (y0 − a, y0 + a) which
contains (y0 − d, y0 + d) ; and hence, by Proposition 3.7, we have that

∫

y∈(y0−d,y0+d)

h(y)δ(y − y0) =0 h(y0) = f(x, y0).
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Furthermore, g(x) := f(x, y0) is analytic on (x0 − a, x0 + a) which contains (x0 − d, x0 + d); and hence
∫

x∈(x0−d,x0+d)

g(x)δ(x − x0) =0 g(x0) = f(x0, y0).

Thus,

∫∫

(x,y)∈S

f(x, y)δ2(x− x0, y − y0) =

∫

x∈(x0−d,x0+d)

⎛

⎜
⎝δ(x − x0)

∫

y∈(y0−d,y0+d)

δ(y − y0)f(x, y)

⎞

⎟
⎠

=0

∫

x∈(x0−d,x0+d)

δ(x − x0)f(x, y0)

=0 f(x0, y0).

Definition 5.4. Let δ3 : R3 → R be given by

δ3(x, y, z) = δ(x)δ(y)δ(z).

It follows immediately from Definitions 5.1 and 5.4 that

δ3(x, y, z) = δ2(x, y)δ(z) = δ2(x, z)δ(y) = δ(x)δ2(y, z).

Proposition 5.5. Let S ⊂ R3 be measurable. If (−d, d) × (−d, d) × (−d, d) ⊂ S then
∫∫∫

S
δ3(x, y, z) = 1.

If (−d, d) × (−d, d)× (−d, d) ∩ S = ∅ then
∫∫∫

S
δ3(x, y, z) = 0.

Proof. If (−d, d) × (−d, d) × (−d, d) ⊂ S then
∫∫∫

S

δ3(x, y, z) =

∫∫∫

(x,y,z)∈(−d,d)×(−d,d)×(−d,d)

δ3(x, y, z)

=

∫∫

(x,y)∈(−d,d)×(−d,d)

⎛

⎜
⎝δ2(x, y)

∫

z∈(−d,d)

δ(z)

⎞

⎟
⎠

=

∫∫

(x,y)∈(−d,d)×(−d,d)

δ2(x, y) = 1.

If (−d, d)× (−d, d) × (−d, d) ∩ S = ∅, then δ3(x, y, z) = 0 everywhere on S; and hence
∫∫∫

S

δ3(x, y, z) =

∫∫∫

S

0 = 0.
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Proposition 5.6. Let S ⊂ R3 be a simple region with λx(S) < 1, λy(S) < 1, λz(S) < 1, and let
f : S → R be an analytic function on S with i(f) = 0 on S. Then, for any (x0, y0, z0) ∈ S that
satisfies

(x0 − a, x0 + a)× (y0 − a, y0 + a)× (z0 − a, z0 + a) ⊂ S

for some positive a � d in R, we have that
∫∫∫

(x,y,z)∈S

f(x, y, z)δ3(x− x0, y − y0, z − z0) =0 f(x0, y0, z0).

Proof. First we note that δ3(x− x0, y − y0, z − z0) = 0 everywhere except on the simple region (x0 −
d, x0 + d)× (y0 − d, y0 + d)× (z0 − d, z0 + d). Thus,

∫∫∫

(x,y,z)∈S

f(x, y, z)δ3(x− x0, y − y0, z − z0)

=

∫∫∫

(x,y,z)∈(x0−d,x0+d)×(y0−d,y0+d)×(z0−d,z0+d)

f(x, y, z)δ3(x− x0, y − y0, z − z0)

=

∫∫

(x,y)∈(x0−d,x0+d)×(y0−d,y0+d)

⎛

⎜
⎝δ2(x− x0, y − y0)

∫

z∈(z0−d,z0+d)

f(x, y, z)δ(z − z0)

⎞

⎟
⎠ .

Now, for a fixed (x, y) ∈ (x0 − d, x0 + d)× (y0 − d, y0 + d), h(z) := f(x, y, z) is an analytic function on
the interval (z0 − a, z0 + a) which contains (z0 − d, z0 + d); and hence, by Proposition 3.7, we have that

∫

z∈(z0−d,z0+d)

h(z)δ(z − z0) =0 h(z0) = f(x, y, z0).

Furthermore, g(x, y) := f(x, y, z0) is analytic on the simple region Sxy := (x0 − a, x0 + a)× (y0 −
a, y0 + a) containing (x0 − d, x0 + d)× (y0 − d, y0 + d); and hence, by Proposition 5.3, we have that

∫∫

(x,y)∈(x0−d,x0+d)×(y0−d,y0+d)

g(x, y)δ2(x− x0, y − y0) =0 g(x0, y0) = f(x0, y0, z0).

Thus,
∫∫∫

(x,y,z)∈S

f(x, y, z)δ3(x− x0, y − y0, z − z0)

=

∫∫

(x,y)∈(x0−d,x0+d)×(y0−d,y0+d)

(

δ2(x− x0, y − y0)

∫

z∈(z0−d,z0+d)
f(x, y, z)δ(z − z0)

)

=0

∫∫

(x,y)∈(x0−d,x0+d)×(y0−d,y0+d)

δ2(x− x0, y − y0)f(x, y, z0)

=0 f(x0, y0, z0).

As in the classical case it is also possible to define the delta function in spherical coordinates, in
particular we have that

δsph(r− r′) = F (r, φ, θ)δ3(r − r′, φ− φ′, θ − θ′),
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where of course r is the point (r, φ, θ), r′ is the point (r′, φ′, θ′), and F is some as yet unknown function.
Naturally we must have that

∫∫∫

r′∈R3

δsph(r− r′) = 1,

from which it follows that
∫

r′∈R+

∫

φ′∈[0,2π]

∫

θ′∈[0,π]

F (r′, φ′, θ′)δ3(r − r′, φ− φ′, θ − θ′)r′2 sin θ′ = 1.

However, we already know that
∫

r′∈R+

∫

φ′∈[0,2π]

∫

θ′∈[0,π]

δ3(r − r′, φ− φ′, θ − θ′) = 1

since δ3(r − r′, φ− φ′, θ − θ′) is normalized by definition, so we obtain
∫

r′∈R+

∫

φ′∈[0,2π]

∫

θ′∈[0,π]

δ3(r − r′, φ− φ′, θ − θ′)

=

∫

r′∈R+

∫

φ′∈[0,2π]

∫

θ′∈[0,π]

F (r′, φ′, θ′)δ3(r − r′, φ− φ′, θ − θ′)r′2 sin θ′

and hence

F (r′, φ′, θ′) =
1

r′2 sin θ′
.

Definition 5.7. We define δsph : R3 → R by

δsph(r− r′) =
δ(r − r′, φ− φ′, θ − θ′)

r2 sin θ
.

Note that as in the classical case, if a problem has spherical symmetry then the delta function takes
the form

δsph(r− r′) = F (r′)δ(r − r′)

and since
∫

φ′∈[0,2π]

∫

θ′∈[0,π]

r′2 sin(θ′) = 4πr′2

it follows that

F (r′) =
1

4πr′2

and hence

δsph(r− r′) =
δ(r − r′)

4πr′2
.

Example 5.8 (Electric Field of a thick spherical shell). Suppose we wish to find the electric field
of a thick spherical shell centred at the origin with inner radius R1, outer radius R2 and a
uniform charge density. One way to accomplish this is to solve the differential equation implied
by Gauss’s law:

∇ ·E(r) = ρ(r)
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where E(r) is the electric field at the point r and ρ(r), the charge density multiplied by a constant
that depends on the system of units used, is given by

ρ(r) =

⎧
⎪⎨

⎪⎩

0 if r < R1

ρ0 if R1 ≤ r ≤ R2

0 if r > R2

.

As in previous examples we can solve this differential equation by finding the Green’s function
G(r, r′) = Grer +Gφeφ +Gθeθ corresponding to the operator ∇·, in particular G(r, r′) must
satisfy

∇ ·G(r, r′) = δsph(r− r′). (5.1)

However we have spherical symmetry about the origin; so we may infer that

Gφ = Gθ = 0

and

δsph(r− r′) =
δ(r − r′)

4πr2
.

Thus, equation (5.1) reduces to

1

r2
∂

∂r

(
r2Gr(r, r

′)
)
=

δ(r − r′)

4πr2
.

Solving this differential equation yields

Gr(r, r
′) =

⎧
⎪⎨

⎪⎩

c1
r2

if r′ � r − d
1

4πr2
3
4d

−3
(
d2(r − r′)− 1

3(r − r′)3
)
+ c2

r2 if r − d < r′ < r + d
c3
r2

if r′ � r + d

where c1, c2, and c3 are constants of integration. We know that E(r) = 0 for r < R1 since there
is no charge inside the shell. To ensure our solution satisfies this initial condition we must have
Gr(0, r

′) =0 0 and as in previous examples we accomplish this by setting Gr(−d, r′) = 0. Using
this initial condition as well as the continuity of Gr, we are able to solve for the constants in
Gr(r, r

′), in fact we find that

Gr(r, r
′) =

⎧
⎪⎨

⎪⎩

1
4πr2 if r′ � r − d
1

4πr2
3
4d

−3
(
d2(r − r′)− 1

3(r − r′)3
)
+ 1

8πr2
if r − d < r′ < r + d

0 if r′ � r + d

.

Now that we know the Green’s function of the operator∇· and have made it satisfy the relevant
boundary conditions we can solve for the (real) electric field of the spherical shell by recalling
that

E(r) = Er(r)er =0

∫

r′∈R+

∫

φ′∈[0,2π)

∫

θ′∈[0,π]

Gr(r, r
′)ρ(r′)r′2 sin θ′er = 4π

∫

r′∈R+

Gr(r, r
′)ρ(r′)r′2er.

If r < R1 then we have that

Er(r) =0 0.

If R1 ≤ r ≤ R2 then we have that

Er(r) =0 4π

⎛

⎜
⎝

∫

r′∈[R1,r−d]

ρ0r
′2

4πr2
+

∫

r′∈[r−d,r+d]

(
1

4πr2
3

4
d−3

(
d2(r − r′)− 1

3
(r − r′)3

)
+

1

8πr2

)
ρ0r

′2

⎞

⎟
⎠
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=0
ρ0
3r2
(
r3 −R3

1

)
.

Finally if r > R2 then we get

Er(r) =0 4π

∫

r′∈[R1,R2]

ρ0r
′2

4πr2
=

ρ0
3r2
(
R3

2 −R3
1

)
.

Hence the electric field of a uniformly charged thick spherical shell is given by

Er(r) =

⎧
⎪⎨

⎪⎩

0 if r < R1
ρ0
3r2

(
r3 −R3

1

)
if R1 ≤ r ≤ R2

ρ0
3r2

(
R3

2 −R3
1

)
if r > R2

.

While the examples given in this section are admittedly simple they serve to illustrate how to use
the newly defined delta functions. In the future we plan to engage in a more detailed study of the
delta functions in two and three dimensions as well as in constructing more complex and challenging
examples.
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