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Analysis on the Levi-Civita field, a brief overview

Khodr Shamseddine and Martin Berz

Abstract. In this paper, we review the algebraic properties of various non-
Archimedean ordered structures, extending them in various steps which lead
naturally to the smallest non-Archimedean ordered field that is Cauchy-complete
and real closed. In fact, the Levi-Civita field is small enough to allow for the
calculus on the field to be implemented on a computer and used in applications

such as the fast and accurate computation of the derivatives of real functions
as “differential quotients” up to very high orders.

We then give an overview of recent research on the Levi-Civita field. In
particular, we summarize the convergence and analytical properties of power
series, showing that they have the same smoothness behavior as real power
series; and we present a Lebesgue-like measure and integration theory on the
field. Moreover, based on continuity and differentiability concepts that are
stronger than the topological ones, we discuss solutions to one-dimensional and
multi-dimensional optimization problems as well as existence and uniqueness
of solutions of ordinary differential equations.

1. Introduction

The real numbers owe their fundamental role in Mathematics and the sciences

to certain special properties. To begin, like all fields, they allow arithmetic calcu-

lation. Furthermore, they allow measurement; any result of even the finest mea-

surement can be expressed as a real number. Additionally, they allow expression

of geometric concepts, which requires the existence of roots, a property that at the

same time is beneficial for algebra. Moreover, they allow the introduction of certain

transcendental functions such as the exponential function, which are important in

the sciences and arise from the concept of power series. In addition, they allow the

formulation of an analysis involving differentiation and integration, a requirement

for the expression of even simple laws of nature.

While the first two properties are readily satisfied by the rational numbers,

the geometric requirements demand using at least the set of algebraic numbers.

Transcendental functions, being the result of limiting processes, require Cauchy
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2 KHODR SHAMSEDDINE AND MARTIN BERZ

completeness, and it is easily shown that the field of real numbers R is the smallest

ordered field having this property.

R is Archimedean; that is if x, y ∈ R are such that 0 < |x| < |y| then we

can find a positive integer n such that |nx| > |y|. This Archimedean property

of R corresponds to common sense experiences of measurement: we can measure

distances as small as we want; and if one distance is smaller than another, then

by taking enough copies of the smaller distance and stacking them end to end, we

can eventually produce something which exceeds the bigger distance. Since any

Archimedean Cauchy-complete field is isomorphic to R, it is indeed this property

that makes the real numbers unique. However, the Archimedean axiom breaks down

at the Planck scale, that is for distances less than 1.6×10−35 meters and durations

less than 5.4×10−44 seconds. Despite our entrenched belief that space and time are

continuous, homogeneous, infinitely divisible quantities, we are confronted with the

fact that below the Planck scale, distances and durations cannot be scaled up to

produce macroscopic ones. Equivalently, we cannot meaningfully measure distances

or durations below that scale.

Moreover, while the field R and its algebraic completion C as well as the vector

space Rn have certainly proven extremely successful for the expression and rigorous

mathematical formulation of many physical concepts, they have two shortcomings

in interpreting intuitive scientific concepts. First, they do not permit a direct rep-

resentation of improper functions such as those used for the description of point

charges; of course, within the framework of distributions, these concepts can be

accounted for in a rigorous fashion, but at the expense of the intuitive interpre-

tation. Second, another intuitive concept of the fathers of analysis, and for that

matter quite a number of modern scientists sacrificing rigor for intuition, the idea

of derivatives as differential quotients, that is slopes of secants with infinitely small

abscissa and ordinate differences cannot be formulated rigorously within R. Espe-

cially for the purpose of computational differentiation, the concept of “derivatives

are differential quotients” would of course be a remedy to many problems, since it

would replace any attempted limiting process involving the unavoidable cancelation

of digits by computer-friendly algebra in a new number system.

Since the “fine structure” of the continuum is not observable by means of

science, Archimedicity is not required by nature, and leaving it behind may possibly

provide solutions for the problems mentioned in the preceding paragraphs and allow

a better understanding of the universe. So it appears intriguing to study non-

Archimedean field extensions of R, as long as the essential properties of the real

numbers mentioned above are preserved.

There are simple ways to construct non-Archimedean extensions of the real

numbers (see for example the books of Rudin [36], Hewitt and Stromberg [18], or
Stromberg [50], or at a deeper level the works of Fuchs [15], Ebbinghaus et al. [13]
or Lightstone and Robinson [28]), but such extensions usually quickly fail to satisfy

one or several of the above criteria of a “useful” field, often already regarding the

universal existence of roots.

An important idea for the problem of the infinite came from Schmieden and

Laugwitz [38], which was then quickly applied to delta functions [21, 23] and dis-

tributions [22]. Certain equivalence classes of sequences of real numbers become

the new number set, and, perhaps most interesting, logical statements are consid-

ered proved if they hold for “most” of the elements of the sequences. This approach
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lends itself to the introduction of a general scheme that allows the transfer of many

properties of the real numbers to the new structure. This method supplies an ele-

gant tool that, in particular, permits the determination of derivatives as differential

quotients.

Unfortunately, the resulting structure has two shortcomings. On the one hand,

while very large, it is not a field; there are zero divisors, and the ring is not to-

tally ordered. On the other hand, the structure is already so large that individual

numbers can never be represented by only a finite amount of information and are

thus out of reach for computational problems. Robinson [34] recognized that the

intuitive method can be generalized [24] by a nonconstructive process based on

model theory to obtain an ordered field, and initiated the branch of Nonstandard

Analysis. Some of the standard works describing this field are from Robinson [35],
Stroyan and Luxemburg [51], and Davis [12]. In this discipline, the transfer of

theorems about real numbers is extremely simple, although at the expense of a

nonconstructive process invoking the axiom of choice, leading to an exceedingly

large structure of numbers and theorems. The nonconstructiveness makes practical

use difficult and leads to several oddities; for example, the fact that the sign of

certain elements, although assured to be either positive or negative, can not be

decided.

Another approach to a theory of infinitely small numbers originated in game

theory and was pioneered by John Conway in his marvel “On Numbers and Games”

[11]. A humorous and totally nonstandard yet at the same time very insightful ac-

count of these numbers can also be found in Donald Knuth’s mathematical novelette

“Surreal Numbers: How Two Ex-Students Turned to Pure Mathematics and Found

Total Happiness” [19]. Other important accounts on surreal numbers are by Alling

[1] and Gonshor [16].
In the rest of this section, we follow a constructive approach to get the Levi-

Civita fieldR [26, 27] as the smallest non-Archimedean ordered field extension of R

that is both real closed and complete in the order topology. Then in the following

sections we will review recent research done on R and its complex counterpart

C := R(i) = R⊕ iR. We note in passing here (and that will become clearer in the

next section) that R and C are (isomorphic to) subfields of the generalized power

series fields
[[
RQ
]]

and
[[
CQ
]]
, respectively. We recall that if F is a field and G is

an ordered abelian group then the field of generalized power series with exponents

in G and coefficients in F is given by

[[
FG
]]

:=

⎧⎨
⎩
∑
g∈G

agX
g : {g : ag �= 0} is a well-ordered subset of G

⎫⎬
⎭ ;

it is equipped with the natural addition and multiplication, and if F is an ordered

field then
[[
FG
]]

can be given a lexicographic (total) order. We also recall that

the theorem of Hahn [17] entails that any ordered non-Archimedean field extension

of R is isomorphic to a subfield of a generalized power series field
[[
RG
]]

for some

ordered abelian group G.

Any ordered non-Archimedean ring or field extension E of R has to be infinite

dimensional when viewed as a vector space over R. For if d is an infinitely small

number in E then the set {dn : n ∈ N} is linearly independent over R. Thus the

ring R[[X]] of formal power series over R, equipped with a lexicographic order, is
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the smallest such extension; but R[[X]] is not a field: a formal power series has a

multiplicative inverse if and only if the constant term is not zero.

The smallest field that contains R[[X]] is the quotient field or the field of frac-

tions of formal power series over R which is isomorphic to the field of formal Laurent

series over R, denoted by R((X)); it is also isomorphic to the field of generalized

power series
[[
RZ
]]
.

The formal Laurent series field
[[
RZ
]]

is neither real closed nor Cauchy com-

plete in the topology induced by the order. Its real closure is the field of Puiseux

series with ascending powers over R; and it is equal to
⋃

n∈N

[[
R(

1
nZ)
]]
. However,

the Puiseux series field is not Cauchy complete. Next we will show that R is the

smallest ordered field extension of R as well as of the formal power series ring, the

formal Laurent series field and the Puiseux series field, which is both real closed

and complete in the order topology.

First we note that the generalized power series field
[[
RQ
]]

is real closed by [33]

(6.10); and it follows from [2] (Theorem 2.11 on Page 34) that
[[
CQ
]]

is algebraically

closed. Now consider a polynomial P of degree n over C; then the coefficients of

P all have left-finite supports. Since
[[
CQ
]]

is algebraically closed, P (viewed as a

polynomial over
[[
CQ
]]
) has n roots in

[[
CQ
]]

(counting the multiplicities of the

roots). Using induction on the degree of the polynomial P and the fact that the

coefficients of P have left-finite supports, one can easily show that all the n roots

of P must be in C. Thus, C is algebraically closed; and hence R is real closed, again

by [2] (Theorem 2.11).

Moreover, it is shown in [4] that R is Cauchy complete in the order topology

and that it is the smallest such non-Archimedean field extension of R that is also

real closed. Using that and the inclusions

R ⊂ R[[X]] ⊂ [[RZ
]] ⊂ ⋃

n∈N

[[
R(

1
nZ)
]]

⊂ R,

we finish the proof of the statement above.

2. The fields R and C
In this section, we review the algebraic structure of R and C. We recall that

the elements of R and C are functions from Q to R and C, respectively, with left-

finite support (denoted by supp). That is, below every rational number q, there are
only finitely many points where the given function does not vanish. For the further

discussion, it is convenient to introduce the following terminology.

Definition 2.1. (λ, ∼, ≈, =r) For x �= 0 inR or C, we let λ(x) = min(supp(x)),
which exists because of the left-finiteness of supp(x); and we let λ(0) = +∞.

Given x, y ∈ R or C and r ∈ R, we say x ∼ y if λ(x) = λ(y); x ≈ y if

λ(x) = λ(y) and x[λ(x)] = y[λ(y)]; and x =r y if x[q] = y[q] for all q ≤ r.

At this point, these definitions may feel somewhat arbitrary; but after having

introduced an order on R, we will see that λ describes orders of magnitude, the

relation ≈ corresponds to agreement up to infinitely small relative error, while ∼
corresponds to agreement of order of magnitude.

The sets R and C are endowed with formal power series multiplication and

componentwise addition, which make them into fields [4] in which we can isomor-

phically embed R and C (respectively) as subfields via the map Π : R,C → R, C
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defined by

(2.1) Π(x)[q] =

{
x if q = 0

0 else
.

Definition 2.2. (Order in R) Let x �= y in R be given. Then we say x > y if

(x− y)[λ(x− y)] > 0; furthermore, we say x < y if y > x.

With this definition of the order relation, R is an ordered field. Moreover, the

embedding Π in Equation (2.1) of R into R is compatible with the order. The order

induces an absolute value on R, from which an absolute value on C is obtained in

the natural way: |x+ iy| =
√
x2 + y2. We also note here that λ, as defined above,

is a valuation; moreover, the relation ∼ is an equivalence relation, and the set of

equivalence classes (the value group) is (isomorphic to) Q.

Besides the usual order relations, some other notations are convenient.

Definition 2.3. (
,�) Let x, y ∈ R be non-negative. We say x is infinitely

smaller than y (and write x 
 y) if nx < y for all n ∈ N; we say x is infinitely larger

than y (and write x � y) if y 
 x. If x 
 1, we say x is infinitely small; if x � 1,

we say x is infinitely large. Infinitely small numbers are also called infinitesimals or

differentials. Infinitely large numbers are also called infinite. Non-negative numbers

that are neither infinitely small nor infinitely large are also called finite.

Definition 2.4. (The Number d) Let d be the element of R given by d[1] = 1

and d[q] = 0 for q �= 1.

It is easy to check that dq 
 1 if q > 0 and dq � 1 if q < 0. Moreover,

for all x ∈ R (resp. C), the elements of supp(x) can be arranged in ascending

order, say supp(x) = {q1, q2, . . .} with qj < qj+1 for all j; and x can be written

as x =
∑∞

j=1 x[qj ]d
qj , where the series converges in the topology induced by the

absolute value [4].
Altogether, it follows that R and C are non-Archimedean field extensions of

R and C, respectively. For a detailed study of these fields, we refer the reader to

[4, 40, 39, 6, 5, 41, 42, 48, 43, 7, 44, 49, 45, 46, 47]. In particular, it is

shown that R and C are complete with respect to the topology induced by the

absolute value. In the wider context of valuation theory, it is interesting to note

that the topology induced by the absolute value is the same as that introduced via

the valuation λ, as was shown in [45].
It follows therefore that the fields R and C are just special cases of the class

of fields discussed in [37]. For a general overview of the algebraic properties of

generalized power series fields in general, we refer the reader to the comprehensive

overview by Ribenboim [33], and for an overview of the related valuation theory

to the books by Krull [20], Schikhof [37] and Alling [1]. A thorough and complete

treatment of ordered structures can also be found in [32].
Besides being the smallest ordered non-Archimedean field extension of the real

numbers that is both complete in the order topology and real closed, the Levi-

Civita field R is of particular interest because of its practical usefulness. Since

the supports of the elements of R are left-finite, it is possible to represent these

numbers on a computer [4]. Having infinitely small numbers, the errors in classical

numerical methods can be made infinitely small and hence irrelevant in all practical
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applications. One such application is the computation of derivatives of real func-

tions representable on a computer [40, 42], where both the accuracy of formula

manipulators and the speed of classical numerical methods are achieved.

In the following sections, we present a brief overview of recent research done

on R and C; and we refer the interested reader to the respective papers for a more

detailed study of any of the research topics summarized below.

3. Calculus on R
The following examples show that functions on a finite interval of R behave in

a way that is different from (and even opposite to) what we would expect under

similar conditions in R.

Example 3.1. Let f1 : [0, 1] → R be given by

f1 (x) =

⎧⎨
⎩

d−1 if 0 ≤ x < d
d−1/λ(x) if d ≤ x 
 1

1 if x ∼ 1

.

Then f1 is continuous on [0, 1]; but for d ≤ x 
 1, f1(x) grows without bound.

Example 3.2. Let f2 : [−1, 1] → R be given by

f2 (x) = x− x[0].

Then f2 is continuous on [−1, 1]. However, f2 assumes neither a maximum nor

a minimum on [−1, 1]. The set f2 ([−1, 1]) is bounded above by any positive real

number and below by any negative real number; but it has neither a least upper

bound nor a greatest lower bound.

Example 3.3. Let f3 : [0, 1] → R be given by

f3(x) =

{
1 if x ∼ 1

0 if x 
 1
.

Then f3 is continuous on [0, 1] and differentiable on (0, 1), with f ′
3(x) = 0 for all

x ∈ (0, 1). We have that f3 (0) = 0 and f3 (1) = 1; but f3 (x) �= 1/2 for all x ∈ [0, 1].
Moreover, f3 is not constant on [0, 1] even though f ′

3(x) = 0 for all x ∈ (0, 1).

Example 3.4. Let f4 : [−1, 1] → R be given by

f4 (x) =

∞∑
ν=1

xνd
3qν when x = x[0] +

∞∑
ν=1

xνd
qν .

Then f ′
4 (x) = 0 for all x ∈ (−1, 1). But f4 is not constant on [−1, 1].

Example 3.5. Let f5 : (−1, 1) → R be given by

f5(x) = −f4(x) + x4,

where f4 is the function from Example 3.4. Then f ′
5(x) = 4x3 for all x ∈ (−1, 1).

Thus, f ′
5 > 0 on (0, 1); but f5 is strictly decreasing on the subset {x : 0 < x 
 1}

of (−1, 1). Also f ′
5 is strictly increasing and f ′′

5 ≥ 0 on (−1, 1); but f5 is not convex

on (−1, 1) since f5(d) = −d3 + d4 < 0 = f5(0) + f ′
5(0)d.

220220



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ANALYSIS ON THE LEVI-CIVITA FIELD, A BRIEF OVERVIEW 7

Example 3.6. Let f6 : (−1, 1) → R be given by

f6(x) = − (f4(x))
2
+ x8,

where f4 is again the function from Example 3.4. Then f6 is infinitely often differ-

entiable on (−1, 1) with f
(j)
6 (0) = 0 for 1 ≤ j ≤ 7 and f

(8)
6 (0) = 8! > 0. But f6 has

a relative maximum at 0.

The difficulties embodied in the examples above are not specific to R, but are

common to all non-Archimedean ordered fields; and they result from the fact that

R is disconnected in the topology induced by the order. This makes developing

Analysis on the field more difficult than in the real case; for example, the existence

of nonconstant functions whose derivatives vanish everywhere on an interval (as

in example 3.4) makes integration much harder and renders the solutions of the

simplest initial value problems (e.g. y′ = 0; y(0) = 0) not unique. To circum-

vent such difficulties, different approaches have been employed. For example, by

imposing stronger conditions on the function than in the real case, the function

satisfies an intermediate value theorem and an inverse function theorem [43]; by
using a stronger concept of continuity and differentiability than in the real case,

one-dimensional and multi-dimensional optimization results similar to those from

Real Analysis have been obtained for R-valued functions [48, 49]; by carefully

defining a measure on R in [44], we succeed in developing an integration theory

with similar properties to those of the Lebesgue integral of Real Analysis; and by

restricting solutions of initial value problems to analytic functions, the uniqueness

of the solutions will be assured [10].

4. Review of Power Series and R-Analytic Functions

Power series on the Levi-Civita field R have been studied in details in [39,
41, 45, 46, 47]; work prior to that has been mostly restricted to power series

with real coefficients. In [26, 27, 31, 25], they could be studied for infinitely

small arguments only, while in [4], using the newly introduced weak topology (see

Definition 4.4 below), also finite arguments were possible. Moreover, power series

over complete valued fields in general have been studied by Schikhof [37], Alling

[1] and others in valuation theory, but always in the valuation topology.

In [41], we study the general case when the coefficients in the power series are

Levi-Civita numbers (i.e. elements of R or C), using the weak convergence of [4].
We derive convergence criteria for power series which allow us to define a radius

of convergence η such that the power series converges weakly for all points whose

distance from the center is smaller than η by a finite amount and it converges in

the order topology for all points whose distance from the center is infinitely smaller

than η.
In [45] it is shown that, within their radius of convergence, power series are

infinitely often differentiable and the derivatives to any order are obtained by dif-

ferentiating the power series term by term. Also, power series can be re-expanded

around any point in their domain of convergence and the radius of convergence of

the new series is equal to the difference between the radius of convergence of the

original series and the distance between the original and new centers of the series.

In the following, we summarize some of the key results in [41, 45, 46, 47]. We

start with a brief review of the convergence of sequences in two different topologies.
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Definition 4.1. A sequence (sn) in R or C is called regular if the union of

the supports of all members of the sequence is a left-finite subset of Q. (Recall

that A ⊂ Q is said to be left-finite if for every q ∈ Q there are only finitely many

elements in A that are smaller than q.)

Definition 4.2. We say that a sequence (sn) converges strongly in R or C if

it converges with respect to the topology induced by the absolute value.

As we have already mentioned in Section 2, strong convergence is equivalent

to convergence in the topology induced by the valuation λ. It is shown in [3] that
the fields R and C are complete with respect to the strong topology; and a detailed

study of strong convergence can be found in [39, 41].
Since power series with real (complex) coefficients do not converge strongly for

any nonzero real (complex) argument, it is advantageous to study a new kind of

convergence. We do that by defining a family of semi-norms on R or C, which
induces a topology weaker than the topology induced by the absolute value and

called weak topology.

Definition 4.3. Given r ∈ R, we define a mapping ‖ · ‖r : R or C → R as

follows: ‖x‖r = max{|x[q]| : q ∈ Q and q ≤ r}.
The maximum in Definition 4.3 exists in R since, for any r ∈ R, only finitely

many of the x[q]’s considered do not vanish.

Definition 4.4. A sequence (sn) in R (resp. C) is said to be weakly convergent

if there exists s ∈ R (resp. C), called the weak limit of the sequence (sn), such that

for all ε > 0 in R, there exists N ∈ N such that ‖sm − s‖1/ε < ε for all m ≥ N .

It is shown [4] that R and C are not Cauchy complete with respect to the weak

topology and that strong convergence implies weak convergence to the same limit.

A detailed study of weak convergence is found in [4, 39, 41].

4.1. Power Series. In the following, we review strong and weak convergence

criteria for power series, Theorem 4.5 and Theorem 4.6, the proofs of which are given

in [41]. We also note that, since strong convergence is equivalent to convergence

with respect to the valuation topology, Theorem 4.5 is a special case of the result

on page 59 of [37].

Theorem 4.5. (Strong Convergence Criterion for Power Series) Let (an) be a
sequence in R (resp. C), and let

λ0 = lim sup
n→∞

(−λ(an)

n

)
in R ∪ {−∞,∞}.

Let x0 ∈ R (resp. C) be fixed and let x ∈ R (resp. C) be given. Then the power
series

∑∞
n=0 an(x−x0)

n converges strongly if λ(x−x0) > λ0 and is strongly diver-
gent if λ(x− x0) < λ0 or if λ(x− x0) = λ0 and −λ(an)/n > λ0 for infinitely many
n.

Theorem 4.6. (Weak Convergence Criterion for Power Series) Let (an) be a
sequence in R (resp. C), and let λ0 = lim supn→∞ (−λ(an)/n) ∈ Q. Let x0 ∈ R
(resp. C) be fixed, and let x ∈ R (resp. C) be such that λ(x − x0) = λ0. For
each n ≥ 0, let bn = and

nλ0 . Suppose that the sequence (bn) is regular and write
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⋃∞
n=0 supp(bn) = {q1, q2, . . .}; with qj1 < qj2 if j1 < j2. For each n, write bn =∑∞
j=1 bnj

dqj , where bnj
= bn[qj ]. Let

(4.1) η =
1

sup
{
lim supn→∞ |bnj

|1/n : j ≥ 1
} in R ∪ {∞},

with the conventions 1/0 = ∞ and 1/∞ = 0. Then
∑∞

n=0 an(x − x0)
n converges

absolutely weakly if |(x− x0)[λ0]| < η and is weakly divergent if |(x− x0)[λ0]| > η.

Remark 4.7. The number η in Equation (4.1) is referred to as the radius of

weak convergence of the power series
∑∞

n=0 an(x− x0)
n.

As an immediate consequence of Theorem 4.6, we obtain the following result

which allows us to extend real and complex functions representable by power series

to the Levi-Civita fields R and C. This result is of particular interest for the

application discussed in Section 7.

Corollary 4.8. (Power Series with Purely Real or Complex Coefficients) Let∑∞
n=0 anX

n be a power series with purely real (resp. complex) coefficients and
with classical radius of convergence equal to η. Let x ∈ R (resp. C), and let
An(x) =

∑n
j=0 ajx

j ∈ R (resp. C). Then, for |x| < η and |x| �≈ η, the sequence

(An(x)) converges absolutely weakly. We define the limit to be the continuation of
the power series to R (resp. C).

4.2. R-Analytic Functions. In this section, we review the algebraic and

analytical properties of a class of functions that are given locally by power series

and we refer the reader to [45] for a more detailed study.

Definition 4.9. Let a, b ∈ R be such that 0 < b−a ∼ 1 and let f : [a, b] → R.

Then we say that f is expandable or R-analytic on [a, b] if for all x ∈ [a, b] there
exists a finite δ > 0 inR, and there exists a regular sequence (an (x)) inR such that,

under weak convergence, f (y) =
∑∞

n=0 an (x) (y − x)n for all y ∈ (x− δ, x+ δ) ∩
[a, b].

Definition 4.10. Let a < b in R be such that t = λ(b − a) �= 0 and let

f : [a, b] → R. Then we say that f is R-analytic on [a, b] if the function F :

[d−ta, d−tb] → R, given by F (x) = f(dtx), is R-analytic on [d−ta, d−tb].

It is shown in [45] that if f is R-analytic on [a, b] then f is bounded on [a, b];
also, if g is R-analytic on [a, b] and α ∈ R then f + αg and f · g are R-analytic

on [a, b]. Moreover, the composition of R-analytic functions is R-analytic. Finally,

using the fact that power series on R are infinitely often differentiable within their

domain of convergence and the derivatives to any order are obtained by differenti-

ating the power series term by term [45], we obtain the following result.

Theorem 4.11. Let a < b in R be given, and let f : [a, b] → R be R-analytic
on [a, b]. Then f is infinitely often differentiable on [a, b], and for any positive
integer m, we have that f (m) is R-analytic on [a, b]. Moreover, if f is given locally
around x0 ∈ [a, b] by f (x) =

∑∞
n=0 an (x0) (x− x0)

n
, then f (m) is given by

f (m) (x) =

∞∑
n=m

n (n− 1) · · · (n−m+ 1) an (x0) (x− x0)
n−m

.

In particular, we have that am (x0) = f (m) (x0) /m! for all m = 0, 1, 2, . . ..
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In [47], we focus on the proof of the intermediate value theorem for R-analytic

functions (functions that are given locally by power series). Given a function f
that is R-analytic on an interval [a, b] and a value S between f(a) and f(b), we use
iteration to construct a sequence of numbers in [a, b] that converges in the order

topology to a point c ∈ [a, b] such that f(c) = S. The proof is quite involved,

making use of many of the results proved in [41, 45] as well as some results from

Real Analysis, including the intermediate value theorem for real-valued functions,

continuous on closed and finite real intervals.

Ongoing research aims at proving the Extreme Value Theorem for R-analytic

functions, stated as a conjecture below. Once this conjecture has been proved, the

Mean Value Theorem will follow readily.

Conjecture 4.12. (Extreme Value Theorem) Let a < b in R be given, and let
f : [a, b] → R be R-analytic on [a, b]. Then f assumes a maximum and a minimum
on [a, b].

Finally, in [46] we generalize the results in [41, 45, 47] to power series with

rational exponents over R.

5. Measure Theory and Integration

Before we define a measure on R, we introduce the following notations which

will be adopted throughout this section: I(a, b) will be used to denote any one of

the intervals [a, b], (a, b], [a, b) or (a, b), unless we explicitly specify a particular

choice of one of the four intervals. Also, to denote the length of a given interval I,
we will use the notation l(I).

Definition 5.1. Let A ⊂ R be given. Then we say that A is measurable if

for every ε > 0 in R, there exist a sequence of mutually disjoint intervals (In) and
a sequence of mutually disjoint intervals (Jn) such that ∪∞

n=1In ⊂ A ⊂ ∪∞
n=1Jn,∑∞

n=1 l(In) and
∑∞

n=1 l(Jn) converge in R, and
∑∞

n=1 l(Jn)−
∑∞

n=1 l(In) ≤ ε.

Given a measurable set A, then for every k ∈ N, we can select a sequence of

mutually disjoint intervals
(
Ikn
)
and a sequence of mutually disjoint intervals

(
Jk
n

)
such that

∑∞
n=1 l

(
Ikn
)
and

∑∞
n=1 l

(
Jk
n

)
converge in R for all k,

∪∞
n=1I

k
n ⊂ ∪∞

n=1I
k+1
n ⊂ A ⊂ ∪∞

n=1J
k+1
n ⊂ ∪∞

n=1J
k
n and

∞∑
n=1

l
(
Jk
n

)− ∞∑
n=1

l
(
Ikn
) ≤ dk

for all k ∈ N. Since R is Cauchy-complete in the order topology, it follows that

limk→∞
∑∞

n=1 l
(
Ikn
)
and limk→∞

∑∞
n=1 l

(
Jk
n

)
both exist and they are equal. We

call the common value of the limits the measure of A and we denote it by m(A).

Thus,

m(A) = lim
k→∞

∞∑
n=1

l
(
Ikn
)
= lim

k→∞

∞∑
n=1

l
(
Jk
n

)
.

Moreover, since the sequence
(∑∞

n=1 l
(
Ikn
))

k∈N
is nondecreasing and since the se-

quence
(∑∞

n=1 l
(
Jk
n

))
k∈N

is nonincreasing, we have that

∞∑
n=1

l
(
Ikn
) ≤ m(A) ≤

∞∑
n=1

l
(
Jk
n

)
for all k ∈ N.
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Contrary to the real case, sup {∑∞
n=1 l(In) : In’s are mutually disjoint intervals

and ∪∞
n=1In ⊂ A} and inf {∑∞

n=1 l(Jn) : A ⊂ ∪∞
n=1Jn} need not exist for a given set

A ⊂ R. However, we show in [44] that if A is measurable then both the supremum

and infimum exist and they are equal to m(A). This shows that the definition of

measurable sets in Definition 5.1 is a natural generalization of the Lebesgue measure

of real analysis that corrects for the lack of suprema and infima in non-Archimedean

totally ordered fields.

Proposition 5.2. Let A ⊂ R be measurable. Then

m(A) = inf

{ ∞∑
n=1

l(Jn) : for all n Jn is an interval, A ⊂ ∪∞
n=1Jn and

∞∑
n=1

l(Jn) converges

}

= sup

{ ∞∑
n=1

l(In) : In’s are mutually disjoint intervals, ∪∞
n=1 In ⊂ A, and

∞∑
n=1

l(In) converges

}
.

We prove that the measure defined above has similar properties to those of the

Lebesgue measure of Real Analysis. Namely (see [44] for the details), we show that

any subset of a measurable set of measure 0 is itself measurable and has measure

0. We also show that any countable unions of measurable sets whose measures

form a null sequence is measurable and the measure of the union is less than or

equal to the sum of the measures of the original sets; moreover, the measure of

the union is equal to the sum of the measures of the original sets if the latter are

mutually disjoint. Then we show that any finite intersection of measurable sets is

also measurable and that the sum of the measures of two measurable sets is equal

to the sum of the measures of their union and intersection.

Like in R, we first introduce a family of simple functions on R from which

we obtain a larger family of measurable functions. In the Lebesgue measure the-

ory on R, the simple functions consist only of step functions (piece-wise constant

functions); and all measurable functions including all monomials, polynomials and

power series are obtained as uniform limits of simple functions. It can be easily

shown that in R the order topology is too strong and none of the monomials can

be obtained as a uniform limit of polynomials of lower degrees. So using the step

functions as our simple functions would yield a too small class of functions that we

can integrate. So we introduce a larger family of simple functions. Here we define

such a family of simple functions in an abstract way, which we will use throughout

the discussions in this section; and but we give two examples below.

Definition 5.3. Let a < b in R be given and S(a, b) a family of functions from

I(a, b) to R. Then we say that S(a, b) is a family of simple functions on I(a, b) if
the following are true:

(1) S(a, b) is an algebra that contains the identity function;

(2) for all f ∈ S(a, b), f is Lipschitz on I(a, b) and there exists an anti-

derivative F of f in S(a, b);
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(3) for all differentiable f ∈ S(a, b), if f ′ = 0 on I(a, b) then f is constant on

I(a, b); moreover, if f ′ ≤ 0 on I(a, b) then f is nonincreasing on I(a, b).

If f ∈ S(a, b), we say that f is simple on I(a, b).

It follows from the first condition in Definition 5.3 that any constant function on

I(a, b) is in S(a, b); moreover, if f, g ∈ S(a, b) and if α ∈ R, then f + αg ∈ S(a, b).
Also, it follows from the third condition that the anti-derivative in the second

condition is unique up to a constant. A close look at Definition 5.3 reveals that

the polynomials algebra on I(a, b) is the smallest family of simple functions on

I(a, b). Another example is the family of R-analytic functions on I(a, b), which
was discussed in Section 4 above.

While the third condition in Definition 5.3 is automatically satisfied in real

analysis, this is not the case in R, as shown by Example 3.3 and Example 3.4.

Definition 5.4. Let A ⊂ R be a measurable subset of R and let f : A → R
be bounded on A. Then we say that f is measurable on A if for all ε > 0 in R,

there exists a sequence of mutually disjoint intervals (In) such that In ⊂ A for all

n,
∑∞

n=1 l (In) converges in R, m(A)−∑∞
n=1 l(In) ≤ ε and f is simple on In for all

n.

In [44], we derive a simple characterization of measurable functions and we

show that they form an algebra. Then we show that a measurable function is

differentiable almost everywhere and that a function measurable on two measurable

subsets of R is also measurable on their union and intersection.

We define the integral of a simple function over an interval I(a, b) and we use

that to define the integral of a measurable function f over a measurable set A.

Definition 5.5. Let a < b in R, let f : I(a, b) → R be simple on I(a, b), and
let F be a simple anti-derivative of f on I(a, b). Then the integral of f over I(a, b)
is the R number ∫

I(a,b)

f = lim
x→b

F (x)− lim
x→a

F (x).

The limits in Definition 5.5 account for the case when the interval I(a, b) does
not include one or both of the end points; and these limits exist since F is Lipschitz

on I(a, b).
Now let A ⊂ R be measurable, let f : A → R be measurable and let M be

a bound for |f | on A. Then for every k ∈ N, there exists a sequence of mutually

disjoint intervals
(
Ikn
)
n∈N

such that ∪∞
n=1I

k
n ⊂ A,

∑∞
n=1 l

(
Ikn
)
converges, m(A) −∑∞

n=1 l
(
Ikn
) ≤ dk, and f is simple on Ikn for all n ∈ N. Without loss of generality, we

may assume that Ikn ⊂ Ik+1
n for all n ∈ N and for all k ∈ N. Since limn→∞ l

(
Ikn
)
= 0,

and since

∣∣∣∫Ik
n
f
∣∣∣ ≤ Ml

(
Ikn
)
(proved in [44] for simple functions), it follows that

lim
n→∞

∫
Ik
n

f = 0 for all k ∈ N.

Thus,
∑∞

n=1

∫
Ik
n
f converges in R for all k ∈ N [41].

Next we show that the sequence
(∑∞

n=1

∫
Ik
n
f
)
k∈N

converges in R. So let ε > 0

be given in R; and let K ∈ N be such that MdK ≤ ε. Let k > j ≥ K be given in
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N. Then ∪∞
n=1I

k
n \ ∪∞

n=1I
j
n can be written as a union of mutually disjoint intervals,

say
(
Ij,kn

)
n∈N

, such that
∑∞

n=1 l
(
Ij,kn

)
converges, and

∞∑
n=1

l
(
Ij,kn

)
=

∞∑
n=1

l
(
Ikn
)− ∞∑

n=1

l
(
Ijn
) ≤ m(A)−

∞∑
n=1

l
(
Ijn
) ≤ dj ≤ dK .

Thus, ∣∣∣∣∣
∞∑

n=1

∫
Ik
n

f −
∞∑

n=1

∫
Ij
n

f

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

∫
Ij,k
n

f

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣
∫
Ij,k
n

f

∣∣∣∣
≤

∞∑
n=1

Ml
(
Ij,kn

)
= M

∞∑
n=1

l
(
Ij,kn

)
≤ MdK ≤ ε,

where we have used the fact that an infinite series converges if and only if it con-

verges absolutely [41]. Thus, the sequence
(∑∞

n=1

∫
Ik
n
f
)
k∈N

is Cauchy; and hence

it converges in R. We define the unique limit as the integral of f over A.

Definition 5.6. Let A ⊂ R be measurable and let f : A → R be measurable.

Then the integral of f over A, denoted by
∫
A
f , is given by∫

A

f = lim∑∞
n=1 l(In) → m(A)
∪∞
n=1In ⊂ A

(In) are mutually disjoint
f is simple on In ∀ n

∞∑
n=1

∫
In

f.

It turns out that the integral in Definition 5.6 satisfies similar properties to those

of the Lebesgue integral on R; see [44] for the details. In particular, we prove the

linearity property of the integral and that if |f | ≤ M on A then
∣∣∫

A
f
∣∣ ≤ Mm(A),

where m(A) is the measure of A. We also show that the sum of the integrals of a

measurable function over two measurable sets is equal to the sum of its integrals

over the union and the intersection of the two sets. Moreover, we prove the following

theorem.

Theorem 5.7. Let A ⊂ R be measurable, let f : A → R, for each k ∈ N

let fk : A → R be measurable on A, and let the sequence (fk) converge uniformly
to f on A. Then limk→∞

∫
A
fk exists. Moreover, if f is measurable on A, then

limk→∞
∫
A
fk =

∫
A
f .

6. Optimization

In [48], we consider unconstrained one-dimensional optimization on R. We

study general optimization questions and derive first and second order necessary

and sufficient conditions for the existence of local maxima and minima of a function

on a convex subset of R. We show that for first order optimization, the results

are similar to the corresponding real ones. However, for second and higher order

optimization, we show that conventional differentiability is not strong enough to

just extend the real-case results (see Example 3.5 and Example 3.6); and a stronger

concept of differentiability, the so-called derivate differentiability (see Definition 6.3

below), is used to solve that difficulty. We also characterize convex functions on

convex sets of R in terms of first and second order derivatives.
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In the following, we review the definitions of derivate continuity and differen-

tiability in one dimension, as well as some related results and we refer the interested

reader to [6, 39] for a more detailed study.

Definition 6.1. Let D ⊂ R be open and let f : D → R. Then we say that f
is derivate continuous on D if there exists M ∈ R, called a Lipschitz constant of f
on D, such that ∣∣∣∣f (y)− f (x)

y − x

∣∣∣∣ ≤ M for all x �= y in D.

It follows immediately from Definition 6.1 that if f : D → R is derivate con-

tinuous on D then f is uniformly continuous (in the conventional sense) on D.

Remark 6.2. It is clear that the concept of derivate continuity in Definition

6.1 coincides with that of uniform Lipschitz continuity when restricted to R. We

chose to call it derivate continuity here so that, after having defined derivate differ-

entiability in Definition 6.3 and higher order derivate differentiability in Definition

6.5, we can think of derivate continuity as derivate differentiability of “order zero”,

just as is the case for continuity in R.

Definition 6.3. Let D ⊂ R be open, let f : D → R be derivate continuous

on D, and let ID denote the identity function on D. Then we say that f is derivate

differentiable on D if for all x ∈ D, the function
f−f(x)
ID−x : D \ {x} → R is derivate

continuous on D \ {x}. In this case, the unique continuation of
f−f(x)
ID−x to D (see

[39]) will be called the first derivate function (or simply the derivate function) of

f at x and will be denoted by F1,x; moreover, the function value F1,x(x) will be

called the derivative of f at x and will be denoted by f ′(x).

It follows immediately from Definition 6.3 that if f : D → R is derivate dif-

ferentiable then f is differentiable in the conventional sense; moreover, the two

derivatives at any given point of D agree. The following result provides a useful

tool for checking the derivate differentiability of functions; we refer the interested

reader to [39, 48] for its proof.

Theorem 6.4. Let D ⊂ R be open and let f : D → R be derivate continuous
on D. Suppose there exists M ∈ R and there exists a function g : D → R such that∣∣∣∣f (y)− f (x)

y − x
− g (x)

∣∣∣∣ ≤ M |y − x| for all y �= x in D.

Then f is derivate differentiable on D, with derivative f ′ = g.

Definition 6.5 (n-times Derivate Differentiability). Let D ⊂ R be open, and

let f : D → R. Let n ≥ 2 be given in N. Then we define n-times derivate

differentiability of f on D inductively as follows: Having defined (n− 1)-times

derivate differentiability, we say that f is n-times derivate differentiable on D if

f is (n− 1)-times derivate differentiable on D and for all x ∈ D, the (n− 1)st

derivate function Fn−1,x is derivate differentiable on D. For all x ∈ D, the derivate

function Fn,x of Fn−1,x at x will be called the nth derivate function of f at x, and

the number f (n) (x) = n!F ′
n−1,x(x) will be called the nth derivative of f at x and

denoted by f (n)(x).

One of the most useful consequences of the derivate differentiability concept

is that it gives rise to a Taylor formula with remainder while the conventional
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(topological) differentiability does not. We only state the result here and refer

the reader to [6, 39] for its proof. We also note that, as an immediate result of

Theorem 6.6, we obtain local expandability in Taylor series around x0 ∈ D of a

given function that is infinitely often derivate differentiable on D [6, 39].

Theorem 6.6 (Taylor Formula with Remainder). Let D ⊂ R be open and let
f : D → R be n-times derivate differentiable on D. Let x ∈ D be given, let Fn,x be
the nth order derivate function of f at x, and let Mn,x be a Lipschitz constant of
Fn,x on D. Then for all y ∈ D, we have that

f (y) = f (x) +
n∑

j=1

f (j) (x)

j!
(y − x)j + rn+1 (x, y) (y − x)n+1 ,

with λ (rn+1 (x, y)) ≥ λ (Mn,x).

Using Theorem 6.6, we are able to generalize in [48] most of one-dimensional

optimization results of Real Analysis. For example, we obtain the following two

results which state necessary and sufficient conditions for the existence of local

(relative) extrema.

Theorem 6.7 (Necessary Conditions for Existence of Local Extrema). Let
a < b be given in N , let m ≥ 2, and let f : I(a, b) → N be m-times derivate
differentiable on I(a, b). Suppose that f has a local extremum at x0 ∈ (a, b) and
l ≤ m is the order of the first nonvanishing derivative of f at x0. Then l is even.
Moreover, f (l)(x0) is positive if the extremum is a minimum and negative if the
extremum is a maximum.

Theorem 6.8 (Sufficient Conditions for Existence of Local Extrema). Let a < b
be given in N , let k ∈ N, and let f : I(a, b) → N be 2k-times derivate differentiable
on I(a, b). Let x0 ∈ (a, b) be such f (j)(x0) = 0 for all j ∈ {1, . . . , 2k − 1} and
f (2k)(x0) �= 0. Then f has a local minimum at x0 if f (2k)(x0) > 0 and a local
maximum if f (2k)(x0) < 0.

In [49], we generalize the concepts of derivate continuity and differentiability

to higher dimensions; and this yields a Taylor Formula with a bounded remainder

term for Cm functions (in the derivate sense) from an open subset of Rn to R.

Theorem 6.9 (Taylor Formula for Functions of Several Variables). Let D ⊂ Rn

be open, let �x0 ∈ D be given and let f : D → R be Cq on D. Then there exist
M, δ > 0 in R such that Bδ(�x0) ⊂ D and, for all �x ∈ Bδ(�x0), we have that

f(�x) = f(�x0) +

q∑
j=1

⎛
⎝ 1

j!

n∑
l1,...,lj=1

(
∂l1 · · · ∂ljf(�x0)π

j
k=1 (xlk − x0,lk)

)⎞⎠
+Rq+1(�x0, �x),

where |Rq+1(�x0, �x)| ≤ M |�x− �x0|q+1.

Then we use that to derive necessary and sufficient conditions of second order

for the existence of a minimum of an R-valued function on Rn subject to equality

and inequality constraints. More specifically, we solve the problem of minimizing a
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function f : Rn → R, subject to the following set of constraints:

(6.1)

⎧⎪⎨
⎪⎩

h1(�x) = 0
...

hm(�x) = 0

and

⎧⎪⎨
⎪⎩

g1(�x) ≤ 0
...

gp(�x) ≤ 0

,

where all the functions in Equation (6.1) are from Rn to R. A point �x0 ∈ Rn is

said to be a feasible point if it satisfies the constraints in Equation (6.1).

Definition 6.10. Let �x0 be a feasible point for the constraints in Equation

(6.1) and let I(�x0) = {l ∈ {1, . . . , p} : gl(�x0) = 0}. Then we say that �x0 is regular

for the constraints if {∇hj(�x0) : j = 1, . . . ,m;∇gl(�x0) : l ∈ I(�x0)} forms a linearly

independent subset of vectors in Rn.

The following theorem provides necessary conditions of second order for a local

minimizer �x0 of a function f subject to the constraints in Equation (6.1). The

result is a generalization of the corresponding real result [29, 14] and the proof

(see [49]) is similar to that of the latter; but one essential difference is the form of

the remainder formula. In the real case, the remainder term is related to the second

derivative at some intermediate point, while here that is not the case. However,

the concept of derivate differentiability puts a bound on the remainder term; and

this is instrumental in the proof of the theorem.

Theorem 6.11. Suppose that f , {hj}mj=1, {gl}pl=1 are C2 on some open set
D ⊂ Rn containing the point �x0 and that �x0 is a regular point for the constraints in
Equation (6.1). If �x0 is a local minimizer for f under the given constraints, then
there exist α1, . . . , αm, β1, . . . , βp ∈ R such that

(i) βl ≥ 0 for all l ∈ {1, . . . , p},
(ii) βlgl(�x0) = 0 for all l ∈ {1, . . . , p},
(iii) ∇f(�x0) +

∑m
j=1 αj∇hj(�x0) +

∑p
l=1 βl∇gl(�x0) = �0, and

(iv) �yT
(
∇2f(�x0) +

∑m
j=1 αj∇2hj(�x0) +

∑p
l=1 βl∇2gl(�x0)

)
�y ≥ 0 for all �y ∈

Rn satisfying ∇hj(�x0)�y = 0 for all j ∈ {1, . . . ,m}, ∇gl(�x0)�y = 0 for all
l ∈ L = {k ∈ I(�x0) : βk > 0} and ∇gl(�x0)�y ≤ 0 for all l ∈ I(�x0) \ L.

In the following theorem, we present second order sufficient conditions for a

feasible point �x0 to be a local minimum of a function f subject to the constraints

in Equation (6.1). It is a generalization of the real result [14] and reduces to it,

when restricted to functions from Rn to R. In fact, since ε in condition (iv) below

is allowed to be infinitely small, the condition |∇hj(�x0)�y| < ε would reduce to

∇hj(�x0)�y = 0, when restricted to R. Similarly, one can readily see that the other

conditions are mere generalizations of the corresponding real ones. However, the

proof (see [49]) is different than that of the real result since the supremum principle

does not hold in R.

Theorem 6.12. Suppose that f , {hj}mj=1, {gl}pl=1 are C2 on some open set
D ⊂ Rn containing the point �x0 and that �x0 is a feasible point for the constraints
in Equation (6.1) such that, for some α1, . . . , αm, β1, . . . , βp ∈ R and for some
ε, γ > 0 in R, we have that

(i) βl ≥ 0 for all l ∈ {1, . . . , p},
(ii) βlgl(�x0) = 0 for all l ∈ {1, . . . , p},
(iii) ∇f(�x0) +

∑m
j=1 αj∇hj(�x0) +

∑p
l=1 βl∇gl(�x0) = �0, and
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(iv) �yT
(
∇2f(�x0) +

∑m
j=1 αj∇2hj(�x0) +

∑p
l=1 βl∇2gl(�x0)

)
�y ≥ γ for all �y ∈

Rn satisfying |�y| = 1, |∇hj(�x0)�y| < ε for all j ∈ {1, . . . ,m}, |∇gl(�x0)�y| <
ε for all l ∈ L = {k : βk > 0} and ∇gl(�x0)�y < ε for all l ∈ I(�x0) \ L,
where I(�x0) = {k : gk(�x0) = 0}.

Then �x0 is a strict local minimum for f under the constraints of Equation (6.1).

7. Computation of Derivatives of Real Functions

The general question of efficient differentiation is at the core of many parts

of the work on perturbation and aberration theories relevant in Physics and En-

gineering; for an overview, see for example [8]. In this case, derivatives of highly

complicated functions have to be computed to high orders. However, even when the

derivative of the function is known to exist at the given point, numerical methods

fail to give an accurate value of the derivative; the error increases with the order,

and for orders greater than three, the errors often become too large for the results

to be practically useful.

On the other hand, while formula manipulators like Mathematica are successful

in finding low-order derivatives of simple functions, they fail for high-order deriva-

tives of very complicated functions. Moreover, they fail to find the derivatives

of certain functions at given points even though the functions are differentiable

at the respective points. This is generally connected to the occurrence of non-

differentiable parts that do not affect the differentiability of the end result as well

as the occurrence of branch points in coding as in IF-ELSE structures.

Using Calculus on R and the fact that the field has infinitely small numbers

represents a new method for computational differentiation that avoids the well-

known accuracy problems of numerical differentiation tools. It also avoids the often

rather stringent limitations of formula manipulators that restrict the complexity of

the function that can be differentiated, and the orders to which differentiation can

be performed.

By a computer function, we denote any real-valued function that can be typed

on a computer. The R numbers as well as the continuations to R of the intrinsic

functions (and hence of all computer functions) have all been implemented for use

on a computer, using the code COSY INFINITY [9, 30]. Using the calculus on

R, we formulate a necessary and sufficient condition for the derivatives of a com-

puter function to exist, and show how to find these derivatives whenever they exist

[40, 42]. The new technique of computing the derivatives of computer functions,

which we summarize below, achieves results that combine the accuracy of formula

manipulators with the speed of classical numerical methods, that is the best of both

worlds.

Lemma 7.1. Let f be a computer function. Then f is defined at x0 if and only
if f(x0) can be computed on a computer.

This lemma hinges on a careful implementation of the intrinsic functions and

operations, in particular in the sense that they should be executable for any floating

point number in the domain of definition that produces a result within the range

of allowed floating point numbers.
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Lemma 7.2. Let f be a computer function, and let x0 be such that f(x0 − d),
f(x0), and f(x0 + d) are all defined. Then f is continuous at x0 if and only if

f(x0 − d) =0 f(x0) =0 f(x0 + d).

If f(x0) and f(x0+d) are defined, but f(x0−d) is not, then f is right-continuous
at x0 if and only if f(x0 + d) =0 f(x0).

Finally, if f(x0) and f(x0 − d) are defined, but f(x0 + d) is not, then f is
left-continuous at x0 if and only if f(x0 − d) =0 f(x0).

Theorem 7.3. Let f be a computer function that is continuous at x0, and let
f(x0 − d) and f(x0 + d) be both defined. Then f is differentiable at x0 if and only
if

f(x0 + d)− f(x0)

d
and

f(x0)− f(x0 − d)

d
are both at most finite in absolute value, and their real parts agree. In this case,

f(x0 + d)− f(x0)

d
=0 f ′(x0) =0

f(x0)− f(x0 − d)

d
.

If f is differentiable at x0, then f is twice differentiable at x0 if and only if

f(x0 + 2d)− 2f(x0 + d) + f(x0)

d2
and

f(x0)− 2f(x0 − d) + f(x0 − 2d)

d2

are both at most finite in absolute value, and their real parts agree. In this case

f(x0 + 2d)− 2f(x0 + d) + f(x0)

d2
=0 f (2)(x0) =0

f(x0)− 2f(x0 − d) + f(x0 − 2d)

d2
.

In general, if f is (n− 1) times differentiable at x0, then f is n times differentiable
at x0 if and only if

∑n
j=0(−1)n−j

(
n
j

)
f (x0 + jd)

dn
and

∑n
j=0(−1)j

(
n
j

)
f (x0 − jd)

dn

are both at most finite in absolute value, and their real parts agree. In this case,

∑n
j=0(−1)n−j

(
n
j

)
f (x0 + jd)

dn
=0 f (n)(x0) =0

∑n
j=0(−1)j

(
n
j

)
f (x0 − jd)

dn
.

Since knowledge of f(x0 − d) and f(x0 + d) gives us all the information about

a computer function f in a real positive radius σ around x0, we have the following

result which states that, from the mere knowledge of f(x0 − d) and f(x0 + d), we
can find at once the order of differentiability of f at x0 and the accurate values of

all existing derivatives.

Theorem 7.4. Let f be a computer function that is continuous at x0. Then f
is n times differentiable at x0 if and only if f(x0−d) and f(x0+d) are both defined
and can be written as

f(x0 − d) =n f(x0) +

n∑
j=1

(−1)jαjd
j and f(x0 + d) =n f(x0) +

n∑
j=1

αjd
j ,

where the αj’s are real numbers. Moreover, in this case f (j)(x0) = j! αj for 1 ≤
j ≤ n.
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Now consider, as an example, the function

(7.1) g(x) =

sin
(
x3 + 2x+ 1

)
+

3+cos(sin(ln|1+x|))
exp(tanh(sinh(cosh( sin(cos(tan(exp(x))))

cos(sin(exp(tan(x+2))))))))

2 + sin
(
sinh

(
cos
(
tan−1 (ln (exp(x) + x2 + 3))

))) .

Using the R calculus, we find g(n)(0) for 0 ≤ n ≤ 10. These numbers are listed

in table 1; we note that, for 0 ≤ n ≤ 10, we list the CPU time needed to obtain all

Table 1. g(n)(0), 0 ≤ n ≤ 10, computed with R calculus

Order n g(n)(0) CPU Time

0 1.004845319007115 1.820 msec

1 0.4601438089634254 2.070 msec

2 −5.266097568233224 3.180 msec

3 −52.82163351991485 4.830 msec

4 −108.4682847837855 7.700 msec

5 16451.44286410806 11.640 msec

6 541334.9970224757 18.050 msec

7 7948641.189364974 26.590 msec

8 −144969388.2104904 37.860 msec

9 −15395959663.01733 52.470 msec

10 −618406836695.3634 72.330 msec

derivatives of g at 0 up to order n and not just g(n)(0). For comparison purposes,

we give in table 2 the function value and the first six derivatives computed with

Table 2. g(n)(0), 0 ≤ n ≤ 6, computed with Mathematica

Order n g(n)(0) CPU Time

0 1.004845319007116 0.11 sec

1 0.4601438089634254 0.17 sec

2 −5.266097568233221 0.47 sec

3 −52.82163351991483 2.57 sec

4 −108.4682847837854 14.74 sec

5 16451.44286410805 77.50 sec

6 541334.9970224752 693.65 sec

Mathematica. Note that the respective values listed in tables 1 and 2 agree. How-

ever, Mathematica used much more CPU time to compute the first six derivatives,

and it failed to find the seventh derivative as it ran out of memory. We also list in

table 3 the first ten derivatives of g at 0 computed numerically using the numerical

differentiation formulas

g(n)(0) = (∆x)−n

⎛
⎝ n∑

j=0

(−1)n−j

(
n
j

)
g (j∆x)

⎞
⎠ , ∆x = 10−16/(n+1),

for 1 ≤ n ≤ 10, together with the corresponding relative errors obtained by com-

paring the numerical values with the respective exact values computed using R
calculus.
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Table 3. g(n)(0), 1 ≤ n ≤ 10, computed numerically

Order n g(n)(0) Relative Error

1 0.4601437841866840 54× 10−9

2 −5.266346392944456 47× 10−6

3 −52.83767867680922 30× 10−5

4 −87.27214664649106 0.20
5 19478.29555909866 0.18
6 633008.9156614641 0.17
7 −12378052.73279768 2.6
8 −1282816703.632099 7.8
9 83617811421.48561 6.4
10 91619495958355.24 149

On the other hand, formula manipulators fail to find the derivatives of cer-

tain functions at given points even though the functions are differentiable at the

respective points. For example, the functions

g1(x) = |x|5/2 · g(x) and g2(x) =

⎧⎨
⎩

1−exp (−x2)
x · g(x) if x �= 0

0 if x = 0

,

where g(x) is the function given in Equation (7.1), are both differentiable at 0; but

the attempt to compute their derivatives using formula manipulators fails. This

is not specific to g1 and g2, and is generally connected to the occurrence of non-

differentiable parts that do not affect the differentiability of the end result, of which

case g1 is an example, as well as the occurrence of branch points in coding as in

IF-ELSE structures, of which case g2 is an example.

8. Existence and Uniqueness of Solutions of Ordinary Differential
Equations

In [10], we consider differential equations over R with a right hand side that is

infinitely often derivate differentiable. We show that such an ODE admits solutions

that are themselves infinitely often derivate differentiable. To this end, we develop

a theory of multivariate infinitely often derivate differentiable functions and show

that they can be locally represented as Taylor series. We then re-phrase the ODE

problem as a fixed point problem of a Picard operator in the common way. After

various transformations and utilizing well-known existence and uniqueness proper-

ties of ODEs over R, the problem is transformed to a fixed point problem with an

infinitely small contraction factor. We show that the sequence of functions obtained

by iteration converges uniformly in the order topology, that the resulting limit is

itself infinitely often derivate differentiable, and that this limit indeed solves the

ODE. It is then shown that while there are other solutions with lesser smooth-

ness requirements, the solution so obtained is unique among all the infinitely often

derivate differentiable functions.
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9. Current and Future Research

Several research projects are currently under way. Building on the existing

knowledge of the field, which has been summarized in the sections above, we are

working on developing a multivariate calculus theory onRn as well as on completing

the study of power series and R-analytic functions by proving the Extreme Value

Theorem and the Mean Value Theorem. We plan also to do more analysis on C and

look into more potential applications of the implementation of the R numbers on a

computer. Moreover, in collaboration with Jose Aguayo and Miguel Nova, we are

looking into the possibility of developing a non-Archimedean Hilbert Space theory

by considering the space c0 of null sequences of elements of R, equipped with the

non-Archimedean inner product 〈(xn), (yn)〉 :=
∑∞

n=1 xnyn; this may lead to some

useful applications in Physics, particularly in Quantum Mechanics.
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