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Abstract—Let N be a non-Archimedean ordered field extension of the real numbers that is real
closed and Cauchy complete in the topology induced by the order. In this paper, we first review the
properties of weakly locally uniformly differentiable (WLUD) functions [1] at a point or on an open
subset of N. WLUD functions are C1 and they form an N-algebra that is closed under composition
and contains all polynomial functions. Moreover, they satisfy an inverse function theorem, a local
intermediate value theorem and a local mean value theorem. We define k times weakly locally
uniformly differentiable (WLUDk) functions from N to N, then we state and prove a Taylor theorem
with remainder for WLUDk functions on N. Finally, we generalize the concept of weak local uniform
differentiability to functions from Nn to Nm with m,n ∈ N, then we formulate and prove the inverse
function theorem for WLUD functions from Nn to Nn and the implicit function theorem for WLUD
functions from Nn to Nm with m < n in N.
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1. INTRODUCTION

We start this section by reviewing some basic terminology and facts about non-Archimedean fields.
So let F be an ordered non-Archimedean field extension of the field of real numbers R. We introduce the
following terminology.

Definition 1.1 (∼, ≈, �, SF , λ). For x, y ∈ F ∗ := F \ {0}, we say that x is of the same order as y
and write x ∼ y if there exist n,m ∈ N such that n|x| > |y| and m|y| > |x|, where | · | denotes the
ordinary absolute value on F : |x| = max {x,−x}.
For nonnegative x, y ∈ F , we say that x is infinitely smaller than y and write x � y if nx < y for
all n ∈ N, and we say that x is infinitely small if x � 1 and x is finite if x ∼ 1; finally, we say that
x is approximately equal to y and write x ≈ y if x ∼ y and |x− y| � |x|. We also set λ(x) = [x],
the class of x under the equivalence relation ∼.

The set of equivalence classes SF (under the relation ∼) is naturally endowed with an addition via
[x] + [y] = [x · y] and an order via [x] < [y] if |y| � |x| (or |x| � |y|), both of which are readily checked to
be well-defined. Note that we use + instead of · for the operation in SF because, for the fields discussed
in this paper, SF is isomorphic to an additive subgroup of R. It follows that (SF ,+, <) is an ordered
group, often referred to as the Hahn group or skeleton group, whose neutral element is [1], the class of
1. It follows from the above that the projection λ from F ∗ to SF is a valuation.

The theorem of Hahn [3] provides a complete classification of non-Archimedean ordered field
extensions of R in terms of their skeleton groups. In fact, invoking the axiom of choice it is shown that
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the elements of any such ordered field F can be written as (generalized) formal power series (also called
Hahn series) over its skeleton group SF with real coefficients, and the set of appearing exponents forms
a well-ordered subset of SF . That is, for all x ∈ F , we have that

x =
∑
q∈SF

aqd
q; (1.1)

with aq ∈ R for all q, d a positive infinitely small element of F , and the support of x, given by

supp(x) := {q ∈ SF : aq �= 0},
forming a well-ordered subset of SF . With the representation of elements of F as in Equation (1.1), it
follows that for x �= 0 in F ,

λ(x) = min (supp(x)) ,

which exists since supp(x) is well-ordered. Moreover, we set λ(0) = ∞.
Addition, multiplication and order on the Hahn series are defined as follows. Given x =

∑
q∈supp(x) aqd

q

and y =
∑

t∈supp(y) btd
t, then

x+ y =
∑

r∈supp(x)∪supp(y)

(ar + br)d
r; and

x · y =
∑

r∈supp(x)⊕supp(y)

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
q ∈ supp(x), t ∈ supp(y)

q + t = r

aq · bt

⎞
⎟⎟⎟⎟⎟⎟⎠

dr. (1.2)

Note that, since supp(x) and supp(y) are well-ordered, only finitely many terms contribute to the sum∑
q ∈ supp(x), t ∈ supp(y)

q + t = r

aq · bt

in Equation (1.2) for each r ∈ supp(x)⊕ supp(y).
Given a nonzero x =

∑
q∈supp(x) aqd

q, then x > 0 if and only if aλ(x) > 0.

From general properties of formal power series fields [7, 9], it follows that if SF is divisible then F is
real closed; that is, every positive element of F is a square in F and every polynomial of odd degree over F
has at least one root in F . For a general overview of the algebraic properties of formal power series fields,
we refer to the comprehensive overview by Ribenboim [10], and for an overview of the related valuation
theory the book by Krull [4]. A thorough and complete treatment of ordered structures can also be found
in [8]. A more comprehensive survey of all non-Archimedean fields can be found in [2].

Throughout this paper, we will denote by N any totally ordered non-Archimedean field extension of R
that is real closed and complete in the order topology and whose skeleton group SN is Archimedean, i.e. a
subgroup of R. The coefficient aq of the qth power in the Hahn representation of a given x will be denoted
by x[q], and hence the number d is given by d[1] = 1 and d[q] = 0 for q �= 1. It is easy to check that, for
q ∈ SN, 0 < dq � 1 if and only if q > 0 and dq � 1 if and only if q < 0; moreover, x ≈ x[λ(x)]dλ(x) for
all x �= 0.

The smallest such field N is the Levi-Civita field R, first introduced in [5, 6]. In this case SR = Q, and
for any element x ∈ R, supp(x) is a left-finite subset of Q, i.e. below any rational bound r there are only
finitely many exponents in the Hahn representation of x. The Levi-Civita field R is of particular interest
because of its practical usefulness. Since the supports of the elements of R are left-finite, it is possible to
represent these numbers on a computer. Having infinitely small numbers allows for many computational
applications; one such application is the computation of derivatives of real functions representable on a
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computer [14, 15], where both the accuracy of formula manipulators and the speed of classical numerical
methods are achieved. For a review of the Levi-Civita field R, see [13] and references therein.

In the wider context of valuation theory, it is interesting to note that the topology induced by the
order on N is the same as that introduced via the valuation λ, as shown in Remark 1.2 below. It follows
therefore that the field N is just a special case of the class of fields discussed in [12].

Remark 1.2. The mapping Λ : N ×N → R, given by Λ(x, y) = exp (−λ(x− y)), is an ultrametric
distance (and hence a metric); the valuation topology it induces is equivalent to the order
topology (we will use τv to denote either one of the two topologies in this paper). For if A
is an open set in the order topology and a ∈ A, then there exists r > 0 in N such that, for all
x ∈ N, |x− a| < r ⇒ x ∈ A. Let l = exp(−λ(r)), then we also have that, for all x ∈ N, Λ(x, a) <
l ⇒ x ∈ A; and hence A is open with respect to the valuation topology. The other direction of the
equivalence of the topologies follows analogously.

It follows from Remark 1.2 that N which is complete in the order topology is also complete in the
valuation topology τv induced by the ultrametric Λ.

Remark 1.3. Like the field ∗R of Nonstandard Analysis [11, 17], the field N is a sequentially com-
plete non-Archimedean ordered field extension of the field of real numbers R; and the embedding
of R in N is compatible with the orders in R and N. However, while in Nonstandard Analysis
there is a generally valid transfer principle that allows the transformation of known results of
conventional analysis, here all relevant calculus theorems are developed separately. Moreover,
besides being non-Archimedeanly valued, the fact that the field N has a total order (which is
also non-Archimedean) gives the field a richer structure, thus opening up new possibilities of
study, like monotonicity, which are not available in other non-Archimedean valued fields like the
p-adic fields for example [12]. This makes N an outstanding example, worthy to be studied in
detail in its own right.

The following results were proved in [16]; they show that the topological structure of N is different
from that of R or C, and that makes doing Calculus on the field more difficult.

• (N, τv) is a totally disconnected topological space. It is Hausdorff and nowhere locally compact.
There are no countable bases. The topology induced to R is the discrete topology. As an immediate
consequence of the fact that (N, τv) is totally disconnected, it follows that, for any x0 ∈ N, the
connected component of x0 is {x0}; moreover, the topology is zero-dimensional, that is, there is
a base of clopen sets for the topology.

• If we view N as an infinite dimensional vector space over R then τv is not a vector topology; that
is, (N, τv) is not a linear topological space.

• If A is compact in (N, τv) then A is closed and bounded and it has an empty interior in (N, τv),
that is,

int(A) := {a ∈ A : ∃r > 0 in N  (a− r, a+ r) ⊂ A} = ∅.
The converse is not true: the set A = [0, 1] ∩Q is a (countably infinite) closed and bounded subset
of N with an empty interior; but A is not compact in (N, τv) [16].

• Given a sequence (xn) of elements of N, the series
∑∞

n=1 xn converges if and only if the sequence
(xn) converges to zero.

2. WEAK LOCAL UNIFORM DIFFERENTIABILITY
As hinted to in the Introduction above, because of the total disconnectedness of the field N in the order

topology, the standard theorems of real calculus like the intermediate value theorem, the inverse function
theorem and the mean value theorem require stronger smoothness criteria of the functions involved in
order for the theorems to hold. In this section we will present one such criterion: the so-called ‘weak
local uniform differentiability’, we will review recent work based on that smoothness criterion and then
present new results.
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2.1. Review of Recent Results

In [1], we focus our attention on N-valued functions of one variable. We study the properties of weakly
locally uniformly differentiable (WLUD) functions at a point x0 ∈ N or on an open subset A of N. In
particular, we show that WLUD functions are C1, they include all polynomial functions, and they are
closed under addition, multiplication and composition. Then we generalize the definition of weak local
uniform differentiability to any order. In particular, we study the properties of WLUD2 functions at a
point x0 ∈ N or on an open subset A of N; and we show that WLUD2 functions are C2, they include
all polynomial functions, and they are closed under addition, multiplication and composition. Finally,
we formulate and prove an inverse function theorem as well as a local intermediate value theorem and
a local mean value theorem for these functions. Here we only recall the main definitions and results
(without proofs) and refer the reader to [1] for the details.

Definition 2.1. Let A ⊆ N be open, let f : A → N, and let x0 ∈ A be given. We say that f is
weakly locally uniformly differentiable (abbreviated as WLUD) at x0 if f is differentiable in a
neighbourhood Ω of x0 in A and if for every ε > 0 in N there exists δ > 0 in N such that for every
x, y ∈ (x0 − δ, x0 + δ) ∩ Ω we have that |f(y)− f(x)− f ′(x)(y − x)| ≤ ε |y − x|. Moreover, we say
that f is WLUD on A if f is WLUD at every point in A.

We extend the WLUD concept to higher orders of differentiability and we define WLUDn as follows.

Definition 2.2. Let A ⊆ N be open, let f : A → N, let x0 ∈ A, and let n ∈ N be given. We say that f
is WLUDn at x0 if f is n times differentiable in a neighbourhood Ω of x0 in A and if for every ε > 0
in N there exists δ > 0 in N such that for every x, y ∈ (x0 − δ, x0 + δ) ∩ Ω we have that∣∣∣∣∣f(y)−

n∑
k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣ ≤ ε |y − x|n .

Moreover, we say that f is WLUDn on A if f is WLUDn at every point in A.

Definition 2.3. Let A ⊆ N be open, let f : A → N, and let x0 ∈ A be given. We say that f is WLUD∞

at x0 if f is WLUDn at x0 for every n ∈ N. Moreover, we say that f is WLUD∞ on A if f is WLUD∞

at every point in A.

Theorem 2.4 (Inverse Function Theorem). Let A ⊆ N be open, let f : A → N be WLUD on A, and
let x0 ∈ A be such that f ′(x0) �= 0. Then there exists a neighborhood Ω of x0 in A such that

(i) f |Ω is one-to-one;

(ii) f(Ω) is open; and

(iii) f−1 exists and is WLUD on f(Ω) with (f−1)′ = 1/
(
f ′ ◦ f−1

)
.

Theorem 2.5 (Local Intermediate Value Theorem). Let A ⊆ N be open, let f : A → N be WLUD on
A, and let x0 ∈ A be such that f ′(x0) �= 0. Then there exists a neighborhood Ω of x0 in A such that
for any a < b in f(Ω) and for any c ∈ (a, b), there is an

x ∈
(
min

{
f (−1)(a), f (−1)(b)

}
,max

{
f (−1)(a), f (−1)(b)

})
such that f(x) = c.

Theorem 2.6 (Local Mean Value Theorem). Let A ⊆ N be open, let f : A → N be WLUD2 on A, and
let x0 ∈ A be such that f ′′(x0) �= 0. Then there exists a neighborhood Ω of x0 in A such that f has
the mean value property on Ω. That is, for every a, b ∈ Ω with a < b, there exists c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.
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As in the real case, the mean value property can be used to prove other important results. In particular,
while L’Hôpital’s rule does not hold for differentiable functions on N, we prove the result under similar
conditions to those of the local mean value theorem. To do this we first prove the local equivalent of the
Cauchy mean value theorem (Lemma 2.7). The proof is obtained from the mean value property the same
way as in the real case.

Lemma 2.7. Let A ⊂ N be open, let f, g : A → N be WLUD2 on A, and let x0 ∈ A be such that
f ′′(x0) �= 0 and g′′(x0) �= 0. Then there exists a neighborhood Ω of x0 in A such that for every
a, b ∈ Ω with a < b, there exists c ∈ (a, b) such that

f ′(c) (g(b) − g(a)) = g′(c) (f(b)− f(a)) .

Theorem 2.8 (L’Hôpital’s Rule). Let A ⊂ N be open, let f, g : A → N be WLUD2 on A, and let a ∈ A
be such that f ′′(a) �= 0 and g′′(a) �= 0. Furthermore, suppose that f(a) = g(a) = 0, that there exists
a neighborhood Ω of a in A such that g′(x) �= 0 for every x ∈ Ω \ {a}, and that lim

x→a
f ′(x)/g′(x)

exists. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. By Lemma 2.7, there exists a neighborhood U of a in A such that, for every x ∈ U , there exists c
between x and a such that

f ′(c)(g(x) − g(a)) = g′(c)(f(x) − f(a)).

Let δ1 > 0 in N be such that (a− δ1, a+ δ1) ⊆ U ∩Ω, let L = limx→a f
′(x)/g′(x), and let ε > 0 in N be

given. Then there exists δ2 > 0 in N such that for all x ∈ (a− δ2, a+ δ2) we have that∣∣∣∣f
′(x)

g′(x)
− L

∣∣∣∣ < ε.

Let δ = min{δ1, δ2}, and let x �= a in (a− δ, a+ δ) be given such that g(x) �= 0. Then, there exists c
between x and a [thus c ∈ (a− δ, a+ δ)] such that

f ′(c)

g′(c)
=

f(x)− f(a)

g(x)− g(a)
=

f(x)

g(x)
.

Since c ∈ (a− δ, a + δ) ⊂ (a− δ2, a+ δ2), it follows that∣∣∣∣f(x)g(x)
− L

∣∣∣∣ =
∣∣∣∣f

′(c)

g′(c)
− L

∣∣∣∣ < ε.

In this paper, we will formulate and prove a Taylor theorem with remainder for WLUDn functions.
Then we will extend the concept of WLUD to functions from Nn to Nm with m,n ∈ N and study the
properties of those functions as we did for functions from N to N. Then we will formulate and prove
the inverse function theorem for WLUD functions from Nn to Nn and the implicit function theorem for
WLUD functions from Nn to Nm with m < n in N.

2.2. Taylor Theorem with Remainder

In this section, we use the concept of WLUDk to formulate and prove a Taylor theorem with
remainder. As in the real case, the proof of the theorem uses the mean value theorem. However, in the
non-Archimedean setting, stronger conditions on the function are needed than in the real case.
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Theorem 2.9. (Taylor’s Theorem with Remainder) Let A ⊆ N be open, let n ∈ N be given, and
let f : A → N be WLUDn+2 on A. Assume further that f (m) is WLUD2 on A for 0 ≤ m ≤ n. Then,
for every x ∈ A, there exists a neighborhood U of x in A such that, for any y ∈ U , there exists
c ∈ [min(y, x),max(y, x)] such that

Rn(y) := f(y)−
n∑

k=0

f (k) (x)

k!
(y − x)k =

f (n+1)(c)

(n+ 1)!
(y − x)n+1 . (2.1)

Proof. Let x ∈ A be given. First note that Equation (2.1) holds trivially for y = x. For y �= x in A, define
F : A → N by

F (t) = f (y)−
n∑

k=0

f (k)(t)

k!
(y − t)k.

Then F (x) = Rn(y) and F ′(t) = − f(n+1)(t)
n! (y − t)n for all t ∈ A.

Now let G : A → N be given by

G(t) = F (t)−
(
y − t

y − x

)n+1

F (x) .

Then G(t) is WLUD2 on A.

Case I: G′′(x) �= 0. Then we can apply the mean value theorem, Theorem 2.6, to G. Note that
G(x) = G(y) = 0. Applying the mean value theorem to G, there exists a neighborhood U of x in A,
such that for every y �= x in U we can find c ∈ [min(y, x),max(y, x)] such that

0 =
G(y)−G(x)

y − x
= G′(c)

= F ′(c) + (n+ 1)
(y − c)n

(y − x)n+1
F (x)

= −f (n+1)(c)

n!
(y − c)n + (n+ 1)

(y − c)n

(y − x)n+1
F (x).

It follows that

Rn(y) = F (x) =
f (n+1)(c)

(n+ 1)!
(y − x)n+1.

Case II: G′′(x) = 0. Note that, for all t ∈ A, we have that

G′′(t) = F ′′(t)− n(n+ 1)

(y − x)2

(
y − t

y − x

)n−1

F (x)

=
f (n+1) (t)

(n− 1)!
(y − t)n−1 − f (n+2)(t)

n!
(y − t)n − (n+ 1)n

(y − x)2

(
y − t

y − x

)n−1

F (x).

Since G′′(x) = 0, we obtain that

f (n+1) (x)

(n− 1)!
(y − x)n−1 − f (n+2) (x)

n!
(y − x)n =

(n+ 1)n

(y − x)2
F (x)

from which we obtain that

f(y)−
n+2∑
k=0

f (k)(x)

k!
(y − x)k = −2n+ 2

n

f (n+2)(x)

(n+ 2)!
(y − x)n+2. (2.2)
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We will show that, in this case (Case II), f (n+2)(x) = 0. Assume, to the contrary, that f (n+2)(x) �= 0,

and let ε′ =
∣∣∣f(n+2)(x)

(n+2)!

∣∣∣. Then ε′ > 0. Since f is WLUDn+2 at x, there exists a neighborhood U ′ of x in A

such that, for every y ∈ U ′, we have that∣∣∣∣∣f(y)−
n+2∑
k=0

f (k) (x)

k!
(y − x)k

∣∣∣∣∣ ≤ ε′ |y − x|n+2 ,

which contradicts Equation (2.2) above. Thus, f (n+2)(x) = 0. Then, it follows from Equation (2.2) that

f(y)−
n+1∑
k=0

f (k)(x)

k!
(y − x)k = 0

and hence

Rn(y) =
f (n+1)(x)

(n+ 1)!
(y − x)n+1.

Note that in Case II, the result holds for any y ∈ A and that c = x in this case.

3. LINEAR TRANSFORMATIONS FROM Nn TO Nm

In this section we review the properties of linear transformations from Nn into Nm, which are similar
to those of linear transformations from Rn to Rm.

Proposition 3.1. Let L : Nn → Nm be a linear transformation. Then {|L(t)| : |t| ≤ 1} is bounded.

Proof. Let L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L11 L12 . . . L1n

L21 L22 . . . L2n

...
...

. . .
...

Lm1 Lm2 . . . Lmn

⎞
⎟⎟⎟⎟⎟⎟⎠

denote the matrix of the linear transformation L, and let

α = max{|Lij | : i = 1, . . . ,m; j = 1, . . . , n}. Then, for |t| ≤ 1, we have that

|L(t)| = |Lt| =

∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝

L11 L12 . . . L1n

L21 L22 . . . L2n

...
...

. . .
...

Lm1 Lm2 . . . Lmn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

t1

t2
...

tn

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝

∑n
j=1L1jtj

...

...∑n
j=1 Lmjtj

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

=

√√√√√ m∑
i=1

⎛
⎝ n∑

j=1

Lijtj

⎞
⎠

2

≤

√√√√√ m∑
i=1

⎛
⎝ n∑

j=1

|Lij||tj |

⎞
⎠

2

≤

√√√√√ m∑
i=1

⎛
⎝ n∑

j=1

α · 1

⎞
⎠

2

=

√√√√ m∑
i=1

(nα)2 =
√
mnα.

Thus, {|L(t)| : |t| ≤ 1} is bounded above by
√
mnα.

Corollary 3.2. Let L : Nn → Nm be a linear transformation and let L be an upper bound for
{|L(t)| : |t| ≤ 1}. Then |L(t)| ≤ L|t| for all t ∈ Nn.
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Proof. Let t ∈ Nn. If t = 0, then |L(t)| = 0 = L|t| and we are done. Otherwise, let c = |t|−1; then
|ct| = 1, and so c|L(t)| = |cL(t)| = |L(ct)| ≤ L. Thus,

|L(t)| ≤ 1

c
L = L|t|.

Corollary 3.3. Let L : Nn → Nn be an invertible linear transformation and let L̄ be an upper

bound for {|L−1(t)| : |t| ≤ 1}. Then |L(t)| ≥ |t|
L̄

for all t ∈ Nn.

Proof. First we note that, since L−1 is invertible, L−1(t) = 0 only if t = 0; and hence L̄ > 0. Now let

t ∈ Nn be given. Then |t| = |L−1(L(t))| ≤ L̄|L(t)|; and hence |L(t)| ≥ |t|
L̄

.

Lemma 3.4. Let g : Nn → Nm be C1; and let L be an upper bound for {|Dg(x0)(x)| : |x| ≤ 1},
where Dg(x0) denotes the linear map from Nn to Nm defined by the m× n Jacobian matrix of g
at x0: ⎛

⎜⎜⎜⎜⎜⎜⎝

g1
1(x0) g1

2(x0) . . . g1
n(x0)

g2
1(x0) g2

2(x0) . . . g2
n(x0)

...
...

. . .
...

gm
1 (x0) gm

2 (x0) . . . gm
n (x0)

⎞
⎟⎟⎟⎟⎟⎟⎠

with gi
j(x0) =

∂gi
∂xj

(x0) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, for all ε > 0 in N, there exists δ > 0 in

N such that |Dg(y)(x)| ≤ (L+ ε)|x| for all y ∈ Bδ(x0) and for all x ∈ Nn.

Proof. Let ε > 0 in N be given. Since g is C1 then for every i and j, there exists δij > 0 in N such that

|gi
j(x0)− gi

j(y)| <
ε

n
√
m

whenever y ∈ Bδij
(x0). Let δ = min{δij : i = 1, . . . ,m; j = 1, . . . , n}. Then,

using the proof of Proposition 3.1, for ally ∈ Bδ(x0) we have that {|Dg(x0)(x)−Dg(y)(x)| : |x| ≤ 1}
is bounded above by ε. Thus, by Corollary 3.2, we have that |Dg(x0)(x)−Dg(y)(x)| ≤ ε|x| for all
y ∈ Bδ(x0) and for all x ∈ Nn. Therefore |Dg(y)(x)| ≤ ε|x|+ |Dg(x0)(x)|; and hence |Dg(y)(x)| ≤
(ε+ L)|x| for all y ∈ Bδ(x0) and for all x ∈ Nn.

4. WLUD FUNCTIONS FROM Nn TO Nm

In the rest of the paper, let A denote an open subset of Nn; consequently, whenever we speak of a ball
Bδ(x) around a point x in A, it is assumed that δ > 0 is small enough so that Bδ(x) ⊂ A.

Definition 4.1 (Uniformly Differentiable). Let f : A → Nm be differentiable on A. Then we say that
f is uniformly differentiable on A if for all ε > 0 in N, there exists δ > 0 in N such that whenever
x,y ∈ A and |y − x| < δ we have that |f(y)− f(x)−Df(x)(y − x)| ≤ ε|y − x|.

Definition 4.2 (Weakly Locally Uniformly Differentiable). Let A ⊂ Nn be open, let f : A → Nm, and
let x0 ∈ A be given. Then we say that f is weakly locally uniformly differentiable (WLUD) at x0

if f is differentiable in a neighborhood Ω of x0 in A and if for every ε > 0 in N there exists δ > 0
in N such that for all x,y ∈ Bδ(x0) ∩ Ω, we have that

|f(y)− f(x)−Df(x)(y − x)| ≤ ε|y − x|.
Moreover, we say that f is WLUD on A if f is WLUD at every point in A.

Remark 4.3. It is clear from the two definitions above that if f is uniformly differentiable on A
then f is WLUD at every point in A and hence f is WLUD on A.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 2 2021



156 SHAMSEDDINE

Proposition 4.4. Let f : A → Nm be differentiable at x ∈ A. Then f is continuous at x.

Proof. Let Lx > 0 be an upper bound for {|Df(x)(y)| : |y| ≤ 1}. Since f is differentiable at x, there
exists δ0 > 0 in N such that whenever y ∈ Bδ0(x), we have that |f(y)− f(x)−Df(x)(y − x)| ≤
Lx|y − x|. Let ε > 0 in N be given. Let δ = min{δ0, ε

2Lx
}. Then for y ∈ Bδ(x) we have that

|f(y)− f(x)| = |f(y)− f(x)−Df(x)(y − x) +Df(x)(y − x)|
≤ |f(y)− f(x)−Df(x)(y − x)|+ |Df(x)(y − x)|
≤ Lx|y − x|+ Lx|y − x|
= 2Lx|y − x|
< 2Lxδ

≤ ε.

Corollary 4.5. Let f : A → Nm be differentiable on A. Then f is continuous on A.

Theorem 4.6. Let f : A → Nm be WLUD at x0 ∈ A. Then f is C1 at x0.

Proof. Let ε > 0 in N be given. Then there exists δ1 > 0 in N such that f is differentiable on Bδ1(x0)
and, for s, t ∈ Bδ1(x0), we have that

|f(s)− f(t)−Df(t)(s− t)| ≤ ε

4
|s− t|.

Let δ2 = δ1/2 and let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} be given. Then, for any x ∈ Bδ2(x0), we have
that

|f i(x+ δ2êj)− f i(x)−Df i(x)(δ2êj)| ≤
εδ2
4

.

That is,

|f i(x+ δ2êj)− f i(x)− f i
j(x)δ2| ≤

εδ2
4

.

Now, since f i is continuous on Bδ1(x0), there exists δ3 > 0 such that, for all s ∈ Bδ3(x0), we have that

|f i(s)− f i(x0)| ≤
εδ2
4

.

Additionally, there exists δ4 > 0 such that, for all s ∈ Bδ4(x0 + δ2êj), we have that

|f i(s)− f i(x0 + δ2êj)| ≤
εδ2
4

.

Let δ = min{δ2, δ3, δ4} and let y ∈ Bδ(x0) be given. Then we have that

|f i
j(y)δ2 − f i

j(x0)δ2| = |f i(x0 + δ2êj)− f i(x0)− f i
j(x0)δ2

+ f i
j(y)δ2 − f i(y + δ2êj) + f i(y)

+ f i(x0)− f i(y)− f i(x0 + δ2êj) + f i(y + δ2êj)|
≤ |f i(x0 + δ2êj)− f i(x0)− f i

j(x0)δ2|
+ |f i(y + δ2êj)− f i(y)− f i

j(y)δ2|
+ |f i(x0)− f i(y)|+ |f i(x0 + δ2êj)− f i(y + δ2êj)|

≤ εδ2
4

+
εδ2
4

+
εδ2
4

+
εδ2
4

= εδ2.
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Thus, for all y ∈ Bδ(x0), we have that

|f i
j(y)− f i

j(x0)| ≤ ε.

Thus, f i
j is continuous at x0 for all i ∈ {1, . . . ,m} and for all j ∈ {1, . . . , n}; and hence f is C1 at x0.

Corollary 4.7. Let f : A → Nm be WLUD on A. Then f is C1 on A.

Remark 4.8. Theorem 4.6 and Corollary 4.7 show that the class of WLUD functions at a point
x0 (respectively on an open set A) is a subset of the class of C1 functions at x0 (respectively on
A). However, this is still large enough to include all polynomial functions as Corollary 4.19 and
Corollary 4.20 below will show.

Lemma 4.9. Let f : A → Nm be WLUD at x0 ∈ A. Then

∀ε > 0 ∃δ > 0  (s, t ∈ Bδ(x0) ⇒ |f(t)− f(s)−Df(x0)(t − s)| ≤ ε|t− s|) . (4.1)

Proof. Let ε > 0 in N be given. Since f is WLUD at x0, there exists δ0 > 0 in N such that f is
differentiable on Bδ0(x0) and, for all s, t ∈ Bδ0(x0), we have that

|f(t)− f(s)−Df(s)(t − s)| ≤ ε

2
|t− s|.

Moreover, since f is C1 at x0 by Theorem 4.6, there exists δ > 0 in N, δ ≤ δ0, such that for all
s ∈ Bδ(x0), we have that

|Df(s)(t − s)−Df(x0)(t − s)| ≤ ε

2
|t− s|.

Thus, for all s, t ∈ Bδ(x0) ⊆ Bδ0(x0), we have that

|f(t)− f(s)−Df(x0)(t − s)| = |f(t)− f(s)−Df(s)(t − s)

+Df(s)(t − s)−Df(x0)(t− s)|
≤ |f(t)− f(s)−Df(s)(t − s)|
+ |Df(s)(t − s)−Df(x0)(t − s)|.

≤ ε

2
|t− s|+ ε

2
|t− s|

= ε|t− s|.

Thus f satisfies (4.1).

Proposition 4.10. Let L : Nn → Nm be a linear transformation. Then L is uniformly differen-
tiable, and hence WLUD, on Nn.

Proof. As in the real case, L is differentiable with DL(x) = L for all x ∈ Nn. Let ε > 0 in N be given.
Then for any s, t ∈ Nn we have that

|L(s)−L(t)−DL(t)(s − t)| = |L(s)−L(t)−L(s− t)|
= |L(s− t)−L(s− t)| = 0.

Thus L is uniformly differentiable on Nn.

Proposition 4.11. Let f ,g : A → Nm be WLUD at x0 ∈ A; and let α ∈ N be given. Then αf + g is
WLUD at x0. That is, any linear combination of WLUD functions at x0 is again WLUD at x0.
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Proof. If α = 0 then there is nothing to prove; so without loss of generality we may assume α �= 0.
Since f and g are both WLUD at x0, there exists δ0 > in N such that Bδ0(x0) ⊂ A and such
that f and g are differentiable on Bδ0(x0). It follows that αf + g is differentiable on Bδ0(x0), with
D(αf + g)(x) = αDf(x) +Dg(x) for all x ∈ Bδ0(x0).

Now let ε > 0 in N be given. Then there exists δf > 0 in N, δf ≤ δ0, such that for all s, t ∈ Bδf (x0),
we have that

|f(s)− f(t)−Df(t)(s− t)| ≤ ε

2|α| |s− t|.

Also, there exists δg > 0 in N, δg ≤ δ0, such that for all s, t ∈ Bδg (x0), we have that

|g(s) − g(t)−Dg(t)(s − t)| ≤ ε

2
|s− t|.

Let δ = min{δf , δg}. Then 0 < δ ≤ δ0 and, for all s, t ∈ Bδ(x0), we have that

|(αf + g)(s) − (αf + g)(t)−D(αf + g)(t)(s− t)|
=|αf(s) + g(s)− (αf(t) + g(t))− αDf(t)(s− t)−Dg(t)(s− t)|
≤|α [f(s)− f(t)−Df(t)(s− t)] |+ |g(s) − g(t)−Dg(t)(s − t)|

≤|α| ε

2|α| |s− t|+ ε

2
|s− t|

=ε|s− t|.

Corollary 4.12. Let f ,g : A → Nm be WLUD on A; and let α ∈ N be given. Then αf + g is WLUD
on A.

Theorem 4.13. Let f : A → Nm be WLUD at x0 ∈ A and let g : C → Np be WLUD at f(x0) ∈ C,
where A is an open subset of Nn, C an open subset of Nm and f(A) ⊆ C. Then g ◦ f is WLUD at
x0.

Proof. There exists δ1 > 0 in N such that Bδ1(x0) ⊂ A and f is differentiable on Bδ1(x0), and there ex-
ists δ2 > 0 in N such that Bδ2(f(x0)) ⊂ C and g is differentiable on Bδ2(f(x0)). Since f is continuous
at x0 by Proposition 4.4, we may assume that δ1 is small enough so that f(Bδ1(x0)) ⊂ Bδ2(f(x0)). As
in the real case, it follows that g ◦ f is differentiable on Bδ1(x0), with

D(g ◦ f)(x) = Dg(f(x)) ◦Df(x)

for all x ∈ Bδ1(x0).
Let Lf > 0 be an upper bound for {|Df(x0)(y)| : |y| ≤ 1} and let Lg ≥ 1 be an upper bound for

{|Dg(f(x0))(y)| : |y| ≤ 1}. By Lemma 3.4, there exists δ3 > 0 in N, δ3 ≤ δ1, such that whenever
s ∈ Bδ3(x0) we have that |Df(s)(y)| ≤ 2Lf |y| for all y ∈ Nn. Similarly, there exists δ4 > 0 in N,
δ4 ≤ δ2, such that whenever u ∈ Bδ4(f(x0)) we have that |Dg(u)(v)| ≤ 2Lg|v| for all v ∈ Nm.

Now let ε > 0 in N be given. By definition, there exists δg > 0 in N, δg ≤ δ4 ≤ δ2, such that

|g(u)− g(v)−Dg(v)(u− v)| ≤ ε

2(ε+ 2Lf )
|u− v|

for all u,v ∈ Bδg (f(x0)). Also, there exists δ > 0 in N, δ ≤ δ3 ≤ δ1, such that

|f(s)− f(t)−Df(t)(s − t)| ≤ ε

4Lg
|s− t|

for all s, t ∈ Bδ(x0). Again, by the continuity of f at x0, we may assume that δ is small enough so that
f(Bδ(x0)) ⊂ Bδg (f(x0)).

Let s, t ∈ Bδ(x0) be given. Then we have that

|f(s)− f(t)| ≤ ε

4Lg
|s− t|+ |Df(t)(s− t)| ≤ (ε+ 2Lf )|s− t|.
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Also, we have that f(s),f(t) ∈ Bδg (f(x0)) ⊆ Bδ4(f(x0)); and hence

|g(f(s)) − g(f(t))−Dg(f(t))(f(s) − f(t))| ≤ ε

2(ε+ 2Lf )
|f(s)− f(t)|.

Therefore, for all s, t ∈ Bδ(x0), we have that

|g(f(s)) − g(f(t))−Dg(f(t)) ◦Df(t)(s− t)|
=|g(f(s)) − g(f(t))−Dg(f(t))(f(s) − f(t))

+Dg(f(t))(f(s) − f(t))−Dg(f(t)) ◦Df(t)(s− t)|
≤|g(f(s)) − g(f(t))−Dg(f(t))(f(s) − f(t))|
+ |Dg(f(t))(f(s) − f(t)−Df(t)(s− t))|

≤ ε

2(ε+ 2Lf )
|f(s)− f(t)|+ 2Lg|f(s)− f(t)−Df(t)(s− t)|

≤ ε

2
|s− t|+ 2Lg

ε

4Lg
|s− t|

=
ε

2
|s− t|+ ε

2
|s− t|

=ε|s− t|.

Corollary 4.14. Let f : A → Nm be WLUD on A and let g : C → Np be WLUD on C, with f(A) ⊆ C.
Then g ◦ f is WLUD on A.

Lemma 4.15. Let h : N2 → N be given by h(x1, x2) = x1x2. Then h is uniformly differentiable, and
hence WLUD, on N2; with Dh(x1, x2) = (x2 x1).

Proof. Let ε > 0 in N be given. Let δ = ε. Then for all x =

⎛
⎝ x1

x2

⎞
⎠ and y =

⎛
⎝ y1

y2

⎞
⎠ in N2 satisfying

|y − x| < δ, we have that

|h(y) − h(x)−Dh(x)(y − x)| = |h(y)− h(x)− (x2 x1)(y − x)|
= |y1y2 − x1x2 − x2(y1 − x1)− x1(y2 − x2)|
= |y1y2 − x2y1 − x1y2 + x1x2|
= |(y1 − x1)(y2 − x2)|
≤ |y − x|2

≤ ε|y − x|.

Proposition 4.16. Let f, g : A → N be WLUD at x0 ∈ A (where A is, as before, an open subset of
Nn). Then fg is WLUD at x0.

Proof. Define k : A → N2 by

k(x) =

⎛
⎝ f(x)

g(x)

⎞
⎠ ;

and let h : N2 → N be as in Lemma 4.15 above. Then k is WLUD at x0 and h is WLUD at k(x0). It
follows from Theorem 4.13 that fg = h ◦ k is WLUD at x0.

Corollary 4.17. Let f, g : A → N be WLUD on A. Then fg is WLUD on A.
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Lemma 4.18. For each j ∈ {1, . . . , n}, the function fj : N
n → N, given by

fj(x1, x2, . . . , xn) = xj,

is uniformly differentiable, and hence WLUD, on Nn.

Proof. Let j ∈ {1, . . . , n} be given. Then for all x,y ∈ Nn and for all α, β ∈ N, we have that

fj(αx+ βy) = (αx+ βy)j = αxj + βyj = αfj(x) + βfj(y).

Hence fj is a linear transformation from Nn to N. It follows from Proposition 4.10 that fj is uniformly
differentiable on Nn.

Using the results of Proposition 4.16 and Lemma 4.18, we infer that any monomial function is WLUD
on Nn. It then follows from Proposition 4.11 that any polynomial function is WLUD on Nn.

Corollary 4.19. Let f : Nn → N be a polynomial function. Then f is WLUD on Nn.

Corollary 4.20. Let f : Nn → Nm be given by

f =

⎛
⎜⎜⎜⎜⎜⎜⎝

f1

f2
...

fm

⎞
⎟⎟⎟⎟⎟⎟⎠

with fi a polynomial function from Nn to N for all i ∈ {1, . . . ,m}. Then f is WLUD on Nn.

4.1. Inverse Function Theorem

We start this section with some preliminary results needed to prove the inverse function theorem. Let
δ1 > 0 in N be given, let c ∈ N be such that 0 < c � 1, and let φ : Bδ1(0) ⊂ Nn → Nn be such that

|φ(t)| ≤ c|t| for all t ∈ Bδ1(0). (4.2)

Then φ(Bδ1(0)) ⊆ Bδ1(0). For m ∈ N let φ[m] = φ ◦ · · · ◦ φ︸ ︷︷ ︸
m times

and set φ[0] = I (the identity map on Nn).

Using induction, it can be shown that, for all m ∈ N, we have that

(a) φ[m](Bδ1(0)) ⊆ Bδ1(0); and

(b) |φ[m](t)| ≤ cm|t| for all t ∈ Bδ1(0).

Lemma 4.21. Let δ1 > 0 in N be given, let c ∈ N be such that 0 < c � 1, and let φ : Bδ1(0) ⊂ Nn →
Nn be continuous on Bδ1(0) and satisfy (4.2). Let δ ∈ N be such that 0 < δ ≤ (1− c)δ1 and let
ψ(t) =

∑∞
m=0 φ

[m](t), for all t ∈ Bδ(0). Then, for all t ∈ Bδ(0), we have that

• |ψ(t)| ≤ |t|
1− c

; and

• ψ(t)− φ[ψ(t)] = t.

Proof. Let t ∈ Bδ(0) be given. By (b) above, we have that |φ[m](t)| ≤ cm|t| for all m ∈ N. Also, we have
that lim

m→∞
cm = 0 since c � 1 and the skeleton group of N is Archimedean. Thus, lim

m→∞
|φ[m](t)| = 0

and hence
∑∞

m=0 φ
[m](t) converges in N. For each r ∈ N, let ψr(t) =

∑r
m=0 φ

[m](t). Then

|ψr(t)|, |ψ(t)| ≤
∞∑

m=0

|φ[m](t)| ≤ |t|
∞∑

m=0

cm =
|t|

1− c
.
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Therefore, ψr(t),ψ(t) ∈ Bδ1(0) for all r ∈ N. Furthermore,

ψr − φ ◦ψr =

r∑
m=0

φ[m] −
r+1∑
m=1

φ[m] = I −φ[r+1];

and hence

ψr(t)− φ[ψr(t)] = t− φ[r+1](t). (4.3)

It is readily seen that lim
r→∞

ψr(t) = ψ(t), and so lim
r→∞

φ[ψr(t)] = φ[ψ(t)] since φ is continuous on

Bδ(0). Also, lim
r→∞

φ[r](t) = 0. Thus, by letting r → ∞ on both sides of Equation (4.3), we obtain that

ψ(t)− φ[ψ(t)] = t.

Lemma 4.22. Let g : A → Nn be WLUD at t1 ∈ A, with Jg(t1) �= 0, where Jg(t1) denotes the
Jacobian (determinant) of g at t1; and let x1 = g(t1). Then there exist δ, η > 0 and a function
F defined on Bη(x1) such that:

(i) Bδ(t1) ⊆ A;

(ii) g|Bδ(t1) is one-to-one;

(iii) Bη(x1) ⊆ g(Bδ(t1)) and F (Bη(x1)) ⊆ Bδ(t1);

(iv) g[F (x)] = x ∀x ∈ Bη(x1); and

(v) F is WLUD at x1 with DF (x1) = [Dg(t1)]
−1.

Proof. Without loss of generality, we may assume that t1 = 0 and x1 = 0; for if this is not the case then
we can replace g(t) with g̃(t) := g(t+ t1)− x1. Since g is WLUD at 0, there exists ω0 > 0 in N such
that Bω0(0) ⊂ A and g is differentiable on Bω0(0). Also, since g is C1 at 0 by Theorem 4.6, there exists
ω1 > 0 in N such that Bω1(0) ⊂ A and Jg(t) �= 0 for all t ∈ Bω1(0). Let ω = min{ω0, ω1}. By Lemma
4.9, g satisfies (4.1) at 0. Let L = Dg(0); then L−1 exists since Jg(0) �= 0. Let φ = I −L−1 ◦ g. Then
φ is WLUD at 0 and differentiable on Bω(0). Moreover, we have that φ(0) = 0 and

Dφ(0) = D(I −L−1 ◦ g)(0) = I −L−1 ◦Dg(0) = I −L−1 ◦L = 0.

Let c ∈ N be such that 0 < c � 1. Since φ satisfies (4.1) at 0, there exists δ0 > 0 in N such that
Bδ0(0) ⊂ A and, for all s, t ∈ Bδ0(0), we have that

|φ(s)−φ(t)−Dφ(0)(s − t)| ≤ c |s− t| .
Since Dφ(0) = 0, it follows that

|φ(s)− φ(t)| ≤ c |s− t| for all s, t ∈ Bδ0(0). (4.4)

Let s, t ∈ Bδ0(0) be such that g(s) = g(t). Then φ(s)−φ(t) = s− t. Using (4.4) above, it follows that

|s− t| = |φ(s)− φ(t)| ≤ c |s− t| .
Since c is infinitely small, it follows that s = t and hence g|Bδ0

(0) is one-to-one.

Let L̄ > 0 be an upper bound for {|L−1(t)| : |t| ≤ 1}. Since g satisfies (4.1) at 0, there exists δg > 0
such that, for all s,t ∈ Bδg(0), we have that

|g(s)− g(t)−L(s− t)| ≤ 1

2L̄
|s− t| . (4.5)

Also, since g is C1 at 0, it follows from Lemma 3.4 that there exists δd > 0 in N such that, for all
s ∈ Bδd(0) and for all x ∈ Nn, we have that

∣∣(Dg(s))−1x
∣∣ ≤ 2L̄ |x| . Let δ = min {(1− c)δ0, ω, δg, δd}.

Then Bδ(0) ⊂ Bδ0(0) ⊂ A and hence g|Bδ(0) is one-to-one. This proves (i) and (ii).
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By (4.4), with t = 0, we have that |φ(s)| ≤ c |s| for all s ∈ Bδ(0); thus, we have a function ψ with the
properties of Lemma 4.21. Let η = δ

L̄
(1− c) and define F (x) = ψ

(
L−1(x)

)
for all x ∈ Bη(0). Thus, for

all x ∈ Bη(0), we have that

|F (x)| =
∣∣ψ (

L−1(x)
)∣∣ ≤

∣∣L−1(x)
∣∣

(1− c)
≤ L̄ |x|

(1− c)
<

L̄η

(1− c)
= δ.

Hence F (Bη(0)) ⊆ Bδ(0). Furthermore, (I − φ)|Bδ(0)
=

(
L−1 ◦ g

)∣∣
Bδ(0)

; and by Lemma 4.21, we

have that

((I − φ) ◦ψ)|Bδ(0)
= I|Bδ(0)

.

Thus, (
L−1 ◦ g ◦ψ

)∣∣
Bδ(0)

= I|Bδ(0)
;

and hence

g (ψ(t)) = L(t) for all t ∈ Bδ(0) .

Let x ∈ Bη(0) and set t = L−1(x). Then

|t| ≤ L̄ |x| ≤ L̄η = (1− c)δ < δ.

Thus, L−1(x) ∈ Bδ(0). It follows that

g (F (x)) = g
(
ψ
(
L−1(x)

))
= L

(
L−1(x)

)
= x for all x ∈ Bη(0)

and hence Bη(0) ⊆ g (Bδ(0)) , since F (x) ∈ Bδ(0) for all x ∈ Bη(0). This proves (iii) and (iv).

Claim: |s− t| ≤ 2L̄ |g(s)− g(t)| for all s, t ∈ Bδ(0).

Let s, t ∈ Bδ(0). Then, by (4.5), |g(s)− g(t)−L(s− t)| ≤ |s−t|
2L̄

. It follows that

|g(s)− g(t)| ≥ |L(s− t)| − |s− t|
2L̄

≥ |s− t|
L̄

− |s− t|
2L̄

,using Corollary 3.3

=
|s− t|
2L̄

.

This completes the proof of the claim.

Now let ε > 0 in N be given. Since g|Bδ(0) is WLUD at 0, there exists δ1 > 0 in N, δ1 ≤ δ, such that,
for all s, t ∈ Bδ1(0), we have that

|g(s)− g(t)−Dg(t)(s− t)| ≤ ε|s− t|
4L̄2

.

Let ξ = δ1
2L̄

. Then

0 < ξ ≤ δ

2L̄
< η =

δ

L̄
(1− c);

and hence Bξ(0) ⊂ Bη(0). Now let x,y ∈ Bξ(0) be given. Since Bξ(0) ⊂ Bη(0) ⊆ g (Bδ(0)), then
there exists tx, ty ∈ Bδ(0) such that g(tx) = x, and g(ty) = y. Since F (Bξ(0)) ⊂ F (Bη(0)) ⊆
Bδ(0) we get that F (g(tx)) = F (x) ∈ Bδ(0). Thus, g (F (x)) = g (F (g(tx))) = g(tx) by (4.22).
Since g is one-to-one on Bδ(0), it follows that F (x) = tx. Similarly F (y) = ty. Moreover, we have
that

|tx| = |tx − 0| ≤ 2L̄ |g(tx)− g(0)| = 2L̄|x− 0| < 2L̄ξ = δ1.
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Thus, tx ∈ Bδ1(0); and similarly, we show that ty ∈ Bδ1(0). It follows that

|g(ty)− g(tx)−Dg(tx)(ty − tx)| ≤
ε|ty − tx|

4L̄2
.

Note that (Dg(t))−1 exists since Jg(t) �= 0 for all t ∈ Bω(0) ⊇ Bδ(0). Now,∣∣∣F (y)− F (x)− (Dg(tx))
−1 (y − x)

∣∣∣ = ∣∣∣(Dg(tx))
−1 (y − x−Dg(tx) (F (y)− F (x)))

∣∣∣
≤2L̄ |y − x−Dg(tx) (F (y)− F (x))|
=2L̄ |g(ty)− g(tx)−Dg(tx)(ty − tx)|

≤2L̄
( ε

4L̄2

)
|ty − tx| =

ε|ty − tx|
2L̄

≤ ε

2L̄
(2L̄) |g(ty)− g(tx)|

=ε|y − x|.

This shows that F is differentiable on Bξ(0) ⊂ Bη(0) with DF (x) = (Dg(t))−1 where g(t) = x. Thus,
F is WLUD at 0 with DF (0) = (Dg(0))−1.

Theorem 4.23 (Inverse Function Theorem). Let g : A → Nn be WLUD on A and let t0 ∈ A be such
that Jg(t0) �= 0. Then there is a neighborhood Ω of t0 such that:

(i) g|Ω is one-to-one;
(ii) g(Ω) is open;

(iii) the inverse f of g|Ω is WLUD on g(Ω); and Df(x) = [Dg(t)]−1 for t ∈ Ω and x = g(t).

Proof. Using Lemma 4.22, we can find a neighborhood Ω0 of t0 such that g|Ω0 is one-to-one. Also,
since g is C1 on A by Corollary 4.7 and since Jg(t0) �= 0, there exists a neighborhood Ω1 of t0 such
that Jg(t) �= 0 for all t ∈ Ω1. Let Ω ⊆ Ω0 ∩ Ω1 be a neighborhood of t0. Then g|Ω is one-to-one. Let
f = (g|Ω)−1 with domain g(Ω). Let t ∈ Ω and x = g(t). Lemma 4.22 applied to g|Ω at the point t gives
us δ, η, and F as stated in that lemma. Since Bη(x) ⊆ g(Bδ(t)) ⊆ g(Ω) and g is one-to-one on Ω, it
follows that

g(F (y)) = y = g(f(y)) and hence F (y) = f(y) for all y ∈ Bη(x).

Since each x ∈ g(Ω) has such a neighborhood Bη(x) in g(Ω), it follows that g(Ω) is open. Moreover,
since F is WLUD at x for all x ∈ g(Ω) by Lemma 4.22, it follows that f is WLUD on g(Ω). Finally,
using Lemma 4.22 again, we have that

Df(x) = DF (x) = [Dg(t)]−1 for t ∈ Ω and x = g(t).

As in the real case, the inverse function theorem will be used to prove the implicit function theorem.

4.2. Implicit Function Theorem

We start this final section with some notations that will be useful in the statement and proof of the
Implicit Function Theorem.

Notation 4.24. Let A ⊆ Nn be open and let Φ : A → Nm be WLUD on A. For

t = (t1, ..., tn−m, tn−m+1, ..., tn) ∈ A,

let

t̂ = (t1, ..., tn−m) and J̃Φ(t) = det

(
∂(Φ1, ...,Φm)

∂(tn−m+1, ..., tn)

)
.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 13 No. 2 2021



164 SHAMSEDDINE

Theorem 4.25. Let Φ : A → Nm be WLUD on A, where A ⊆ Nn is open and 1 ≤ m < n. Let t0 ∈ A

be such that Φ(t0) = 0 and J̃Φ(t0) �= 0. Then there exist a neighborhood U of t0, a neighborhood
R of t̂0 and φ : R → Nm that is WLUD on R such that

J̃Φ(t) �= 0 for all t ∈ U,

and

{t ∈ U : Φ(t) = 0} = {(t̂,φ(t̂)) : t̂ ∈ R}.

Proof. Since Φ is C1 on A by Corollary 4.7 and since J̃Φ(t0) �= 0, there exists a neighborhood U0 of t0
such that J̃Φ(t) �= 0 for all t ∈ U0. Let g : U0 → Nn be defined as

gi(t) = ti 1 ≤ i ≤ n−m

gn−m+j(t) = Φj(t) 1 ≤ j ≤ m.

Then g is WLUD on U0 and has the Jacobian matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 0

Φ1
1(t) · · · Φ1

n−m(t) Φ1
n−m+1(t) · · · Φ1

n(t)
...

. . .
...

...
. . .

...

Φm
1 (t) · · · Φm

n−m(t) Φm
n−m+1(t) · · · Φm

n (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, Jg(t) = J̃Φ(t) �= 0 on U0. Applying the Inverse Function Theorem (Theorem 4.23 above) to g at
t0, we get a neighborhood U of t0 in U0 such that g(U) is open, and g|U is one-to-one. Additionally, g|U
has an inverse f which is WLUD on g(U). Let R = {t̂ ∈ Nn−m : (t̂,0) ∈ g(U)}. Then R is open since
g(U) is open. Let φ : R → Nm be defined as

φl(t̂) = fn−m+l(t̂,0) 1 ≤ l ≤ m.

Then

t ∈ U and Φ(t) = 0 ⇐⇒ t̂ ∈ R and g(t) = (t̂,0).

Moreover, since g|U and f are inverses, it follows that

g(t) = (t̂,0) ⇐⇒ t = f(t̂,0).

Thus ,

{t ∈ U : Φ(t) = 0} = {t ∈ U : g(t) = (t̂,0), t̂ ∈ R}
= {t ∈ U : t = f(t̂,0), t̂ ∈ R}
= {(t̂,φ(t̂)) : t̂ ∈ R}.
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