Journal of Computational and Applied Mathematics 382 (2021) 113041

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

L)

Check for
updates

On computational applications of the Levi-Civita field”

Darren Flynn ¢, Khodr Shamseddine >

2 Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
b Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

ARTICLE INFO ABSTRACT

Article history: In this paper, we study the computational applications of the Levi-Civita field whose
Received 31 December 2019 elements are functions from the additive abelian group of rational numbers to the
Received in revised form 30 May 2020 real numbers field, with left-finite support. After reviewing the algebraic and order
MSC: structures of the Levi-Civita field, we introduce the Tulliotools library which implements
26E30 the Levi-Civita field in the C++ programming language. We show that this software
12)25 can replicate the results of (Shamseddine, 2015) by finding high order derivatives of
11D88 certain functions faster than commercial software. We show how a similar method can
46510 be used to compute numerical sequences using generating functions and we compare
65D25 this method with a number of conventional approaches. Finally, we show how the
65D30 ability to quickly and accurately compute high order derivatives can be combined with
Keywords: Darboux’s formula to preform numerical integration. We compare the performance of
Non-Archimedean analysis this new approach to numerical integration with more conventional approaches as well
Levi-Civita field as commercial software and show promising results with regards to both speed and
Numerical methods accuracy.

Numerical differentiation © 2020 Elsevier B.V. All rights reserved.

Numerical integration
Bernoulli numbers

1. Motivation

Traditionally, physicists have used three fields to describe the universe, the rational numbers (denoted by Q), the real
numbers (denoted by R), and the complex numbers (denoted by C). These fields are Archimedean fields because they
satisfy the so-called Archimedean property. The dominance of the Archimedean fields within physics is easily understood
since the Archimedean property agrees with our intuitive understanding of distance. There are, however, many fields
which fail to satisfy the Archimedean property and these are called non-Archimedean valued fields. Non-Archimedean
valued fields have applications in computing the limits and asymptotic behaviour of analytic functions; the seminal work
seems to be that of Lightstone and Robinson who, for example, was able to compute the incomplete factorial function to a
high degree of precision by summing a finite number of terms of a divergent series [1]. In this paper we will focus on one
particular non-Archimedean valued field called the Levi-Civita field, which has the useful property of being small enough
to be implemented on a computer. The value of the Levi-Civita field from the perspective of computational applications is
that it allows one to compute certain limits of real valued functions directly rather than by approximation. For example,
given a differentiable function f : | C R — R, the derivative of f at some point xy € I is given by

f(x0) = f(xo — h)
" .
Xo) = lim ———
f %) h—0 h
™ This research was funded by the Natural Sciences and Engineering Council of Canada (NSERC, Grant # RGPIN/4965-2017) and by the GETS
program at the University of Manitoba.

* Corresponding author.
E-mail addresses: darrenfp@uoguelph.ca (D. Flynn), Khodr.Shamseddine@umanitoba.ca (K. Shamseddine).

https://doi.org/10.1016/j.cam.2020.113041
0377-0427/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2020.113041
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2020.113041&domain=pdf
mailto:darrenfp@uoguelph.ca
mailto:Khodr.Shamseddine@umanitoba.ca
https://doi.org/10.1016/j.cam.2020.113041

2 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

To compute this conventionally one would either use symbolic manipulation to reduce the expression so that it never
involves division by h or one would choose h to be small enough that the error caused by its inclusion is less than
some predetermined tolerance. The first possibility, while it produces accurate results, is unsatisfactory. Firstly, because
symbolic manipulation is computationally slower than numerical calculations, and secondly, because it is not always clear
what manipulations are necessary to produce the desired result. The second approach retains the speed of numerical
computation but suffers from the issue that it is often difficult to determine how small h must be to ensure the result is
sufficiently precise. Moreover, the numerical method is highly susceptible to rounding errors. It has been shown [2] that by
employing the Levi-Civita field all of these issues can be addressed; we will discuss this further in Section 4. Our purpose
in this paper is to investigate new computational applications of the Levi-Civita field; in the course of our investigation,
we will also have the opportunity to compare our results with those from [2]. Similar computational applications are
obtained with the numerical system employed by Sergeyev and his collaborators; see, for example, [3,4].

2. Introduction to the Levi-Civita field

In this section, we will present a brief review of the algebraic and topological structures of the Levi-Civita field R. A
more exhaustive survey of the recent research on the field is found in [5] and, unless otherwise stated, the reader may
understand this to be the relevant reference throughout. We begin with a number of definitions.

Definition 1 (Left-finite Subset of Q). Let A C Q and suppose that for any q € Q, the set
Aq:={aeAla<q}
is finite. Then we say that A is a left-finite subset of Q.

Definition 2 (The Support of a Function from Q to R). Let f : Q — R. Then the support of f is denoted by supp(f) and is
defined to be

supp(f) := {q € Qlf(q) # 0}.

Definition 3 (The Set R). We define
R = {f : Q > R|supp(f) is left-finite} .

Elements of R are functions from Q to R and in the course of this paper we will have the need to discuss these elements
evaluated at specific points in their domain as well as functions on R. To avoid confusion we use the following notation.

Remark 4. We employ the convention that square brackets (i.e. ‘[’ and ‘]’) denote an element of R evaluated at some
point in Q whereas curved brackets (i.e. ‘(" and ‘)’) denote a function on R evaluated at a point in that set. So, for example,
if wehavex e R,qe Q,and f : R — R, then

e x[q] € R denotes an element of R evaluated at a point in Q. The result of the evaluation will of course be a real
number.

e f(x) € R denotes a function evaluated at a point in R. The result of the evaluation is another element of R.

e f(x)[q] € R denotes a function evaluated at a point in R and the result of that evaluation (itself an element of R)
evaluated at a point in Q.

Definition 5. Let x € R be given; then we define

mins x) ifx#0
A(x) = | TnSUPP(X) if X 7
00 ifx=0
where oo is the same symbol used to obtain the extended real number system R := R U {—o0, oo} and it is used in the
same way here as in the classical case. co is not an element of the Levi-Civita field.

Note that, in the above definition, the minimum is guaranteed to exist by the left-finiteness of the support. In fact, for
X € R, A(x) corresponds to the “order of magnitude” of x; we make this connection more rigorous below after we have
defined the operations and order on R.

Definition 6 (Addition and Multiplication On R). Suppose X,y € R; then we define for every q € Q

o (x +y)lq] = x[q] +ylq]
o (XMl =Y qresumpix) X[q1] - Y[q2]

G €supp(y)
q1+42=9

D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041 3

We have from [5] that if A, B are left-finite sets then so is A + B; moreover, if r € A 4 B then there are only finitely
many pairs (a, b) € A x B such that a + b = r. This fact ensures that multiplication on R is well defined since the sum
in the definition of the multiplication will always have finitely many terms and hence it will always converge. Under
these definitions of addition and multiplication (R, +, -) is a field [5], and in fact we can isomorphically embed the real

numbers into R as a subfield using the map I7 : R — R defined by
x ifg=0

17 =
()lal {o if g 0.

Definition 7 (Order on R). Let x, y € R be distinct. Then we say x > y if (x — y)[M(x —y¥)] > 0. We say x < y if y > x and
we say x >y if eitherx =y or x > y.

Under this order relation (R, >) is a totally ordered field. Moreover, the embedding of R into this field via the map IT
defined above is order preserving [5].

Definition 8 (<, >, ~, &, and =;). Let X, y € R be positive. Then we say that x is infinitely larger than y and write x > y
if for every n € N, x — ny > 0; and we say that x is infinitely smaller than y and write x < y if y > x. We say that x is
infinitely large if x > 1 and we say it is infinitely small or infinitesimal if x <« 1. Suppose that A(x) = A(y) = Ao then we
write x ~ y; if in addition we have that x[A¢] = y[A¢] then we write x = y. Finally, we write x =; y if x[q'] = y[q'] for all
q=<q

Notice in the above definition that x > y whenever A(x) < A(y); also since A(1) = 0, x is infinitely large if A(x) < O
and x is infinitesimal if A(x) > 0. The non-zero real numbers satisfy A(x) = 0 as does the sum of a real number and an
infinitesimal number. We define 1(0) = oo so that, for every x € R with x # 0, we have that A(x) < A(0).

Definition 9 (The Number d). We define the element d € R as follows: for every q € Q,
1 ifg=1
0 ifg#1.

It follows that d is infinitesimal (A(d) = 1); moreover, following from the definition of multiplication, we have that for
any n € N,

dlq] :== {

1 ifg=n
gl =1
0 ifg#n.
It follows that the same holds if we replace n in the equation above with any r € Q. In particular we have that
_ 1 ifg=-1
dq=
0 ifg#—1.
Since A(d~!) = —1, d~! is infinitely large, this is consistent with d being infinitesimal and in fact it allows the statement

of an interesting inequality, namely for any x € R N Rt we have that
0<d<x<d .

Thus, in the Levi-Civita field, the positive real numbers are bounded both above and below by positive R numbers.

Functions on non-Archimedean fields often display properties that appear very different from those of real-valued
functions on the real field R. In particular it is possible to construct continuous functions that are not bounded on
a closed interval, continuous and bounded functions that attain neither a maximum nor a minimum value on closed
intervals, and continuous and differentiable functions with a derivative equal to zero everywhere on their domain which
are nevertheless non-constant [2]. These unusual properties are a result of the total disconnectedness of these structures
in the valuation topology [2,6]. Much work has been done in showing that power series and analytic functions on the
Levi-Civita field have the same smoothness properties as real power series and real analytic functions [7]. The effort to
extend these properties to as large a class of functions as possible has been aided considerably by the introduction of
the so-called weak topology on the Levi-Civita field which is strictly weaker than the order topology and thus allows
for more power series to converge than the order topology. Here we briefly review the properties of power-series and
analytic functions on the Levi-Civita field.

Definition 10. We say that a sequence in R converges strongly if it converges with respect to the order topology.
The “weak topology” mentioned above is constructed using the family of semi-norms defined below.

Definition 11 (A Family of Semi-Norms on R). For every r € R define the map |-/,) : R — R by
1%l 1,y == max {|x[q]| |q € suppx N (—oo,r]}.

Since every x € R has a left-finite support, the maximum in the above definition is guaranteed to exist in R.

4 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

Definition 12. Let (s,),cy be a sequence in R. Then we say that this sequence converges weakly if there isans € R
such that for every € > 0 in R there is a N € N such that for every m > N,

||Sm —S||(w’%) < €.

Convergence of sequences and series in both the order topology and weak topology was studied in details in [6].
In particular, convergence criteria for sequences and series were stated and proved. As a consequence of the weak
convergence criterion for power series, it was shown that a convergent real power series with real radius of convergence
n can be extended to the Levi-Civita field for any x € R satisfying |x| < n and |x| % 5. This allows for the continuation to
R of all convergent real power series; in particular, we can use the power series for the real trigonometric functions and
the exponential function to define the continuations of those functions to R for any x € R that is not infinitely large in
absolute value. This turned out to be of great importance for the computational applications that we will discuss in the
next section.

Finally, we note in passing here that it was shown in [6,8-10] that power series over R and the so-called R-
analytic functions (that is, functions that are given locally by weakly convergent power series) have the same smoothness
properties as real power series and real analytic functions. In particular, they satisfy the intermediate value theorem, the
extreme value theorem, the mean value theorem and the inverse function theorem; they are infinitely often differentiable;
and they have unique antiderivatives (modulo a constant) within the family of R-analytic functions. Hence, R-analytic
functions have been used as the building blocks for a Lebesgue-like integration theory [11] in which the integral satisfies
similar properties to those of the Lebesgue integral of real Analysis.

3. The Tulliotools software

To use the Levi-Civita field in computational applications we will first develop a code that will allow a computer
to operate on these numbers. The code that has been used in previous papers on this topic (COSY INFINITY) [2] is
not easily accessible and so we constructed our own software for this purpose. Our code forms a static library in the
C++ programming language and we tentatively name it Tulliotools in honour of the Italian mathematician Tullio Levi-
Civita who first discovered the field that bears his name [12]. Tulliotools was created using Microsoft Visual Studio 2015
Community Edition and was compiled using default settings. The Tulliotools library defines how a computer can store
an element of the Levi-Civita field (up to some specific depth) and defines the operations of addition, multiplication,
and inversion. Subtraction and division are defined by addition of the additive inverse and multiplication with the
multiplicative inverse, respectively. Tulliotools also includes the basic trigonometric and inverse trigonometric functions,
the hyperbolic trigonometric functions, the exponential function, the natural logarithm, and the nth root for an arbitrary
integer n. When computing elementary functions we wish to employ the language’s built-in functions as much as possible
both for the sake of speed and accuracy. To accomplish this, we use the addition theorems for the aforementioned
elementary functions. We then use the built-in functions to compute the contribution from the real part of the argument
and we use Taylor series to compute the contribution from the infinitesimal part. For example,

sing(x) = sine(x, + X;) = sin(x;) cos;(x;) + cos;(x;) sing(x;),

where we have used the convention that for a given real analytic function, fi, : R — 7R is the non-Archimedean
continuation of the function, f; : R — R is the real (built-in) function, f; : R — R is the Taylor expansion (up to
whatever depth is required) of the function, x, is the real part of the argument (i.e. x, = x[0]), and ¥x; is the infinitesimal
part of the argument (i.e. x; = x — x[0]). Computing the inverse trigonometric functions is more difficult than computing
their trigonometric counterparts because they lack convenient addition theorems. Instead we make use of integration
(which we discuss in a later section) and the fact that the derivatives of these functions are well known. For example,
using the same convention as above, we have for x; > 0 that

1
arcsing(x) = / —_—
‘ te(0,x) V 1—¢t2

1 / 1
= —+ _
/te(o,xr) V11— t? te(xr,Xr+x;) V11— t2
1
= arcsin,(x,)+/ _—
o te(xr,xr+xi) V 1—1t2

On the other hand, for x; < 0, we have that
1

arcsing(x) = / —_
‘ te(0,x) v/ 1 — t2
1

T L 7
/te(o.xr) 1—1t2 te(xr+x,xr) 1—1t2
1

= arcsing(x;) —/ _—
te(rxix) V1 — 2

D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041 5

Notice that the only integrals that we actually need to compute are all over an infinitesimal interval, this allows us to
compute them exactly (up to a given depth) by integrating the Taylor series of the integrand.

4. Numerical computation of derivatives

The first thing we would like to do with our newly developed library is to explore the applications to the numerical
computation of derivatives developed in [2] and [13]. We begin by restating a number of definitions in our own notation
and reviewing the underlying mathematical theory.

Definition 13 (Computer Function). Let I be the set of all functions intrinsic to the C++ programming language as well
as their inverse functions and the step function s : R — R defined by

S(x) = 0 ifx<o0
11 ifx>o0.

We define a computer function to be any real-valued function that can be obtained preforming a finite number of
arithmetic operations and compositions using functions in I.

It is possible to extend computer functions to R using the extensions of power series with purely real coefficients as
. 1
well as the step function, x=, and % [13].

Definition 14 (Extendable Computer Function). Let f be a computer function, let x, € R be in the domain of f, and let
x € R. Then we say that f is extendable to xo 4+ x € R if Xo + x is in the domain of the extension of f to R.

Definition 15 (Continuation of Computer Functions to R). It is shown in [13] that if f is a real computer function, xo is in
the domain of f, and f is extendable to xo &= d then there is a n > 0 in R such that forx e Rwith0 <x < n

flxo £x) = Zaix'+2xqf R*(x (1)

where for allj e {1,...,j%)}, Ri is a power series with Ri (0) # 0 and with a radius of convergence at least as large as

n, and q are nonzero ratlonal numbers that are not posntlve integers. Since the right hand side of Eq. (1) contains only
roots, negatlve integer powers, and power series (for which we have already defined a continuation to R) we may define
the continuation of f to xo = x € R such that 0 < x < n and x[0] # n by

flxo £x): Zaix’—i—ZXJ RE(x

where Rji is the continuation of Rji to R.

Now suppose that f is a real computer function defined at xq € R and extendable to xq &= d. Then we have that
flxo£d) = Z afd + Z i R¥(d).
The equation above entails that for any neN
(f(xo £ d))[n] = Zaid' + Zd% REd) | [n]

However if it happens that for some m € N, f is m times differentiable at xy, then we must have that qji > m for every

jef{1,...,j5} and a (—l)iai’ = % for every i € {1, ..., m} [13]. Hence we have that
ftxo+d)=n Za,-*d"
i=0
and
m
fo—d)=n) aid
i=0
with ¢ = (—1)'a;" in which case we have that for any i € {1, ..., m}

ila" = ilf (xo + A)lil = fP(x0) = (—1)'ilf (X0 — d)[i] = (—1)'ila; .

6 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

Table 1
First 13 derivatives of g as computed by Mathematica.
n g™(0) Time (s) gM(1) Time (s) g™(2) Time (s)
0 0 0.0002 0.837192955627 0.308 0.888584820075 0.196
1 1.26027064058 0.002 0.407172848084 0.054 —0.317934898588 0.009
2 0 0.003 —0.618746127149 0.014 —0.651895577342 0.014
3 —5.35211351959 0.03 0.0122192107521 0.062 0.416693615024 0.109
4 0 0.112 —4.31613114141 0.171 —1.64786996410 0.178
5 121.167674235 0.329 15.652 0.542463 —19.6728802712 0.838
6 0 0.953 78.5779028176 1.747 —20.2596967220 2.106
7 —5627.09443507 3.0960 —685.282937503 5.835 615.708023511 6.997
8 0 10.691 —1285.70479011 19.589 2622.42370100 21.9916
9 429913.385688 32.896 16481.3309024 57.559 —30298.4169665 61.748
10 0 91.505 227724.788971 153.641 —114129.369772 161.231
11 —49831093.1255 238.66 —257502.130656 397.697 3525304.24927 399.671
12 0 583.886 Aborted >1h Aborted >1h
13 8083947834.90 1623.43 Aborted >1h Aborted >1h

It is possible to make an argument similar to the above but in the opposite direction which allows for the following
theorem from [13].

Theorem 16. Let f be a computer function that is continuous at xo and extendable to xo £ d. Then f is m times differentiable
at X if and only if

m
fxo+d)=n Y _qd,

i=0

and
m
fo —d)y=n) ad
i=0
with a; = (—1)a; fori € {1,..., m}. Moreover, in this case

gt = ilf (xo + d)lil = fOx0) = (—=1)ilf (xo — d)[i] = (—1)ila; .
forallie{1,...,m}.

Theorem 16 gives us a method to both check the differentiability and numerically compute the derivatives of real
computer functions and it was used to great effect in [2,13]. Below we replicate the success of that paper using the
Tulliotools library and we produce some additional examples. As in that paper, we compare our results against Wolfram
Mathematica 11.3. It is worth noting that, by the nature of the software, Tulliotools computes all (up to a given depth)
derivatives simultaneously whereas Mathematica computes them each individually. This difference has no significant
effect on our conclusions, however, because Mathematica takes significantly longer than Tulliotools to compute higher
order derivatives. Even if we generously assume that Mathematica could, in the time it takes to compute the nth derivative,
compute the first (n— 1) derivatives as well then the above method still easily out-performs it. Indeed, for the sake of time,
we aborted Mathematica’s calculations wherever they lasted for longer than an hour. The time to compute the results
was found for Mathematica using the built-in Absolutetiming function and for Tulliotools using the Chrono libraries’
high precision clock function. We use the following two functions to test the relative ability of our software to compute
derivatives.

sin (sin (sin (sin (sin (x)))))
cos (cos (cos (cos (cos (x)))))

g(x) =

sin (X3 4 2%+ 1) + 3+cos(sin(In|1+x|))

exp (tanh(sinh (cosh(%))))

2 + sin (sinh (cos (arctan (In (expx + x2 + 3)))))

h(x) =

The function g provides us with an intermediate challenge and already we can see Mathematica falling behind
Tulliotools for higher order derivatives. (See Tables 1 and 2.)

D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041 7
Table 2
First 14 derivatives of g as computed by Tulliotools.
n £(0) g"(1) £"(2)
0 0 0.837192955627 0.888584820075
1 1.26027064058 0.407172848084 —0.317934898588
2 0 —0.618746127149 —0.651895577342
3 —5.35211351959 0.0122192107521 0.416693615024
4 0 —4.31613114141 —1.6478699641
5 121.167674235 15.6517446222 —19.6728802712
6 0 78.5779028176 —20.259696722
7 —5627.09443507 —685.282937503 615.708023511
8 0 —1285.70479011 2622.423701
9 429913.385688 16481.3309024 —30298.4169665
10 0 227724.788971 —114129.369772
11 —49831093.1255 —257502.130656 3525304.24927
12 0 —37912424.234 4688958.30662
13 8083947834.9 —13666350.8705 —495861347.515
14 0 4734886537.81 —152712264.273
Total (s) 0.207 0.193 0.218
Table 3
First 8 derivatives of h as computed by Mathematica.

n h™(0) Time (s) h™(1) Time (s) hm(5) Time (s)
0 1.00484531901 0.16 0.268357844508 0.10 0.283393816437 0.30
1 0.460143808963 0.15 —1.44525348415 0.04 12.1382777290 0.14
2 —5.26609756823 0.30 7.31608659872 0.14 28594.4371105 0.13
3 —52.8216335199 0.70 40.8666551717 0.32 10161444.9755 0.31
4 —108.468284784 1.67 404.249076373 1.13 —32567374548.9 1.59
5 16451.4428641 473 —5092.63654924 453 —1.29110802579x 10™* 5.70
6 541334.997022 21.11 —19854.7155232 28.96 —2.98281735849x 10" 35.47
7 794864118.936 124.35 1611673.41227 171.20 —4.20384900033 x 10%° 184.15
8 —144969388.210 787.34 —86895133.1031 2426.91 Aborted >1h

Table 4
First 14 derivatives of h as computed by Tulliotools.
n hM(0) hM(1) h(M(5)
0 1.00484531901 0.268357844508 0.283393816437
1 0.460143808963 —1.44525348415 12.138277729
2 —5.26609756823 7.31608659872 28594.4371105
3 —52.8216335199 40.8666551717 10161444.9755
4 —108.468284784 404.249076373 —32567374548.9
5 16451.4428641 —5092.63654924 —1.29110802579x 10"
6 541334.997022 —19854.7155232 —2.98281735849x 10"
7 7948641.18936 1611673.41227 —4.20384900033 x 10%°
8 —144969388.21 —86895133.1031 2.78479886876 x 103
9 —15395959663 3193445289.11 477510276588 x 10%7
10 —618406836695 —90967229524 2.1329279112x 103!
11 —1.17903146156 x 10" 1.74199571026 x 10'2 6.24639715614x 10%*
12 4.03355397865x 10 1.49155784151x10'3 955133940595 x 10%7
13 551065265978 x 10 —3.85982238753x 10" —2.68590144823 x 104!
14 327278740268 x 108 2.59042564116x 10" —3.11629245228 x 104
Time (s) 0.826 0.505 0.580

Finally we have function h which was obtained from [2,13]. Here Mathematica is slower than Tulliotools even for low

order derivatives and it was unable to find any derivatives past the eighth in less than an hour. (See Tables 3 and 4.)

5. Numerical computation of Bernoulli numbers

Evaluating analytic functions with real coefficients at infinitesimal points can do more than finding the derivatives of

the function, it also allows us to calculate sequences of numbers defined by a generating function. Consider for example

the following definition of the Bernoulli numbers.

8 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

Definition 17 (Bernoulli Numbers). The Bernoulli numbers are precisely those numbers B, € R such that for any t € R

_Zitn

The Bernoulll numbers are usually calculated using either the summation formula or the recursive formula.

B=3 Y ()5

i=0 j=0

— (n B;
B. =8, 0 — 7t
Using the Levi-Civita numbers, however, we are able to calculate the Bernoulli numbers directly from the generating
function. Notice that

d =\ By ,
(ed—1>:ZEd

n=0

from which we find that

B, = n! d nj.
()

In fact there are a number of different ways we can calculate the Bernoulli numbers along the same lines. Recall that,
for t € R with [t| < 7, we have

Z (1)n 122n(22n _])an t2n—1
‘ .

tan

bs

This identity can be extended to R and holds for any t € R satisfying |t| < 7 and 5 — |t| ~ 1 [6]. It follows that

(=1)"'(2n)!
22n(22n _ 1)
for all n € N. One might object that this equation only allows the calculation of every other Bernoulli number; however,
aside from By = —%, every odd Bernoulli number is zero anyway.

A glance at Table 5 will show that the first three methods displayed produce incorrect values for the odd Bernoulli
numbers. This is caused by “rounding error”. The problem of rounding errors can be overcome with the use of a so-called
“arbitrary precision library” and it would be interesting to compare the computation time of these methods with the use
of such a library.

By = (tan(d)) [2n — 1]

6. Methods of numerical integration

The ability to compute high-order derivatives of analytic functions allows for some interesting strategies for numerical
integration; in particular, we have Darboux’s Formula which allows us to approximate an integral using our knowledge
of the integrand and its derivatives at the end points of the interval of integration [14].

Proposition 18 (Darboux’s Formula for the Levi-Civita Field). Let a,b € R satisfy a < b and let f : R — R be an analytic
function on the interval [a, b]. Suppose ¢ : R — R is a polynomial of degree n, then we have that

n

D (=" — a)" [™) — ¢ (0)f M (a)]

m=0

— (—1)'(b — a)*! / (6™ (a + t(b —).

te[0,1]

Proof. As in the real Analysis case, this identity can be proven by repeated integration by parts. O

Rearranging the terms in Darboux’s formula yields the relation

¢"(1)f(b) — $™(0)f (a) = (=1)"(b — a)**" / PO "™V (a + t(b — a))

te(0,1]

= > (=1)"b — a)" [¢" MM (b) — ¢ (0) M ()]

D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041 9

Table 5

Bernoulli Numbers computed in various ways.

n Additive formula Recursive formula Generating function tan Formula Exact (to six decimals)
0 1 1 1 - 1
1 —05 —05 —05 - —05
2 0.166667 0.166667 0.166667 0.166667 0.166667
3 0 0 0 0 0
4 —0.0333333 —0.0333333 —0.0333333 —0.0333333 —0.0333333
5 0 0 0 0 0 0
6 0.0238095 0.0238095 0.0238095 0.0238095 0.0238095
7 2.23517x10% 0 —3.14748x10"2 0 0
8 0.0757571 0.0757576 0.0757576 0.0757576 0.0757576
9 3.8147x10% —6.10623x 106 —1.73112x 10" 0 0
10 —0.252197 —0.253114 —0.253114 —0.253114 —0.253114
11 —0.0078125 1.11022x 10" 2.70054x10%° 0 0
12 1.125 1.16667 1.16667 1.16667 1.16667
13 —32 —3.73035x 10" 1.84312x10% 0 0
14 —256 —7.09216 —7.09216 —7.09216 —7.09216
15 98304 1.42109%10™ —0.000173537 0 0
16 —3.93216x10% 54.9712 54.966 54.9712 549712
17 1.24151x10% —3.18323x10"? 0.0783084 0 0
18 7.62357x10'° —529.124 —530.399 —529.124 —529.124
19 3.43597x 10" 2.09184x 10" —1.38482 0 0
20 —3.40849x 10" 6192.12 5976.59 6192.12 6192.12
21 1.28071x10'¢ —3.7835x10'° 98.5388 0 0
22 —1.97258x10'® —86580.3 80473.3 —86580.3 —86580.3
23 —1.29704x10%° 4.42378x10% —3.88571x10% 0 0
24 5.27577 x 10%! 1.42552 % 10% 1.41551x10%7 1.42552 % 10 1.42552 % 10%
25 1.01531x10% —7.82311x10% 5.59158 x 10% 0 0
26 —7.20822x10% —2.72982x10% 1.14962x 10'° —2.72982x10%7 —2.72982x10%7
27 6.50886x10%7 1.3113x10% —3.67793x 10" 0 0
28 —9.06172x10%° 6.01581x10% 6.06192x10"2 6.01581x10% 6.01581x10%
29 —4.69823x 103! 5.72205x10% —5.40877x10"3 0 0

However, because ¢ is a polynomial of degree n, we have that ¢™(0) = ¢"(1) = ¢, and hence

$P)F(b) — pM(O) (@) = o /

tela,b]

f').

Thus, substituting this last equality into Darboux’s formula and then replacing f’ with f in the formula, we obtain:

1
/ = D (=1 b — ay™ [¢" (1) (b) — gm0 N @) (2)
tela,b] m=1
+ L -y / $(t)f (a+ t(b — a)).
¢0 tel0,1]

So we can integrate f by finding its derivatives as well as the derivatives of ¢, the integral term on the right hand side
of Eq. (2) is our error. Different choices of ¢ will reduce Eq. (2) to different summation formulas; for example, if ¢ is
the nth degree Bernoulli polynomial then Eq. (2) is equivalent to the Euler-Maclaurin equation. Similarly, if ¢ is (¢t — 1)"
or t" then the right hand side of Eq. (2) goes to the Taylor series of the integrand about the left or right endpoint as
n — oo [14]. Another polynomial we investigate is []i_,(t — #) with the idea that, even if the nth derivative of
the integrand is large, the frequent sign changes in ¢ will cause the integral term on the right hand side of Eq. (2) to
be small. Although Darboux’s formula can be made equivalent to the Taylor expansion of the integrand about an end
point, the same is not possible for arbitrary points in the interval of integration. For this reason we also experiment with
integrating directly by a Taylor series about the midpoint of the interval of integration. First we integrate a selection of
high order polynomials only evaluating them in the infinitesimal neighbourhood about the end points (or the midpoint
as the case may be). For comparison we integrate the same polynomials using the Trapezoidal Rule and Simpson’s Rule in
the normal way (i.e. without use of infinitesimals). We also compute the integrals symbolically using Mathematica and,
where it is possible, SymbolicC++. In addition to its symbolic integration method, Mathematica also provides a method
of numerical integration; in fact, this method does not correspond to any single integration technique but instead selects
from a number of different techniques depending on the specific integral in question. In principle, as long as the degree
of the polynomial to be integrated is less than the depth to which we can find its derivatives (which is to say the depth
of calculation minus 1), our methods should produce an exact answer. We consider both this case and the case where
the degree of the integrand is greater than our depth of calculation (which happens to be 25 for this experiment). The

10 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

Table 6

Integral of P;1pQs from 0 to 10.
Method of computation Result Time (s)
Central point Taylor series 5.60845249807 x 10" 0.0011
Darboux’s Formula (Bernoulli polynomials) 5.60845249842 % 103 0.0249
Darboux’s Formula (Frequent sign change polynomial) 5.60845249807 x 10'3 0.0060
Simpsons rule (1000 steps) 5.47069797559x 10"3 0.6372
Trapezoidal rule (1000 steps) 5.50529044403x 10" 0.6114
Mathematica (symbolic) 5.60845249807 x 1013 43917
Mathematica (numeric) 5.60845249807 x 1013 0.1592

Table 7

Integral of P1,Qg from 0 to 10.
Method of computation Result Time (s)
Central point Taylor series 1.41666070259x 108 0.0021
Darboux’s Formula (Bernoulli polynomials) 1.41666067675x 10'8 0.0224
Darboux’s Formula (Frequent sign change polynomial) 1.41666070259x 108 0.0111
Simpsons rule (1000 steps) 1.37030525479x 108 0.8658
Trapezoidal rule (1000 steps) 1.38196505555x 108 1.0181
Mathematica (symbolic) 1.41666070259x10'® 6.5037
Mathematica (numeric) 1.41666070259x 108 0.2105

following two families of polynomials provide us with an ample supply of integrands to test. Let n € N be given. Then
we define

e A polynomial of degree n

n

P =[x —)

i=1

o The Bernoulli polynomial of degree n, where B; is the ith Bernoulli number, given by

n n)
Qu(x) := (.)Bnﬂ-X'

As Tables 6 and 7 show, non-Archimedean methods of integration produced good numerical values for the given
integrals and reliably did so faster than Mathematica; this suggests that non-Archimedean methods provide an advantage
when it comes to integrating polynomials. It is also interesting to investigate the performance of non-Archimedean
methods when integrating analytic functions; to that end, we obtained a selection of analytic functions from [15]. In this
case we break the interval of integration into smaller steps to ensure that the error terms involved do not diverge, the
depth of calculation remains 15 throughout. For comparison, we compute these same integrals using Mathematica both
symbolically and numerically. Table 8 below shows the results regarding the function f(x) := ﬁz(x) from 0 to 7, these
results are typical in that the non-Archimedean methods of integration are competitive with Mathematica’s symbolic
method of integration but were slower than its numeric method.

To conclude, we would like to determine if there is any class of functions which Tulliotools is better at integrating than
Mathematica, and in fact, it seems that there is: Mathematica has a well-known difficulty integrating highly oscillatory
functions [16]. Since Tulliotools has access to not only the value of the integrand but also its derivatives it should be
substantially better at integrating highly oscillatory functions. To test this, we consider the function

g(x) := Ps(cos(100x))Qs(cos(100x)).

As may be seen in Table 9, when Mathematica numerically integrates this function under default settings it produces an
incorrect answer; Tulliotools, on the other hand, is able to attain the first four digits correctly in approximately half the
time Mathematica takes. The depth of calculation is 5.

The results in this section are hardly conclusive; in particular a fair comparison would require that Tulliotools be
able to actively adjust how the interval of integration is partitioned based on the specific integrand. Moreover, a more
sophisticated method of comparison will be necessary to ensure that Mathematica and Tulliotools are always competing to
attain the same degree of precision. Nevertheless, these results are sufficient to establish that non-Archimedean methods
of numerical integration are highly versatile and have the potential to improve upon conventional methods.

Table 8

Integral of f from 0 to % with various step sizes.
Method of computation 10 steps Time (s) 50 steps Time (s) 100 steps Time (s) 500 steps Time (s) 1000 steps Time (s)
Central point Taylor 0.938429184613 0.215 0.862808426244 0.709 0.853180614292 1.280 0.845448903068 5.241 0.844480579999 10.446
series
Darboux’s Formula 0.843511841685 0.238 0.843511841685 1.706 0.843511841685 4.014 0.843511841685 13.269 0.843511841685 26.723
(Bernoulli polynomials)
Darboux’s Formula 0.843511841685 0.208 0.843511841685 1.580 0.843511841685 2.317 0.843511841685 11.468 0.843511841685 22712
(Frequent sign change
polynomial)
Method of computation Integral Time (s)
Mathematica (symbolic) 0.843511841685 6.420
Mathematica (numeric) 0.843511841685 0.069
Exact value 0.843511841685 n/a

I70€L1 (120Z) Z8€ Soupwaypy payddy pup jpuoypindwo) fo (puinof / auppaswiys -y pup uudlf ‘g

L

12 D. Flynn and K. Shamseddine / Journal of Computational and Applied Mathematics 382 (2021) 113041

Table 9

Integral of g from 0 to 10.
Method of computation 1000 steps Time (s) 5000 steps Time (s) 10000 steps Time (s)
Central point Taylor series 186.369934703 2.821 186.372340098 14.669 186.372340207 25.436123
Darboux’s Formula (Bernoulli polynomials) 186.389214786 6.433 186.372340097 26.562 186.372340207 52.864
Darboux’s Formula (Frequent sign change polynomial) 186.365945702 4.663 186.372340097 24.594 186.372340207 46.185
Method of computation Integral Time (s)
Mathematica (symbolic) 186.372340189 432478
Mathematica (numeric with adjusted settings) 186.372340188 66.96
Mathematica (numeric with default settings) 182.322 5.964

7. Research outlook

The results presented in this paper allow for numerous possibilities for future research. On the theoretical side of
things, one might start by determining the computational complexity of various operations on the Levi-Civita field, and
comparing them to their classical counterparts. More practically, the C++ implementation of the Levi-Civita field could
be expanded to allow it to operate in conjunction with an arbitrary precision library. That would be helpful in the study of
generating functions and numeric sequences, as it would reduce the effect of rounding errors. There are also many ideas
to pursue with regards to numerical integration. We would like to expand the C++ implementation, so that it is capable
of actively adjusting parameters in response to the various numerical approximations produced. We are also interested in
implementing Monte Carlo methods of integration, as these might make better use of the ability to compute high order
derivatives of the integrand. One key mathematical problem related to this topic is finding a way to easily approximate
the radius of convergence of the power series representation of an integrand. Here too, we hope to benefit from our ability
to compute high order derivatives of the integrand. Finally, it has been shown that it is possible to construct a rigorous
delta function on the Levi-Civita field and that the resulting non-Archimedean delta function can be used to solve ordinary
differential equations [17,18]. It would be interesting to implement that method as a computer program and explore its
potential as compared to other numerical methods for solving ODEs.

References

[1] A.H. Lightstone, A. Robinson, Nonarchimedean Fields and Asymptotic Expansions, North-Holland Pub. Co., 1975.

[2] K. Shamseddine, Analysis on the Levi-Civita field and computational applications, Appl. Math. Comput. 255 (2015) 44-57.

[3] Ya.D. Sergeyev, Higher order numerical differentiation on the Infinity computer, Optim. Lett. 5 (2011) 575-585.

[4] F. lavernaro, F. Mazzia, M.S. Mukhametzhanov, Ya.D. Sergeyev, Conjugate-symplecticity properties of Euler-Maclaurin methods and their

implementation on the Infinity Computer, Appl. Numer. Math. 155 (2020) 58-72.

K. Shamseddine, New Elements of Analysis on the Levi-Civit Field (Ph.D. thesis), Michigan State University, Department of Mathematics and

Department of Physics & Astronomy, 1999.

K. Shamseddine, M. Berz, Convergence on the Levi-Civita field and study of power series, in: Proceedings of the Sixth International Conference

on P-Adic Analysis, in: Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2000, pp. 283-299.

K. Shamseddine, A brief survey of the study of power series and analytic functions on the Levi-Civita fields, Contemp. Math. 596 (2013)

269-279.

[8] K. Shamseddine, M. Berz, Analytical properties of power series on Levi-Civita fields, Ann. Math. Blaise Pascal 12 (2) (2005) 309-329.
[9] K. Shamseddine, M. Berz, Intermediate value theorem for analytic functions on a Levi-Civita fields field, Bull. Belg. Math. Soc. Simon Stevin 14

(2007) 1001-1015.

[10] K. Shamseddine, Absolute and relative extrema, the mean value theorem and the inverse function theorem for analytic functions on a Levi-Civita
fields field, Contemp. Math. 551 (2011) 257-268.

[11] K. Shamseddine, M. Berz, Measure theory and integration on the Levi-Civita fields field, Contemp. Math. 319 (2003) 369-387.

[12] T. Levi-Civita, Sugli infiniti ed infinitesimali actuali quali elementi analytici, Opere Matematiche 1 (1893-1900).

[13] K. Shamseddine, M. Berz, The differential algebraic structure of the Levi-Civita fields field and applications, Int. J. Appl. Math. 3 (4) (2000)
449-464.

[14] M.G. Darboux, Sur les développements en série des fonctions d’une seule variable, J. Math. Pures Appl. 3 (2) (1876) 291-312.

[15] D.H. Bailey, K. Jeyabalan, X.S. Li, A comparison of three high-precision quadrature schemes, Experiment. Math. 14 (3) (2005) 317-329.

[16] Wolfram Research, Numerical integration, 2019, https://reference.wolfram.com/language/tutorial/Numericallntegration.html.

[17] D. Flynn, On the Foundations for a Measure Theory and Integration in Two and Three Dimensions and a Theory of Delta Functions over the
Levi-Clvita Field (Master’s thesis), University of Manitoba, Department of Physics and Astronomy, 2014.

[18] D. Flynn, K. Shamseddine, On integrable delta functions on the Levi-Civita fields field, P-Adic Numbers Ultrametric Anal. Appl. 10 (1) (2018)
32-56.

5

6

(7

http://refhub.elsevier.com/S0377-0427(20)30332-0/sb1
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb2
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb3
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb4
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb4
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb4
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb5
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb5
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb5
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb6
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb6
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb6
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb8
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb10
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb10
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb10
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb11
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb12
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb14
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb15
https://reference.wolfram.com/language/tutorial/NumericalIntegration.html
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb17
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb17
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb17
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb18
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb18
http://refhub.elsevier.com/S0377-0427(20)30332-0/sb18

	On computational applications of the Levi-Civita field
	Motivation
	Introduction to the Levi-Civita field
	The Tulliotools software
	Numerical computation of derivatives
	Numerical computation of Bernoulli numbers
	Methods of numerical integration
	Research outlook
	References

