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Calculus on a non-Archimedean field extension of the real
numbers: inverse function theorem, intermediate value

theorem and mean value theorem

Gidon Bookatz and Khodr Shamseddine

Abstract. In this paper, we introduce the concept of weakly locally uniformly
differentiable functions (WLUD) on N , a non-Archimedean field extension of
the real numbers that is real closed and Cauchy complete in the topology
induced by the order. We show that WLUD functions are C1 and they form
an N -algebra that is closed under composition and contains all polynomial
functions.

We formulate and prove a version of the inverse function theorem as well
as a local intermediate value theorem for these functions. Then we generalize
the WLUD concept to higher orders of differentiability and study WLUDn

functions at a point or on a subset of N . In particular, we study the properties
of WLUD2 functions and we formulate and prove a local mean value theorem
for such functions.

1. Introduction

We start this section by reviewing some basic terminology and facts about non-
Archimedean fields. So let F be an ordered non-Archimedean field extension of R.
We introduce the following terminology.

Definition 1 (∼, ≈, �, SF , λ). For x, y ∈ F ∗ := F \ {0}, we say that x is of
the same order as y and write x ∼ y if there exist n,m ∈ N such that n|x| > |y| and
m|y| > |x|, where | · | denotes the ordinary absolute value on F : |x| = max {x,−x}.
For nonnegative x, y ∈ F , we say that x is infinitely smaller than y and write x � y
if nx < y for all n ∈ N, and we say that x is infinitely small if x � 1 and x is finite
if x ∼ 1; finally, we say that x is approximately equal to y and write x ≈ y if x ∼ y
and |x − y| � |x|. We also set λ(x) = [x], the class of x under the equivalence
relation ∼.

The set of equivalence classes SF (under the relation ∼) is naturally endowed
with an addition via [x] + [y] = [x · y] and an order via [x] < [y] if |y| � |x| (or
|x| � |y|), both of which are readily checked to be well-defined. Note that we
use + instead of · for the operation in SF because, for the fields discussed in this
paper, SF is isomorphic to an additive subgroup of R. It follows that (SF ,+, <)
is an ordered group, often referred to as the Hahn group or skeleton group, whose
neutral element is [1], the class of 1. It follows from the above that the projection
λ from F ∗ to SF is a valuation.
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The theorem of Hahn [2] provides a complete classification of non-Archimedean
extensions of R in terms of their skeleton groups. In fact, invoking the axiom of
choice it is shown that the elements of any such ordered field F can be written as
(generalized) formal power series (also called Hahn series) over its skeleton group
SF with real coefficients, and the set of appearing exponents forms a well-ordered
subset of SF . That is, for all x ∈ F , we have

(1.1) x =
∑
q∈SF

aqd
q;

with aq ∈ R for all q, d a positive infinitely small element of F , and the support of
x, given by

supp(x) := {q ∈ SF : aq �= 0},
forming a well-ordered subset of SF . With the representation of elements of F as
in Equation (1.1) it follows that, for x �= 0 in F ,

λ(x) = min (supp(x)) ,

which exists since supp(x) is well-ordered. Moreover, we set λ(0) = ∞.
Addition, multiplication and order on the Hahn series are defined as follows.

Given x =
∑

q∈supp(x) aqd
q and y =

∑
t∈supp(y) btd

t, then

x+ y =
∑

r∈supp(x)∪supp(y)

(ar + br)d
r; and

x · y =
∑

r∈supp(x)⊕supp(y)

⎛
⎜⎜⎝ ∑

q ∈ supp(x), t ∈ supp(y)
q + t = r

aq · bt

⎞
⎟⎟⎠ dr.(1.2)

Note that, since supp(x) and supp(y) are well-ordered, only finitely many terms
contribute to the sum ∑

q ∈ supp(x), t ∈ supp(y)
q + t = r

aq · bt,

in Equation (1.2), for each r ∈ supp(x)⊕ supp(y).
Given a nonzero x =

∑
q∈supp(x) aqd

q, then x > 0 if and only if aλ(x) > 0.

From general properties of formal power series fields [6,8], it follows that if SF

is divisible then F is real closed; that is, every positive element of F is a square
in F and every polynomial of odd degree over F has at least one root in F . For a
general overview of the algebraic properties of formal power series fields, we refer to
the comprehensive overview by Ribenboim [9], and for an overview of the related
valuation theory the book by Krull [3]. A thorough and complete treatment of
ordered structures can also be found in [7].

Throughout this paper, we will denote byN any totally ordered non-Archimedean
field extension of R that is real closed and complete in the order topology and whose
skeleton group SN is Archimedean, i.e. a subgroup of R. The coefficient aq of the
qth power in the Hahn representation of a given x will be denoted by x[q], and
hence the number d is given by d[1] = 1 and d[q] = 0 for q �= 1. It is easy to check
that, for q ∈ SN , 0 < dq � 1 if and only if q > 0, and dq � 1 if and only if q < 0;
moreover, x ≈ x[λ(x)]dλ(x) for all x �= 0.
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The smallest such field N is the Levi-Civita field R, first introduced in [4,5].
In this case SR = Q, and for any element x ∈ R, supp(x) is a left-finite subset
of Q, i.e. below any rational bound r there are only finitely many exponents in
the Hahn representation of x. The Levi-Civita field R is of particular interest
because of its practical usefulness. Since the supports of the elements of R are left-
finite, it is possible to represent these numbers on a computer [1]. Having infinitely
small numbers allows for many computational applications; one such application
is the computation of derivatives of real functions representable on a computer
[13], where both the accuracy of formula manipulators and the speed of classical
numerical methods are achieved. For a review of the Levi-Civita field R, see [12,14]
and references therein.

In the wider context of valuation theory, it is interesting to note that the
topology induced by the order on N is the same as that introduced via the valuation
λ, as shown in Remark 1 below. It follows therefore that the field N is just a special
case of the class of fields discussed in [11].

Remark 1. The mapping Λ : N ×N → R, given by Λ(x, y) = exp (−λ(x− y)),
is an ultrametric distance (and hence a metric); the valuation topology it induces
is equivalent to the order topology (we will use τv to denote either one of the two
topologies in this paper). For if A is an open set in the order topology and a ∈ A,
then there exists r > 0 in N such that, for all x ∈ N , |x − a| < r ⇒ x ∈ A. Let
l = exp(−λ(r)), then we also have that, for all x ∈ N , Λ(x, a) < l ⇒ x ∈ A; and
hence A is open with respect to the valuation topology. The other direction of the
equivalence of the topologies follows analogously.

It follows from Remark 1 that N which is complete in the order topology is
also complete in the valuation topology induced by the ultrametric Λ.

Remark 2. Contrary to the field R∗ of Nonstandard Analysis [10,18], the field
N is an ordered field extension of the field of real numbers R; and the enmbedding of
R in N is compatible with the orders in R and N . While in Nonstandard Analysis
there is a generally valid transfer principle that allows the transformation of known
results of conventional analysis, here all relevant calculus theorems are developed
separately. Moreover, besides being non-Archimedeanly valued, the fact that the
Levi-Civita field R has a total order (which is also non-Archimedean) gives the
field a richer structure, thus opening up new possibilities of study, like monotonicity,
which are not available in other non-Archimedean valued fields like the p-Adic fields
for example [11]. This makes N an outstanding example, worthy to be studied in
detail in its own right.

The following results were proved in [17]; they show that the topological struc-
ture of N is different from that of R or C, and that makes doing Calculus on the
field more difficult.

• (N , τv) is a totally disconnected topological space. It is Hausdorff and
nowhere locally compact. There are no countable bases. The topology
induced to R is the discrete topology. As an immediate consequence of the
fact that (N , τv) is totally disconnected, it follows that, for any x0 ∈ N ,
the connected component of x0 is {x0}; moreover, the topology is zero-
dimensional, that is, there is a base of clopen sets for the topology.

• If we view N as an infinite dimensional vector space over R then τv is not
a vector topology; that is, (N , τv) is not a linear topological space.
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• If A is compact in (N , τv) then A is closed and bounded and it has an
empty interior in (N , τv), that is,

int(A) := {a ∈ A : ∃r > 0 in N  (a− r, a+ r) ⊂ A} = ∅.
The converse is not true: the set A = [0, 1] ∩ Q is a (countably infinite)
closed and bounded subset of N with an empty interior; but A is not
compact in (N , τv) [17].

• Given a sequence (xn) of elements of N , the series
∑∞

n=1 xn converges if
and only if the sequence (xn) converges to zero.

In [17] we studied the properties of locally uniformly differentiable (LUD) func-
tions on N . In particular, we showed that this class of functions is closed under
addition, multiplication and composition of functions. Then we stated and proved
local versions of the inverse function theorem and the intermediate value theorem
for N -valued LUD functions on N . The stronger condition (local uniform differen-
tiability) on the function than that of the real case was needed for the proofs of both
theorems because of the total disconnectedness of the field N in the order topology.
Then in [15], we generalized the definition of local uniform differentiability to any
order. Then we studied the properties of n-times locally uniformly differentiable
(LUDn) functions and we formulated and proved a local mean value theorem for
N -valued functions that are LUD2 at a point of N .

In this paper, we introduce a new smoothness criterion which we call weak local
uniform differentiability (WLUD) which is strictly weaker than local uniform dif-
ferentiability and strictly stronger than continuous differentiability (C1), we study
the properties of N -valued WLUD and WLUDn functions and we show that this
weaker criterion is sufficient to get all the nice calculus results obtained in [15,17].

2. WLUD Functions

Definition 2. Let A ⊆ N be open, let f : A → N , and let x0 ∈ A be given.
We say that f is weakly locally uniformly differentiable (abbreviated as WLUD) at
x0 if f is differentiable in a neighbourhood of x0 in A and if for every ε > 0 in N
there exists δ > 0 in N such that for every x, y ∈ (x0 − δ, x0 + δ) ∩A we have that
|f(y)− f(x)− f ′(x)(y − x)| < ε |y − x|. Moreover, we say that f is WLUD on A if
f is WLUD at every point in A.

One may notice, that the definition of WLUD is very similar to that of LUD
in [15,17], and indeed it is easy to see that LUD implies WLUD. However, as we
will prove later, the two concepts are not equivalent. Nonetheless, similar to the
case with LUD functions, we get that the class of WLUD functions is contained in
the class of C1 functions, and is an N -algebra that is closed under composition of
functions.

Notation 1. Throughout the rest of the paper, we will use B(x0, r) to denote
the open interval (x0 − r, x0 + r), for x0 ∈ N and r > 0 in N .

Proposition 1. Let A ⊆ N be open and let f : A → N be WLUD at x0 ∈ A.
Then f is C1 at x0.

Proof. Let ε > 0 in N be given. Then there exists δ > 0 in N such that, for
every x, y ∈ B(x0, δ) ∩A, we have that

|f(y)− f(x)− f ′(x)(y − x)| < ε

2
|y − x| .
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It follows that, for all x ∈ B(x0, δ) ∩A, we have that

|f ′(x)− f ′(x0)| ≤
∣∣∣∣f ′(x)− f(x0)− f(x)

x0 − x

∣∣∣∣+
∣∣∣∣f(x)− f(x0)

x− x0
− f ′(x0)

∣∣∣∣
<

ε

2
+

ε

2
= ε.

�

Proposition 2. Let f, g : A → N be WLUD at x0 ∈ A and let α ∈ N be
given. Then (f + αg) is WLUD at x0.

Proof. Without loss of generality, we may assume α �= 0. Let ε > 0 in N be
given. Then there exists δ > 0 in N such that, for every x, y ∈ B(x0, δ) ∩ A, we
have that

|f(y)− f(x)− f ′(x)(y − x)| < ε

2
|y − x|

and

|g(y)− g(x)− g′(x)(y − x)| < ε

2|α| |y − x|.

Hence, for every x, y ∈ B(x0, δ) ∩A, we have that

|(f+αg)(y)− (f + αg)(x)− (f ′ + αg′)(x)(y − x)|
≤ |f(y)− f(x)− f ′(x)(y − x)|+ |α| |g(y)− g(x)− g′(x)(y − x)|

<
ε

2
|y − x|+ |α| ε

2|α| |y − x|

= ε|y − x|.

�

Proposition 3. Let f, g : A → N be WLUD at x0 ∈ A. Then fg is WLUD
at x0.

Proof. Let ε > 0 in N be given. By proposition 1, f and g are C1 at x0, and
so there exists a δc > 0 in N such that |f(x)− f(x0)| < 1, |g(x)− g(x0)| < 1, and
|f ′(x)− f ′(x0)| < 1 on B(x0, δc)∩A. Moreover, there exist δf , δg, δ0 > 0 in N such
that

|f(y)− f(x)− f ′(x)(y − x)| < ε

3(|g(x0)|+ 1)
|y − x|

if x, y ∈ B(x0, δf ) ∩ A;

|g(y)− g(x)− g′(x)(y − x)| < ε

3(|f(x0)|+ 1)
|y − x|

if x, y ∈ B(x0, δg) ∩ A; and

|g(y)− g(x)| < ε

3(|f ′(x0)|+ 1)

if x, y ∈ B(x0, δ0) ∩A.
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Let δ = min{δc, δf , δg, δ0}. Then it follows that, for every x, y ∈ B(x0, δ) ∩ A,
we have that∣∣∣f(y)g(y)− f(x)g(x)−

(
f ′(x)g(x) + f(x)g′(x)

)
(y − x)

∣∣∣
≤ |f(y)g(y)− f(x)g(y)− f ′(x)g(y)(y − x)|

+ |f(x)g(y)− f(x)g(x)− f(x)g′(x)(y − x)|
+ |f ′(x)g(y)(y − x)− f ′(x)g(x)(y − x)|

= |g(y)| |f(y)− f(x)− f ′(x)(y − x)|
+ |f(x)| |g(y)− g(x)− g′(x)(y − x)|
+ |f ′(x)| |g(y)− g(x)| |y − x|

<
|g(y)|

3(|g(x0)|+ 1)
ε|y − x|+ |f(x)|

3(|f(x0)|+ 1)
ε|y − x|+ |f ′(x)|

3(|f ′(x0)|+ 1)
ε|y − x|

< ε|y − x|.
�

Proposition 4. Let g : A → B be WLUD at x0 ∈ A and f : B → N be
WLUD at g(x0) ∈ B. Then f ◦ g : A → N is WLUD at x0.

Proof. Let ε > 0 in N be given. As g is WLUD at x0, and f is WLUD at
g(x0), there exist δ1, δ2 > 0 in N such that

|f(y)− f(x)− f ′(x)(y − x)| < ε

2 (1 + |g′(x0)|)
|y − x|

for every x, y ∈ B ∩B(g(x0), δ1); and

|g(y)− g(x)− g′(x)(y − x)| < ε

2
( ∣∣f ′

(
g(x0)

)∣∣+ 1
) |y − x|

for every x, y ∈ A ∩B(x0, δ2).
Moreover, as f is C1 at g(x0) and g is C1 at x0, there exists a δ3 > 0 in

N such that for every x, y ∈ A ∩ B(x0, δ3) we have that |g(y)− g(x)| < δ1 and
|f ′(g(x))− f ′(g(x0))| < 1. Finally, since g is WLUD at x0, there exists δ4 > 0 in
N such that for every x, y ∈ A ∩B(x0, δ4) we have that

|g(y)− g(x)| < (1 + |g′(x0)|) |y − x|.
Let δ = min{δ1, δ2, δ3, δ4}. Then for every x, y ∈ A ∩B(x0, δ) we have that∣∣f(g(y))− f

(
g(x)

)
− g′(x)f ′(g(x))(y − x)

∣∣
≤

∣∣∣f(g(y))− f
(
g(x)

)
− f ′(g(x))

(
g(y)− g(x)

)∣∣∣
+

∣∣f ′(g(x))∣∣ ∣∣g(y)− g(x)− g′(x)(y − x)
∣∣

<
ε

2
(
1 + |g′(x0)|

) |g(y)− g(x)|+
∣∣f ′(g(x))∣∣

2
( ∣∣f ′

(
g(x0)

)∣∣+ 1
) ε|y − x|

< ε|y − x|.
�

In the following, we will extend the WLUD concept to higher orders of differ-
entiability and we will define WLUDn analogously to how LUDn was defined in
[15].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ELEMENTS OF CALCULUS ON A NON-ARCHIMEDEAN FIELD 55

Definition 3. Let A ⊆ N be open, let f : A → N , let x0 ∈ A, and let
n ∈ N be given. We say that f is WLUDn at x0 if f is n times differentiable in a
neighbourhood of x0 in A and if for every ε > 0 in N there exists δ > 0 in N such
that for every x, y ∈ B(x0, δ) ∩A we have that∣∣∣∣∣f(y)−

n∑
k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣ < ε |y − x|n .

Moreover, we say that f is WLUDn on A if f is WLUDn at every point in A.

Remark 3. If we use this definition to make an analogous concept of WLUD0,
we get the condition that for every ε > 0 in N there exists δ > 0 in N such that for
every x, y ∈ B(x0, δ) ∩ A we have that |f(y)− f(x)| < ε, which can be fairly easily
seen to be an equivalent statement to that of f being continuous at x0.

Just as it is the case for LUDn, in the real case WLUDn is equivalent to Cn.
Moreover, as we will see (in Proposition 5 below), this definition of WLUDn implies
WLUDn−1 (for n ∈ N).

Lemma 1. Let A ⊆ N be open and let f : A → N be WLUDn at x0 ∈ A. Then
f (n) is locally bounded at x0; that is, there exist a neighborhood U of x0 in A and
an M > 0 in N such that, for every x ∈ U , we have that

∣∣f (n)(x)
∣∣ ≤ M .

Proof. As f is WLUDn at x0, there exists δ1 > 0 inN such thatB(x0, δ1) ⊂ A
and, for every x, y ∈ B(x0, δ1), we have that∣∣∣∣∣f(y)−

n∑
k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣ < |y − x|n .

For each k ∈ {0, 1, . . . , n−1}, f (k) is continuous at x0, and so there exist a neighbor-
hood Vk of x0 in A and a number Mk > 0 in N such that for every x ∈ Vk we have
that

∣∣f (k)(x)
∣∣ ≤ Mk. Let δ > 0 in N be such that B(x0, δ) ⊆ B(x0, δ1)∩

(
∩n−1
k=0Vk

)
and let U = B(x0, δ). Now let

M = n!

(
2

δ

)n
((

δ

2

)n

+M0 +

n−1∑
k=0

Mk

k!

(
δ

2

)k
)
,

and let x ∈ U be given. Choose

y =

{
x+ δ

2 if x+ δ
2 ∈ B(x0, δ)

x− δ
2 otherwise.

Then we have that x, y ∈ U ⊆ B(x0, δ1) and thus,∣∣∣f (n)(x)
∣∣∣ ≤ n!

|y − x|n

(∣∣∣∣∣f(y)−
n∑

k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣+ |f(y)|+
n−1∑
k=0

∣∣∣∣f (k)(x)

k!
(y − x)k

∣∣∣∣
)

<
n!

|y − x|n

(
|y − x|n +M0 +

n−1∑
k=0

Mk

k!
|y − x|k

)

= n!

(
2

δ

)n
((

δ

2

)n

+M0 +
n−1∑
k=0

Mk

k!

(
δ

2

)k
)

= M.

�
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Proposition 5. Let A ⊆ N be open and let f : A → N be WLUDn at x0 ∈ A
for some n ∈ N. Then f is WLUDn−1 at x0.

Proof. By Lemma 1, there exists a neighborhood U of x0 in A such that f (n)

is locally bounded by some M > 0 on U . Let ε > 0 in N be given. As f is WLUDn

at x0, there exists δ1 > 0 in N such that, for every x, y ∈ B(x0, δ1), we have that

∣∣∣∣∣f(y)−
n∑

k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣ < ε

2
|y − x|n .

Moreover, we may assume without loss of generality, that B(x0, δ1) ⊆ U . Let
δ = min{δ1, 1, n!ε/(2M)}. Then, for every x, y ∈ B(x0, δ), we have that

∣∣∣∣∣f(y)−
n−1∑
k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣ ≤
∣∣∣∣∣f(y)−

n∑
k=0

f (k)(x)

k!
(y − x)k

∣∣∣∣∣
+

∣∣∣∣f (n)(x)

n!
(y − x)n

∣∣∣∣
<

ε

2
|y − x|n +

∣∣∣∣f (n)(x)

n!

∣∣∣∣ δ |y − x|n−1

≤ ε

2
|y − x| |y − x|n−1 +

M

n!

n!ε

2M
|y − x|n−1

< ε |y − x|n−1
.

�

Proposition 6. Let A ⊆ N be open and let f : A → N be WLUD2 at x0 ∈ A.
Then f is C2 at x0.

Proof. Let ε > 0 in N be given. Then there exists δ1 > 0 in N such that, for
every x, y ∈ B(x0, δ1), we have that

∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣ < ε

6
(y − x)2.

As f ′ is differentiable at x0, there exists δ2 > 0 in N such that, for every x ∈ A
satisfying 0 < |x− x0| < δ2, we have that

∣∣∣∣f ′(x)− f ′(x0)

x− x0
− f ′′(x0)

∣∣∣∣ < ε

6
.
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Let δ = min{δ1, δ2}. Then it follows that if 0 < |x− x0| < δ then we have that

|f ′′(x)− f ′′(x0)| ≤ 2

∣∣∣∣12f ′′(x) +
f ′(x)

x0 − x
+

f(x)− f(x0)

(x0 − x)2

∣∣∣∣
+ 2

∣∣∣∣f ′(x)− f ′(x0)

x− x0
− f ′′(x0)

∣∣∣∣
+ 2

∣∣∣∣12f ′′(x0) +
f ′(x0)

x− x0
+

f(x0)− f(x)

(x− x0)2

∣∣∣∣
= 2

∣∣∣∣f(x0)− f(x)

(x0 − x)2
− f ′(x)

x0 − x
− 1

2
f ′′(x)

∣∣∣∣
+ 2

∣∣∣∣f ′(x)− f ′(x0)

x− x0
− f ′′(x0)

∣∣∣∣
+ 2

∣∣∣∣f(x)− f(x0)

(x− x0)2
− f ′(x0)

x− x0
− 1

2
f ′′(x0)

∣∣∣∣
< 2

ε

6
+ 2

ε

6
+ 2

ε

6
= ε.

�

Proposition 7. Let A ⊆ N be open and let f : A → N be WLUD2 at x0 ∈ A.
Then f ′ is WLUD at x0.

Proof. Let ε > 0 in N be given. As f is WLUD2 at x0, there exists δ1 > 0 in
N such that B(x0, δ1) ⊂ A and, for any distinct x, y ∈ B(x0, δ1), we have that∣∣∣∣f(y)− f(x)

y − x
− f ′(x)− 1

2
f ′′(x)(y − x)

∣∣∣∣ < dε|y − x|.

Moreover, by Proposition 6, f is C2 at x0, and hence there exists δ2 > 0 in N such
that B(x0, δ2) ⊂ A and, for every x, y ∈ B(x0, δ2) we have that

|f ′′(y)− f ′′(x)| ≤ |f ′′(y)− f ′′(x0)|+ |f ′′(x0)− f ′′(x)| < dε.

Let δ = min{δ1, δ2}. Then it follows that for distinct x, y ∈ B(x0, δ) we have that

|f ′(y)− f ′(x)− f ′′(x)(y − x)| ≤
∣∣∣∣f(y)− f(x)

y − x
− f ′(x)− 1

2
f ′′(x)(y − x)

∣∣∣∣
+

∣∣∣∣12f ′′(y)(x− y) + f ′(y)− f(y)− f(x)

y − x

∣∣∣∣
+

1

2
|f ′′(y)− f ′′(x)| |y − x|

< dε|y − x|+ dε|y − x|+ 1

2
dε|y − x| < ε|y − x|.

�

Just as with the n = 1 case, WLUDn functions form an N -algebra that is
closed under composition, for any n ∈ N. As this paper will focus primarily on
functions that are WLUD2, we mainly present the proofs for the n = 2 case here.
The proofs for the general case are similar. We start with the following proposition
whose proof (for any n ≥ 2) is very similar to that of the case n = 1 (Proposition
2) and will thus be omitted here.
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Proposition 8. Let A ⊆ N be open, let f, g : A → N be WLUDn at x0 ∈ A
and let α ∈ N be given. Then (f + αg) is WLUDn at x0.

Proposition 9. Let A ⊆ N be open and let f, g : A → N be WLUD2 at
x0 ∈ A. Then fg is WLUD2 at x0.

Proof. Let ε > 0 in N be given. By proposition 6, f and g are C2 at x0,
and so there exists a δc > 0 in N such that B(x0, δc) ⊂ A and |f(x)− f(x0)| < 1,
|g(x)− g(x0)| < 1, |f ′(x)− f ′(x0)| < 1, and |f ′′(x)− f ′′(x0)| < 1 on B(x0, δc).
Moreover, there exist δf , δg, δ0, δ1 > 0 in N such that

∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣ < ε

4(|g(x0)|+ 1)
(y − x)2

if x, y ∈ B(x0, δf );

∣∣∣∣g(y)− g(x)− g′(x)(y − x)− 1

2
g′′(x)(y − x)2

∣∣∣∣ < ε

4(|f(x0)|+ 1)
(y − x)2

if x, y ∈ B(x0, δg);

|g(y)− g(x)− g′(x)(y − x)| < ε

4(|f ′(x0)|+ 1)
|y − x|

if x, y ∈ B(x0, δ0); and

|g(y)− g(x)| < ε

2(|f ′′(x0)|+ 1)

if x, y ∈ B(x0, δ1).
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Let δ = min{δc, δf , δg, δ0, δ1}. Then it follows that, for every x, y ∈ B(x0, δ),
we have that∣∣∣∣(fg)(y)− (fg)(x)− (fg)′(x)(y − x)− 1

2
(fg)′′(x)(y − x)2

∣∣∣∣
=

∣∣∣∣f(y)g(y)− f(x)g(x)−
(
f ′(x)g(x) + f(x)g′(x)

)
(y − x)

− 1

2

(
f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x)

)
(y − x)2

∣∣∣∣
≤

∣∣∣∣f(y)g(y)− f(x)g(y)− f ′(x)g(y)(y − x)− 1

2
f ′′(x)g(y)(y − x)2

∣∣∣∣
+

∣∣∣∣f(x)g(y)− f(x)g(x)− f(x)g′(x)(y − x)− 1

2
f(x)g′′(x)(y − x)2

∣∣∣∣
+
∣∣f ′(x)g(y)(y − x)− f ′(x)g(x)(y − x)− f ′(x)g′(x)(y − x)2

∣∣
+

1

2
|f ′′(x)g(y)− f ′′(x)g(x)| (y − x)2

= |g(y)|
∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣
+ |f(x)|

∣∣∣∣g(y)− g(x)− g′(x)(y − x)− 1

2
g′′(x)(y − x)2

∣∣∣∣
+ |f ′(x)| |y − x| |g(y)− g(x)− g′(x)(y − x)|

+
1

2
|f ′′(x)| |g(y)− g(x)| (y − x)2

<
|g(y)|

4(|g(x0)|+ 1)
ε(y − x)2 +

|f(x)|
4(|f(x0)|+ 1)

ε(y − x)2

+
|f ′(x)|

4(|f ′(x0)|+ 1)
ε(y − x)2 +

|f ′′(x)|
4(|f ′′(x0)|+ 1)

ε(y − x)2

< ε(y − x)2.

�

Corollary 1. All polynomials are WLUD2 on N .

Proof. Using Proposition 8 and Proposition 9, it suffices to show that the
function f(x) = x is WLUD2 on N . But that follows readily from the fact that,
for all x, y ∈ N , we have that∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣ = |y − x− (y − x)| = 0.

�

Proposition 10. Let A,B ⊆ N be open and let g : A → B be WLUD2 at
x0 ∈ A and f : B → N be WLUD2 at g(x0). Then f ◦ g : A → N is WLUD2 at x0.

Proof. Let ε > 0 in N be given. As g and g2 are WLUD2 at x0, and f is
WLUD2 at g(x0), there exist δ1, δ2, δ3 > 0 in N such that∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣ < ε

3 (1 + |g′(x0)|)2
(y − x)2
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for every x, y ∈ B ∩B(g(x0), δ1);∣∣∣∣g(y)− g(x)− g′(x)(y − x)− 1

2
g′′(x)(y − x)2

∣∣∣∣
<

ε

3
( ∣∣f ′

(
g(x0)

)∣∣+ ∣∣f ′′
(
g(x0)

)
g(x0)

∣∣+ 2
) (y − x)2

for every x, y ∈ A ∩B(x0, δ2); and∣∣∣g2(y)− g2(x)− 2g(x)g′(x)(y − x)−
(
g′(x)2 + g(x)g′′(x)

)
(y − x)2

∣∣∣
<

ε

3
( ∣∣f ′′

(
g(x0)

)∣∣+ 1
) (y − x)2.

for every x, y ∈ A ∩B(x0, δ3).
Moreover, as f is C2 at g(x0) and g is C2 at x0, there exists a δ4 > 0 in

N such that for every x, y ∈ A ∩ B(x0, δ4) we have that |g(y)− g(x)| < δ1,
|f ′(g(x))− f ′(g(x0))| < 1, and |f ′′(g(x))g(x)− f ′′(g(x0))g(x0)| < 1. Finally, since
g is WLUD at x0, there exists δ5 > 0 in N such that for every x, y ∈ A ∩B(x0, δ5)
we have that

|g(y)− g(x)| < (1 + |g′(x0)|) |y − x|.
Let δ = min{δ1, δ2, δ3, δ4, δ5}. Then for every x, y ∈ A ∩B(x0, δ) we have that

∣∣∣∣f
(
g(y)

)
− f

(
g(x)

)
− g′(x)f ′(g(x))(y − x)− 1

2

(
g′′(x)f ′(g(x))+ g′(x)2f ′′(g(x))

)
(y − x)2

∣∣∣∣

≤
∣∣∣∣f
(
g(y)

)
− f

(
g(x)

)
− f ′(g(x))

(
g(y)− g(x)

)
− 1

2
f ′′(g(x))

(
g(y)− g(x)

)2
∣∣∣∣

+
∣∣f ′(g(x))− f ′′(g(x))g(x)∣∣

∣∣∣∣g(y)− g(x)− g′(x)(y − x)− 1

2
g′′(x)(y − x)2

∣∣∣∣

+
1

2

∣∣f ′′(g(x))∣∣
∣∣∣g(y)2 − g(x)2 − 2g(x)g′(x)(y − x)−

(
g′(x)2 + g(x)g′′(x)

)
(y − x)2

∣∣∣

<
ε

3 (1 + |g′(x0)|)2
(g(y)− g(x))2 +

∣∣f ′(g(x))− f ′′(g(x))g(x)∣∣
3
( ∣∣f ′

(
g(x0)

)∣∣+ ∣∣f ′′
(
g(x0)

)
g(x0)

∣∣+ 2
) ε(y − x)2

+

∣∣f ′′(g(x))∣∣
3
( ∣∣f ′′

(
g(x0)

)∣∣+ 1
) ε(y − x)2

< ε(y − x)2.

�

So far we have shown that the LUD class of functions is contained in the
WLUD class of functions, which in turn is contained in the C1 class of functions.
To complete our discussion of the basic properties of WLUD functions, we show
that these inclusions are strict, meaning that LUD, WLUD, and C1 are indeed
distinct concepts in the non-Archimedean case while they are equivalent in the
classical case.

Notation 2. For the next two examples we will use the following notation for
convenience: Given x, y ∈ R\{0}, define z = x−x[λ(x)]dλ(x), w = y−y[λ(y)]dλ(y),
and let λ(x) = l/m and λ(y) = j/k in lowest terms.
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We begin with a function that is C1 and WLUD but is not LUD.

Example 1. Let f : (−1, 1) → R be given by

f(x) =

{
xdm m > 2λ(x), z ≥ d2λ(x), and λ

(
z − d2λ(x)

)
≤ m

0 else.

We note that for any r ∈ R and q ∈ Q, the set {x ∈ (−1, 1) | λ(x) = q, x[q] =
r, z ≥ d2q, λ

(
z − d2q

)
≤ m} is clopen in R, and thus f is locally linear everywhere

but zero. Hence we have that f is differentiable for x �= 0 with

f ′(x) =

{
dm m > 2λ(x), z ≥ d2λ(x), and λ

(
z − d2λ(x)

)
≤ m

0 else,

which is similarly continuous. Moreover, for x �= 0, we have

f(x)− f(0)

x
=

f(x)

x
=

{
dm m > 2λ(x), z ≥ d2λ(x), and λ

(
z − d2λ(x)

)
≤ m

0 else

= f ′(x) � d2λ(x).

Therefore limx→0 f(x)/x = limx→0 f
′(x) = 0 = f ′(0) and hence f is C1.

Moreover, as we will show, f is WLUD as well. For x0 �= 0, this is trivial, as f
is locally linear. For x0 = 0, let ε > 0 be given, choose δ = d2ε, and let x, y ∈ (−δ, δ)
be given. We have 3 cases.

Case 1. If f(x) = 0, f(y) �= 0, then we must have dk � |y − x|, and so

|f(y)− f(x)− f ′(x)(y − x)| = |ydk| � δ|y − x| � ε|y − x|.
Case 2. If f(y) = 0, f(x) �= 0, then we must have dm � |y − x|, and so

|f(y)− f(x)− f ′(x)(y − x)| = |xdm + dm(y − x)| = |y|dm � δ|y − x| � ε|y − x|.
Case 3. If f(x), f(y) �= 0, then

|f(y)− f(x)− f ′(x)(y − x)| = |y||dk − dm| � δd−1
∣∣∣d2λ(y) − d2λ(x)

∣∣∣
� δd−1|y − x| � ε|y − x|.

We will now show f is not LUD at 0. Let a basic open neighbourhood (−dn, dn)
of 0 be given. Choose ε = d2n and let δ > 0 be given. Let N = max{λ(δ), 4n},
q = (2nN−1)/N , x = dq+d2q, and y = x+dm. Then x, y ∈ U , m = N ≥ 4n > 2n,
and

|f(y)− f(x)− f ′(x)(y − x)| = ydm = y|y − x| > ε|y − x|.
Thus, f is C1 but not LUD. In fact, f ′, being locally constant away from zero with
limx→0 f

′(x) = 0, is differentiable with derivative zero everywhere, and so f is C∞

but not LUD.

This shows that LUD is a strictly stronger condition than WLUD. In the next
example, we will show that WLUD is a strictly stronger condition than C1.

Example 2. Let f : (−1, 1) → R be given by

f(x) =

⎧⎪⎨
⎪⎩
z2 z < d2λ(x) or

∣∣z − d2λ(x)
∣∣ � dm

z2 + 2xz z > d2λ(x) and λ
(
z − d2λ(x)

)
≤ m

0 x = 0.
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First we will show that f is C1. Just as in the previous example, the pieces on
which f is defined (other than {0} of course) are clopen sets. Thus, for x0 �= 0, f
is locally a polynomial, and we have that f is C1 on (−1, 1) \ {0} with

f ′(x) =

{
2z z < d2λ(x) or

∣∣z − d2λ(x)
∣∣ � dm

4z + 2x z > d2λ(x) and λ
(
z − d2λ(x)

)
≤ dm.

For x0 = 0, we have∣∣∣∣f(x)x

∣∣∣∣ =
{∣∣ z

xz
∣∣ z < d2λ(x) or

∣∣z − d2λ(x)
∣∣ � dm∣∣ z

x (z + 2x)
∣∣ z > d2λ(x) and λ

(
z − d2λ(x)

)
≤ dm

≤ 3|x|,

and hence f ′(0) = limx→0 f(x)/x = 0. Moreover, by our expression for f ′, we have
limx→0 f

′(x) = 0, and so f is C1 on (−1, 1).
Now we will show that f is not WLUD at 0. Let ε = d, let δ > 0 be given, let

n ∈ N be such that n ≥ 2 and dn < δ, let m = 4n, and let l = 4n2 + 1. Then l and
m are co-prime and

m

3
=

4

3
n > n+

1

4n
=

4n2 + 1

4n
=

l

m
> n.

Let x = dl/m + d2l/m, y = dl/m + d2l/m + dm. Then, |x|, |y| < 2dl/m � dn < δ,
and so x, y ∈ B(0, δ). Moreover,

f(y)− f ′(x)y = w2 + 2yw − 2zy ≥ 2y(w − z) = 2ydm ≥ 0,

f ′(x)x− f(x) = 2zx− z2 = 2z(x− z) = 2d3l/m ≥ 0,

and so,

|f(y)− f(x)− f ′(x)(y − x)| = f(y)− f ′(x)y + f ′(x)x− f(x)

≥ f ′(x)x− f(x) = 2d3l/m � dm � ε|y − x|.

3. Calculus Theorems

The following lemma is a trivial consequence of the fact that a WLUD function
is C1.

Lemma 2. Let A ⊆ N be open and let f : A → N be WLUD at x0 ∈ A. Then
for every ε > 0 in N , there exists δ > 0 in N such that B(x0, δ) ⊂ A and, for every
x, y ∈ B(x0, δ), we have that

|f(y)− f(x)− f ′(x0)(y − x)| < ε |y − x| .

Remark 4. As the preceding lemma will be the primary tool we will use to
prove our major calculus theorems with WLUD, it is noteworthy to point out that
the converse of the preceding lemma is also true for differentiable functions.

Proposition 11. Let A ⊆ N be open, let x0 ∈ A ⊂ N and let f : A → N be a
differentiable function such that for every ε > 0 in N , there exists δ > 0 in N such
that, for every x, y ∈ B(x0, δ) ∩ A, we have that |f(y)− f(x)− f ′(x0)(y − x)| <
ε |y − x|. Then f is WLUD at x0.
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Proof. It suffices to prove that f ′ is C1 at x0. Let ε > 0 in N be given. Then
there exists δ > 0 in N such that B(x0, δ) ⊂ A and, for every x, y ∈ B(x0, δ), we
have

|f(y)− f(x)− f ′(x0)(y − x)| < 1

2
ε|y − x|.

Let x ∈ B(x0, δ) be given. Then as f is differentiable at x, there exists y ∈ B(x0, δ)
such that ∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < 1

2
ε,

and so,

|f ′(x)− f ′(x0)| ≤
∣∣∣∣f ′(x)− f(y)− f(x)

y − x

∣∣∣∣+
∣∣∣∣f(y)− f(x)

y − x
− f ′(x0)

∣∣∣∣ < ε.

�

The following lemma, which is unrelated to the properties of WLUD functions,
was proved in [16] (Lemma 4.1) .

Lemma 3. Let δ1 > 0 in N be given and let φ : B(0, δ1) → N be such that
|φ(t)| ≤ c|t| for every t ∈ B(0, δ1), where 0 < c � 1. For m ∈ N let φ[m] =
φ ◦ · · · ◦ φ︸ ︷︷ ︸
m times

and set φ[0] to be the identity map. Let δ ∈ N be such that 0 < δ ≤

(1− c)δ1 and let ψ(t) =
∞∑

m=0
φ[m](t), for every t ∈ B(0, δ). Then

(i) |ψ(t)| ≤ |t|
1−c ; and

(ii) ψ(t)− φ(ψ(t)) = t.

Lemma 4. Let A ⊆ N be open and let f : A → N be WLUD on A with
f ′(x0) �= 0 for some x0 ∈ A and with f(x0) = y0. Then there exist δ, η > 0 in N
and a function F defined on B(y0, η) such that

(i) B(x0, δ) ⊆ A;
(ii) f |B(x0,δ)

is injective;

(iii) B(y0, η) ⊆ f(B(x0, δ)) and F (B(y0, η) ⊆ B(x0, δ);
(iv) f(F (x)) = x for every x ∈ B(y0, η); and
(v) F is WLUD on B(y0, η) with F ′ = 1/f ′ ◦ F .

Proof. Without loss of generality, we may assume that x0 = 0 and y0 = 0,
for if this is not the case, then we can replace f(x) with f̃(x) = f(x + x0) − y0.
Moreover, without loss of generality, we may assume f ′(x0) > 0, for if f ′(x0) < 0
we could apply this proof to (−f) and get the desired result.

By Proposition 1, f is C1, and so there exists ω > 0 in N such that f ′(x) ≥
1
2f

′(0) > 0 for every x ∈ B(x0, ω) ∩ A. Let L = f ′(0). Let φ(x) = x − 1
Lf(x).

It follows that φ′(x) = 1 − 1
Lf

′(x) and so φ′(0) = 0. Let c ∈ N be such that
0 < c � 1. As φ is WLUD at 0, then by Lemma 2, there exists δ0 > 0 in N such
that B(0, δ0) ⊆ A and, for every s, t ∈ B(0, δ0), we have that

|φ(s)− φ(t)− φ′(0)(s− t)| < c |s− t| .
Thus,

(3.1) |φ(s)− φ(t)| < c |s− t| .
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Let s, t ∈ B(0, δ0) be such that f(s) = f(t). Then

|φ(s)− φ(t)| = |s− t| ≤ c |s− t| .
As c � 1, it follows that s = t, and thus f |B(0,δ0)

is injective. By Lemma 2, there

exists δf > 0 in N such that for every s, t ∈ B(0, δf ) we have that

|f(s)− f(t)− L(s− t)| < L

2
|s− t| .

Let δ = min {(1− c)δ0, ω, δf}. Then B(0, δ) ⊂ B(0, δ0) ⊂ A and thus f |B(0,δ) is

injective. This shows (i) and (ii).
By Equation (3.1) with t = 0, we have that |φ(s)| < c |s| for every s ∈ B(0, δ),

and so we have a function ψ with properties of that in Lemma 3. Let η = L(1− c)δ
and define F (x) = ψ( xL ) for every x ∈ B(0, η). Thus for every x ∈ B(0, η) we have
that

|F (x)| =
∣∣∣ψ ( x

L

)∣∣∣ ≤ |x|
L(1− c)

<
η

L(1− c)
= δ.

Thus F (B(0, η)) ⊆ B(0, δ). Furthermore, for every x ∈ B(0, δ), we have that

x− φ(x) =
f(x)

L
.

Let x ∈ B(0, η). Then
|x|
L

< (1− c)δ < δ.

Thus x
L ∈ B(0, δ) and hence

x

L
− φ

( x

L

)
=

1

L
f
( x

L

)
.

Moreover, we have by Lemma 3 that

ψ
( x

L

)
− φ

(
ψ
( x

L

))
=

x

L

and thus
1

L
f
(
ψ
( x

L

))
=

x

L
.

It follows that for every x ∈ B(0, η),

f(F (x)) = f
(
ψ
( x

L

))
= x

and hence B(0, η) ⊆ f(B(0, δ)), as F (x) ∈ B(0, δ) for every x ∈ B(0, η). This
shows (iii) and (iv).

Now, for any x ∈ B(0, δ) we have

|f(s)− f(t)− L(s− t)| < L

2
|s− t|

and thus

|f(s)− f(t)| ≥ L |s− t| − L

2
|s− t| = L

2
|s− t| .

Let ε > 0 be given. As f is WLUD at 0, there exists δ2 > 0 such that for every
x, y ∈ B(0, δ2) we have

|f(y)− f(x)− f ′(x)(y − x)| < L2

4
ε|y − x|.
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Let δ3 = min {Lδ2/2, η, δ}, let x, y ∈ B(0, δ3) be given, and let tx = F (x) and
ty = F (y). Then

|ty − tx| ≤
2

L
|f(ty)− f(tx)| =

2

L
|y − x| < δ2

Thus,∣∣∣∣F (y)− F (x)− 1

f ′(F (x))
(y − x)

∣∣∣∣ =
∣∣∣∣ 1

f ′(F (x))

∣∣∣∣ |y − x− f ′(F (x))(F (y)− F (x))|

≤ 2

L
|f(ty)− f(tx)− f ′(tx)(ty − tx)|

< ε
L

2
|ty − tx| ≤ ε|y − x|,

which shows (v). �

Theorem 3.1. Let A ⊆ N be open and let f : A → N be WLUD on A with
f ′(x0) �= 0 for some x0 ∈ A. Then there exists a neighborhood U of x0 in A such
that

(i) f |U is injective;
(ii) f(U) is open; and
(iii) f−1 exists and is WLUD on f(U) with (f−1)′ = 1/f ′ ◦ f−1.

Proof. By Lemma 4, there exists a neighborhood U0 of x0 in A such that f
is injective on U0. As f is C1 and f ′(x0) �= 0, there exists a neighborhood U1 of
x0 in A such that f ′(x) �= 0 for every x ∈ U1. Let U = U0 ∩ U1. Then U is a
neighborhood of x0 and f |U is injective.

Let x ∈ U and let y = f(x). Lemma 4 applied to f |U at x gives a δ, η, and F
as stated in the lemma, for which B(y, η) ⊆ f(B(x, δ)) ⊆ f(U). As this holds for
every x ∈ U , we have that f(U) is open.

As f is injective f−1 exists on f(U) and for any y ∈ f(U),

f(f−1(y)) = y = f(F (y))

and so we have that F = f−1, which is WLUD at y with (f−1)′ = 1/f ′ ◦ f−1 by
lemma 4.

�

Theorem 3.2 (local intermediate value theeorem). Let A ⊆ N be open, let
f : A → N be WLUD on A and let x0 ∈ A be such that f ′(x0) �= 0. Then there
exists a neighborhood U of x0 in A such that f has the intermediate value property
on U . That is, for every a, b ∈ U with a < b, if c is between f(a) and f(b), then
there exists x ∈ (a, b) such that f(x) = c.

Proof. Without loss of generality, we may assume f ′(x0) > 0. By Lemma 2,
there exists δ > 0 in N such that B(x0, δ) ⊂ A and, for all x �= y in B(x0, δ), we
have that

|f(y)− f(x)− f ′(x0)(y − x)| < f ′(x0)

2
|y − x|

and thus
f(y)− f(x)

y − x
> f ′(x0)−

f ′(x0)

2
=

f ′(x0)

2
> 0.

Hence f is strictly increasing on B(x0, δ). Applying Theorem 3.1 to f gives a
neighborhood U0 ⊆ B(x0, δ) of x0 such that f(U0) is open. Let ε > 0 in N be
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such that B(f(x0), ε) ⊆ f(U0) and let U = f−1(B(f(x0), ε)), which is an open
neighborhood of x0. Let a, b ∈ U be such that a < b and let c ∈ (f(a), f(b)) be
given. As f(a), f(b) ∈ B(f(x0), ε) and B(f(x0), ε) is a convex set, we have that
c ∈ B(f(x0), ε). Thus there exists x ∈ U = f−1(B(f(x0), ε)) such that f(x) = c.
As f is strictly increasing on U , it follows that x ∈ (a, b). �

Theorem 3.3 (local mean value theorem). Let A ⊆ N be open, let f : A → N
be WLUD2 at x0 ∈ A and assume that f ′′(x0) �= 0. Then there exists a neighborhood
U of x0 in A such that f has the mean value property on U . That is, for every
a, b ∈ U with a < b, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. We may assume without loss of generality that f ′′(x0) > 0. By Propo-
sition 6, f ′′ is continuous at x0. Thus there exists δ1 > 0 such that U1 = B(x0, δ1) ⊂
A and, for every x ∈ U1 we have that

|f ′′(x)− f ′′(x0)| <
1

4
f ′′(x0).

As f is WLUD2 at x0, there exists δ2 > 0 in N such that, for every x, y ∈ U1 with
0 < |y − x| < δ2, we have that∣∣∣∣f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

∣∣∣∣ < 1

4
f ′′(x0)(y − x)2.

Let δ = min{δ1, δ2}. Then it follows that, for every x, y ∈ B(x0, δ), we have that

f(y)− f(x)− f ′(x)(y − x) >

(
1

2
f ′′(x)− 1

4
f ′′(x0)

)
(y − x)2

>
1

8
f ′′(x0)(y − x)2 > 0.(3.2)

Applying Theorem 3.2 to f ′ at x0 gives a neighborhood U0 of x0 in A such that
f ′ has the intermediate value property in U0. Let U = U0∩B(x0, δ) and let a, b ∈ U
with a < b be given. By Equation (3.2) we have that f(b) > f(a) + f ′(a)(b − a),
and thus

f ′(a) <
f(b)− f(a)

b− a
.

Similarly, we have that f(a) > f(b) + f ′(b)(a− b), and thus

f ′(b) >
f(b)− f(a)

b− a

Thus, by Theorem 3.2, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

�
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