PHYS 2490
Final Exam
Wednesday, April 17, 2013
1:30- 4:30 PM

Instructions: Please read the following instructions before you start working on your problems.

- Write your name and student number on each of the provided examination booklets.

- All course materials must remain closed during the exam. But you are allowed to have one eight and a half by eleven inch sheet of notes besides the formula pages provided with the exam.

- **Write all necessary steps to get full credit**

- The exam is two parts (Total 55 marks):

 - **Part A:** Work on ANY FOUR problems (out of five) for a total of 40 marks;
 - **Part B:** Work on ONLY ONE problem (out of two) for 15 marks.

Good Luck!
Part A (40 marks): Work on ANY FOUR of the following five problems.

Problem 1 (10 marks): Let \(f(x) \) be given by
\[
f(x) = x^2 \text{ for } -1 \leq x \leq 1.
\]
(a) Find the Fourier series of period 2 that represents \(f(x) \).
(b) Use Parseval’s Theorem, applied to \(f(x) \) and the Fourier series found in part (a), to find the exact value of the infinite sum
\[
\sum_{n=1}^{\infty} \frac{1}{n^4}.
\]

Problem 2 (10 marks): If a 10 kg block of rock salt is placed in water, it dissolves at a rate proportional to the amount of salt still undissolved. If 2 kg dissolve during the first 10 minutes, how long will it be until only 2 kg remain undissolved?

Problem 3 (10 marks): Find the general solution of the following second order differential equation:
\[
\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = e^{2x} + 10 \cos x + 3x.
\]

Problem 4 (10 marks): Solve the following second order differential equation using the generalized power series method (Frobenius method).
\[
x(1-x) \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0.
\]

Continued on the next page
Problem 5 (10 marks): Let

\[f(x) = \begin{cases}
0 & \text{if } -1 \leq x < 0 \\
2 & \text{if } 0 < x \leq 1
\end{cases} \]

and consider the Legendre series for \(f(x) \):

\[f(x) = \sum_{l=0}^{\infty} c_l P_l(x) \]

a) Show that \(c_l = 0 \) for even \(l > 0 \); i.e. for \(l = 2, 4, 6, \ldots \). **Hint:** Write \(f(x) = (\text{constant}) + g(x) \), where \(g(x) \) is an odd function on the interval \([-1, 1]\).

b) Compute the first three non-zero coefficients in the expansion: \(c_0, c_1, c_3 \). (Note: the \(P_l(x) \) are given on the formula sheet.)

c) Use the result of part a) to show that

\[\int_{0}^{1} P_l(x) \, dx = 0 \text{ for even } l = 2, 4, 6, \ldots \]

Part B of the exam is on the next page
Part B (15 marks): Work on **ONLY ONE** of the following two problems.

Problem 6 (15 marks): Find the steady-state temperature distribution for the semi-infinite plate problem if the temperature on the bottom edge is $T(x, 0) = 100^\circ$, the temperature of the other sides is 0°, and the width of the plate is 10 cm.

\[\nabla^2 T(x, y) = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0. \]

Problem 7 (15 marks): Find the steady-state temperature distribution in a solid cylinder of height 10 and radius 1 if the top and curved surface of the cylinder are held at 0° and the base is held at 100°.

Hint: Laplace’s Equation in cylindrical coordinates is:

\[\nabla^2 u = \frac{1}{r \frac{\partial}{\partial r}} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0; \]

but because of the symmetry of this problem with respect to the z-axis (the axis of the cylinder), u is independent of θ. Thus, $u = u(r, z)$; and Laplace’s Equation becomes:

\[\nabla^2 u = \frac{1}{r \frac{\partial}{\partial r}} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial^2 u}{\partial z^2} = 0. \]
Formulae for PHYS2490

1. Average value of a function

\[<f> = \frac{1}{b-a} \int_a^b f(x)dx \]

2. Real and Complex Fourier Series of period 2L

\[f(x) = f(x + 2L) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)\right) \]

\[f(x) = \sum_{-\infty}^{\infty} c_n e^{i\frac{nx\pi}{L}} \]

3. Coefficients

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right)dx \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right)dx \]

\[c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i\frac{nx\pi}{L}}dx \]

4. Parseval's Theorem

\[<f^2> = \left(\frac{a_0}{2}\right)^2 + \frac{1}{2} \sum_{n=1}^{\infty} a_n^2 + \frac{1}{2} \sum_{n=1}^{\infty} b_n^2 = \sum_{-\infty}^{\infty} |c_n|^2 \]

5. First Order Linear Differential Equation

\[y = e^{-t} \int Qe^t dx + ce^{-t} \]

\[I = \int P dx \]

6. Laplace Transform

\[L(y) = \int_0^{\infty} y(t)e^{-pt}dt = Y(p) \]

\[L(y') = pY - y_0 \]

\[L(y'') = p^2Y - py_0 - y'_0 \]

7. Fourier Transform

\[f(x) = \int_{-\infty}^{\infty} g(\alpha)e^{i\alpha x}d\alpha \]

\[g(\alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-i\alpha x}dx \]
Formulae for PHYS2490

Curvilinear Coordinates:

(a) Arc length
\[ds^2 = \sum_{i=1}^{3} h_i^2 dx_i^2 \]

(b) Gradient
\[\vec{\nabla}u = \sum_{i=1}^{3} \frac{\partial}{h_i \partial x_i} \]

(c) Laplacian
\[\nabla^2 u = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial x_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial u}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial u}{\partial x_3} \right) \right] \]

(d) Cartesian Coordinates \((x, y, z)\)
\[h_1 = h_2 = h_3 = 1 \]

(e) Cylindrical Coordinates \((r, \theta, z)\)
\[h_1 = 1, h_2 = r, h_3 = 1 \]

(f) Spherical Coordinates \((r, \theta, \phi)\)
\[h_1 = 1, h_2 = r, h_3 = r \sin \theta \]

Gamma Function

(a) Gamma Function
\[\Gamma(p) = \int_0^\infty x^{p-1}e^{-x}dx \quad p > 0 \]

(b) Factorial Function
\[\Gamma(n+1) = n! \]
\[\Gamma(p+1) = p\Gamma(p) \]
\[\Gamma(1/2) = \sqrt{\pi} \]
Series Solutions of ODES

(a) Frobenius Method

\[y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} \]

(b) Legendre's Equation

\[(1 - x^2)y'' - 2xy' + l(l+1)y = 0 \]

(c) With \(x = \cos \theta \), this becomes

\[\frac{1}{\sin \theta} \frac{d}{d\theta} (\sin \theta \frac{dy}{d\theta}) + l(l+1)y = 0 \]

(d) Legendre Polynomials

\[P_0(x) = 1, \quad P_1(x) = x, \quad P_2(x) = \frac{1}{2}(3x^2 - 1), \quad P_3(x) = \frac{1}{2}(5x^3 - 3x), \]

\[P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3), \quad P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x) \]

(e) Orthogonality of Legendre Polynomials

\[\int_{-1}^{1} P_l(x) P_m(x) dx = 0 \quad m \neq l \]

\[\int_{-1}^{1} [P_l(x)]^2 dx = \frac{2}{2l+1}. \]

(f) Bessel's Equation

\[x^2y'' + xy' + (x^2 - p^2)y = 0 \]

or if \(x = kr \)

\[r^2y'' + ry' + (k^2r^2 - p^2)y = 0 \]

(g) Orthogonality of Bessel Functions

\[\int_{0}^{1} x J_p(ax) J_p(bx) dx = 0 \quad if \ a \neq b \]

\[\int_{0}^{1} x J_p(ax) J_p(ax) dx = \frac{1}{2} J^2_{p+1}(a) \quad if \ a = b \]

where \(a \) and \(b \) are the zeros of \(J_p(x) \) and also

\[\int x^p J_{p-1}(x) dx = x^p J_p(x) \]
Partial Differential Equations

(a) Laplace's Equation
\[\nabla^2 u = 0 \]

(b) Diffusion or Heat Flow
\[\nabla^2 u = \frac{1}{\alpha^2} \frac{\partial u}{\partial t} \]

(c) Wave Equation
\[\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} \]
\[f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{\ell} x + b_n \sin \frac{n\pi}{\ell} x \right) \]

Here \(\ell = 1 \) and \(f(x) \) is an even function so \(b_n = 0 \) for all \(n \geq 1 \). Moreover,

\[a_n = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{n\pi}{\ell} x \, dx = \frac{2}{\ell} \int_{0}^{\ell} f(x) \cos \frac{n\pi}{\ell} x \, dx \]

\[= 2 \int_{0}^{1} x^2 \cos n\pi x \, dx, \quad n \geq 0. \]

\[a_0 = 2 \int_{0}^{1} x^2 \, dx = \frac{2}{3} ; \quad \text{and, for } n \geq 1, \]

\[a_n = 2 \int_{0}^{1} x^2 \cos n\pi x \, dx \]

\[= 2 \left[\frac{x^2}{n\pi} \sin n\pi x + \frac{2x}{n^2\pi^2} \cos n\pi x - \frac{2}{n^3\pi^3} \sin n\pi x \right]_{x=0}^{1} \]

\[= \frac{4}{n^2\pi^2} \cos n\pi = \frac{4}{n^2\pi^2} (-1)^n \]

\[\sum_{n=1}^{\infty} \frac{4}{n^2\pi^2} = \left\{ \begin{array}{ll} \frac{2}{n^2\pi^2} & \text{if } n \text{ is even} \\ \frac{-2}{n^2\pi^2} & \text{if } n \text{ is odd} \end{array} \right. \]
Thus, \(f(x) = \frac{1}{3} - \frac{4}{\pi^2} \left[\cos \pi x - \frac{1}{4} \cos 2\pi x + \frac{1}{9} \cos 3\pi x - \frac{1}{16} \cos 4\pi x + \cdots \right] \)

\[= \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos n\pi x \]

b) Applying Parseval's Theorem, we get:

\[\frac{1}{2} \int_{-1}^{1} x^4 \, dx = \left(\frac{1}{3} \right)^2 + \frac{1}{2} \sum_{n=1}^{\infty} (a_n)^2 \quad [b_n = 0] \]

\[\frac{1}{5} = \frac{1}{9} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{16}{n^4 \pi^4} \]

\[\frac{4}{45} = \frac{8}{\pi^4} \sum_{n=1}^{\infty} \frac{1}{n^4} \Rightarrow \]

\[\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} \]

2. \(M_0 = 10 \text{ kg} \)

\[\frac{dM}{dt} = -\alpha M \quad (\alpha > 0) \]

\[\frac{dM}{M} = -\alpha \, dt \]

\[\ln(M(t)) = -\alpha t + a \]

At \(t = 0 \), \(M(t) = M_0 = 10 \) so \(a = \ln M_0 \)
Thus, \(\ln M(t) = -\alpha t + \ln M_0 \Rightarrow \)
\[
M(t) = M_0 e^{-\alpha t} = 10 e^{-\alpha t}
\]

At \(t = 10 \text{ min} \), \(M(t) = 10 e^{10\alpha} = 8 \Rightarrow \)
\[
e^{-10\alpha} = \frac{8}{10} \Rightarrow -10\alpha = \ln \left(\frac{8}{10} \right)
\]
\[
\Rightarrow \alpha = \frac{1}{10} \ln \left(\frac{10}{8} \right) = \frac{1}{10} \ln \left(\frac{5}{4} \right) \text{ min}^{-1}
\]

\(M(t) = 2 \text{ kg} \Rightarrow t = ? \)
\[
2 = 10 e^{-\alpha t} \Rightarrow -\alpha t = \ln \left(\frac{1}{5} \right)
\]
\[
\Rightarrow \alpha t = \ln 5 \Rightarrow t = \frac{1}{\alpha} \ln 5
\]
\[
= 10 \frac{\ln 5}{\ln(5/4)} = 7.2 \text{ min}
\]
3. \[\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = e^{2x} + 10 \cos x + 3x \tag{1} \]

\[\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0 \rightarrow y_c \]

\[(D^2 - 5D + 6) \ y = 0 \]
\[(D - 2)(D - 3) \ y = 0 \rightarrow y_c = c_1 e^{2x} + c_2 e^{3x} \]

\[\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = e^{2x} \rightarrow y_p, \]

Let \[y_p = A x e^{2x} \] (it is equal to one of the roots of the characteristic eqn.) Then

\[y'_{p} = A (2x + 1) e^{2x} \text{ and} \]
\[y''_{p} = A (4x + 4) e^{2x} \text{. Thus,} \]
\[A e^{2x} \left[4x + 4 - 5 (2x + 1) + 6x \right] = 1 e^{2x} \]
\[\rightarrow A = -1 \text{ and hence} \]
\[y_{p} = -x e^{2x} \]

\[\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 10 \cos x \rightarrow y_{p_2} \]

First we write

\[\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 10 e^{ix} \rightarrow y_{p} \]
Then \(y_p = \Re (Y_p) \). Let \(Y_p = Be^{ix} \). Then,

\[
y_p' = iBe^{ix} \text{ and } y_p'' = -Be^{ix}. \text{ Thus,}
\]

\[
Be^{ix} \left[-1 - 5i + 6 \right] = 10e^{ix}
\]

So \(5B(1-i) = 10 \) \(\Rightarrow B = \frac{2}{1-i} = 1+i \). Hence,

\[
y_p = (1+i)e^{ix} = (1+i)(\cos x + i\sin x)
\]

\[
= \cos x - \sin x + i(\cos x + \sin x) \quad \text{Thus,}
\]

\[
y_{p_2} = \Re (Y_p) = \cos x - \sin x
\]

\[
\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 3x \rightarrow y_{p_3}
\]

Let \(y_{p_3} = Cx + D \). Then

\[
y_{p_3}' = C \text{ and } y_{p_3}'' = 0. \text{ Thus,}
\]

\[
0 - 5C + 6(Cx + D) = 3x.
\]

\[
\begin{cases}
6C = 3 \rightarrow C = \frac{1}{2} \\
6D - 5C = 0 \rightarrow D = \frac{5}{6}C = \frac{5}{12}
\end{cases}
\]
Hence
\[y_p^3 = \frac{1}{2} x + \frac{5}{12} = \frac{1}{12} (6x + 5) \]

 Altogether, the general solution of (x) is:
\[y = y_c + y_{p_1} + y_{p_2} + y_{p_3} \]
\[= c_1 e^{2x} + c_2 e^{3x} - x e^{2x} + \cos x - \sin x + \frac{1}{12} (6x + 5) \]

4. \(x (1-x) \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \)

Let \(y = \sum_{n=0}^{\infty} a_n x^{n+s} \), \(a_0 \neq 0 \). Then
\[
(\lambda - x^2) \sum_{n=0}^{\infty} (n+s)(n+s-1) a_n x^{n+s-2}
- 2 \sum_{n=0}^{\infty} a_n (n+s)x^{n+s-1} + 2 \sum_{n=0}^{\infty} a_n x^{n+s} = 0
\]
\[
\sum_{n=0}^{\infty} (n+s)(n+s-1) a_n x^{n+s-1} - \sum_{n=0}^{\infty} (n+s)(n+s-1) a_n x^{n+s}
- \sum_{n=0}^{\infty} 2 a_n (n+s) x^{n+s-1} + \sum_{n=0}^{\infty} 2 a_n x^{n+s} = 0
\]
\[
\sum_{n=0}^{\infty} (n+s)(n+s-3) a_n x^{n+s-1} - \sum_{n=0}^{\infty} [(n+s)(n+s-1) - 2] a_n x^{n+s} = 0
\]
\[
\sum_{n=0}^{\infty} \frac{(n+1)(n-2)a_{n+1}}{(n+1)^2} x^n - \sum_{n=0}^{\infty} \frac{(n+1)(n+s-1)a_n}{(n+1)^2} x^n = 0
\]

\[
s(s-3)a_0 x^{s-1} + \sum_{n=0}^{\infty} \frac{(n+1)(n+s-2)a_{n+1} - (n+s)(n+s-1)a_n}{(n+1)^2} x^n = 0
\]

\[
s(s-3)a_0 = 0 \Rightarrow s(s-3) = 0 \quad (a_0 \neq 0)
\]

\[
\Rightarrow s = 0 \quad \text{or} \quad s = 3
\]

\[s = 0:\]
\[
\sum_{n=0}^{\infty} \frac{(n+1)(n-2)a_{n+1} - n(n-1)a_n}{(n+1)^2} x^n = 0
\]

\[
\Rightarrow a_{n+1} = \frac{n(n-1) - 2n}{(n+1)^2} a_n
\]

\[
\sum_{n=0}^{\infty} \frac{(n+1)(n-2)(a_{n+1} - a_n)}{x^n} = 0
\]

\[
(n+1)(n-2)(a_{n+1} - a_n) = 0 \quad \text{for all} \quad n \geq 0
\]

For \(n \neq 2 \), \((n+1)(n-2) \neq 0\) and hence \(a_{n+1} = a_n \) \(\text{for} \quad n \neq 2 \). Thus, \(a_1 = a_0 \) \(\text{and} \quad a_2 = a_1 \) \((n=1) \).

Also, \(a_4 = a_3 \) \((n=3) \), \(a_5 = a_4 \) \((n=4) \), etc.
For $n = 2$, $(n+1)(n-2) = 0$, so $a_3 - a_2$ can be anything. This means a_3 is arbitrary. (like a_6).

$a_0 = a_1 = a_2$ and

\[a_3 = a_4 = a_5 = \ldots \]

Thus,

\[y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \ldots = a_0 + a_0 x + a_0 x^2 + a_3 x^3 + a_3 x^4 + a_3 x^5 + \ldots = a_0 \left(1 + x + x^2 \right) + a_3 \left(x^3 + x^4 + x^5 + \ldots \right) = a_0 \left(1 + x + x^2 \right) + a_3 \frac{x^3}{1-x} \]

Since this contains two arbitrary constants (a_0 and a_3), y is the general solution of the second order linear ODE. So no need to proceed with $s = 3$.

Note: If you look for the solution corresponding to $s = 3$, $y = x^3 \sum_{n=0}^{\infty} b_n x^n$, you should get $b_{n+1} = b_n$ for all $n \geq 0$, so that

\[y = b_0 x^3 (1 + x + x^2 + \ldots) = b_0 \frac{x^3}{1-x} \] (obtained above!)
5. \(f(x) = \begin{cases} 0 & \text{if } -1 \leq x < 0 \\ 2 & \text{if } 0 < x \leq 1 \end{cases} \)

a) \(f(x) = 1 + g(x) \), where

\[
g(x) = \begin{cases} -1 & \text{if } -1 \leq x < 0 \\ 1 & \text{if } 0 < x \leq 1 \end{cases}
\]

is an odd function on \([-1,1]\). Thus,

\[
g(x) = \sum_{\ell = 1}^{\infty} \frac{c_{\ell}}{\ell} \cos \ell \pi x \quad \text{and hence}
\]

\[
f(x) = 1 + \sum_{\ell = 1}^{\infty} \frac{c_{\ell}}{\ell} \cos \ell \pi x \quad \text{and hence}
\]

\[
a_2 = a_4 = \cdots = 0, \quad \sum_{0}^{\infty} c_0 = 1
\]

b) To compute the \(c_{\ell} \)'s, we could use either \(f \) or

\[
(\ell > 0) \quad \text{we already know} \quad c_0 = 1
\]

\[
c_{\ell} = \frac{2\ell+1}{2} \int_{-1}^{1} f(x) \cos \ell \pi x \, dx
\]

\[
= \frac{(2\ell+1)}{2} \int_{0}^{1} (2\ell+1) \cos \ell \pi x \, dx
\]

\[
= \begin{cases} 0 & \text{if } \ell \text{ is even} \\ \frac{(2\ell+1)}{2} \int_{0}^{1} \cos \ell \pi x \, dx & \text{if } \ell \text{ is odd} \end{cases}
\]

\[
\left\{ \begin{array}{l}
\text{valid for all } \ell \geq 1
\end{array} \right.
\]
Thus,
\[
c_1 = 3 \int_0^1 p_1(x) \, dx = 3 \int_0^1 x \, dx = \frac{3}{2}
\]
\[
c_3 = 7 \int_0^1 p_3(x) \, dx = \frac{7}{2} \int_0^1 (5x^2 - 3x) \, dx
\]
\[
= \frac{7}{2} \left[\frac{5}{4} - \frac{3}{2} \right] = -\frac{7}{8} \quad \text{Hence}
\]
\[
l(x) = 1 \cdot p_0(x) + \frac{3}{2} \cdot p_1(x) - \frac{7}{8} \cdot p_3(x) + \ldots
\]

(\text{c}) \quad \text{from the parts (a) and (b) above,}
\[
c_l = (2l+1) \int_0^1 p_l(x) \, dx = 0 \quad \text{for} \quad l = 2, 4, 6, \ldots
\]

Thus, \(\int_0^1 p_l(x) \, dx = 0 \) \(\text{for} \quad l = 2, 4, 6, \ldots \)

Alternatively: \(\text{for} \quad l = 2, 4, 6, \ldots \):
\[
\int_0^1 p_l(x) \, dx = \frac{1}{2} \int_0^1 p_l(x) \, dx \quad (p_l \text{ is even})
\]
\[
= \frac{1}{2} \int_0^1 p_l(x) \, p_0(x) \, dx = 0 \quad \text{since}
\]
\[
p_l(x) \text{ and } p_0(x) \text{ are orthogonal on } [-1, 1].
\]
6. \[\nabla^2 T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \] (x)

We look for solutions of the form:

\[T(x, y) = X(x) Y(y), \] Substituting into (x),

we get

\[Y \frac{d^2 X}{dx^2} + X \frac{d^2 Y}{dy^2} = 0 \quad \text{(* \(\frac{1}{xy} \))} \]

\[\rightarrow \quad \frac{1}{x} \frac{d^2 X}{dx^2} + \frac{1}{y} \frac{d^2 Y}{dy^2} = 0 \]

or

\[\frac{1}{x} \frac{d^2 X}{dx^2} = - \frac{1}{y} \frac{d^2 Y}{dy^2} ; \quad \text{the left-hand side is a function of } x \text{ only and the right-hand side a function of } y \text{ only.} \]

Since this has to hold for all \(x, y \), which can vary independently, this can happen if both sides are equal to the same constant, say \(\alpha \).

From the boundary condition

\[T(x, y) \to 0 \quad \text{as} \quad y \to \infty \]

Thus, \(\alpha = -k^2 < 0 \). Hence
\[\frac{1}{x} \frac{d^2 x}{dx^2} = - \frac{1}{y} \frac{d^2 y}{dy^2} = -\kappa^2 \]

\[\begin{cases} \frac{d^2 x}{dx^2} + \kappa^2 x = 0 & \rightarrow x(x) = \left\{ \begin{array}{l} \cos \kappa x \\ \sin \kappa x \end{array} \right. \\
\frac{d^2 y}{dy^2} - \kappa^2 y = 0 & \rightarrow y(y) = \left\{ \begin{array}{l} e^{-\kappa y} \\ e^{\kappa y} \end{array} \right. \end{cases} \]

From \(T(10, y) = 0 \), we get \(x(0) = 0 \) so \(\cos \kappa x \) not acceptable!

From \(T(10, y) = 0 \), we get \(x(10) = \sin \kappa(10) = 0 \)

\[10 \kappa = n \pi \rightarrow \kappa = \frac{n\pi}{10} \quad \text{(Eigenvalue).} \]

So for each \(n = 1, 2, 3, \ldots \)

\[\sin \frac{n\pi}{10} x e^{-\frac{n\pi}{10} y} \] is a solution of \(x \) which satisfies 3 of the 4 boundary conditions \((T(0, y) = T(10, y) = T(x, \infty) = 0) \). To satisfy the 4th boundary condition, we form the linear combination

\[T(x, y) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{10} x e^{-\frac{n\pi}{10} y} \]
\[T(x, 10) = 100 = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{10} x \]

(a Fourier sine series of period \(2L = 20\), \(L = 10\))

Thus, for each \(n \geq 1\),

\[b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi}{L} x \, dx \]

\[= \frac{2}{10} \int_{0}^{10} 100 \sin \frac{n\pi}{10} x \, dx \]

\[= \frac{200}{10} \left(\frac{-10}{n\pi} \cos \frac{n\pi}{10} x \right) \bigg|_{x=0}^{10} \]

\[= \frac{200}{n\pi} \left(1 - \cos \frac{n\pi}{10} \right) \]

\[= \begin{cases}
\frac{400}{n\pi} & \text{if } n \text{ is odd} \\
0 & \text{if } n \text{ is even}
\end{cases} \]

Thus,

\[T(x, y) = \frac{400}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n\pi}{10} x e^{-\frac{n\pi}{10} y} \]

\[= \frac{400}{\pi} \left[\sin \frac{\pi x}{10} e^{-\frac{\pi y}{10}} + \frac{1}{3} e^{\frac{3\pi}{10} x} e^{-\frac{3\pi y}{10}} + \cdots \right] \]
7. \[\nabla^2 u = \frac{1}{\Omega} \frac{\partial}{\partial z} \left(\Omega \frac{\partial u}{\partial z} \right) + \frac{\partial^2 u}{\partial z^2} = 0 \]

Let \(u(\Omega, z) = R(\Omega) Z(z) \). Then

\[\frac{Z(z)}{\Omega} \frac{d}{dz} \left(\Omega \frac{dR}{dz} \right) + R(\Omega) \frac{d^2 Z}{dz^2} = 0 \quad (s \frac{1}{\Omega z}) \]

\[\Rightarrow \frac{1}{\frac{1}{2}R} \frac{d}{dn} \left(R \frac{dR}{dn} \right) + \frac{1}{2} \frac{d^2 Z}{dz^2} = 0 \]

\[\frac{1}{\frac{1}{2}R} \frac{d}{dn} \left(R \frac{dR}{dn} \right) = -\frac{1}{2} \frac{d^2 Z}{dz^2} = -\kappa^2 \]

\[\frac{d^2 Z}{dz^2} - \kappa^2 Z = 0 \rightarrow Z(z) = \left\{ e^{-\kappa z}, e^{\kappa z} \right\} \]

To make \(Z(10) = 0 \), we use

\[Z(z) = \sinh \kappa (10 - z), \] which is a linear combination of \(e^{-\kappa z} \) and \(e^{\kappa z} \).
To find $R(z)$:

$$\frac{1}{\sqrt{z}} \frac{d}{dz} \left(z \frac{dR}{dz} \right) = -k^2 \Rightarrow$$

$$\frac{1}{\sqrt{z}} \frac{d}{dz} \left(z \frac{dR}{dz} \right) + k^2 R = 0$$

$$\frac{d^2 R}{dz^2} + \frac{1}{z} \frac{dR}{dz} + k^2 R = 0$$

$$\frac{d^2 R}{dz^2} + \frac{1}{z} \frac{dR}{dz} + k^2 z^2 R = 0$$

$$R(\sqrt{z}) = J_0(k \sqrt{z})$$

From $U(1,3) = 0$, we get $R(1) = 0$ and hence $J_0(k) = 0 \Rightarrow k = k_m$, a zero of J_0.

To match the boundary condition at the bottom, we write

$$U(2,3) = \sum_{m=1}^{\infty} b_m J_0(k_m \sqrt{z}) \sin \theta k_m (10 - z)$$

$$U(2,0) = U_0 = \sum_{m=1}^{\infty} b_m J_0(k_m \sqrt{z}) \sin \theta k_m (10 km)$$

Multiply both sides by $2 J_0(k_m \sqrt{z})$ and integrate from 0 to 1.
\[100 \int_0^\infty x J_0(k_x x) \, dx = \sum_{m=1}^{\infty} b_m \sinh(10k_m) \int_0^\infty x J_0(k_x x) J_0(k_m x) \, dx \]

\[= b_\mu \sinh(10k_\mu) \frac{J_1^2(k_\mu)}{2} \quad (**) \]

But \[\int x J_0(x) \, dx = -\frac{1}{2} J_1(x) \quad \text{(with } x = k_x x) \]

we get \[k_\mu^2 \int x J_0(k_x x) \, dx = k_\mu x J_1(k_x x) \]

Therefore \[\int_0^1 x J_0(k_x x) \, dx = \frac{1}{k_\mu} \frac{x J_1(k_x x)}{x} \Bigg|_{x=0}^{x=1} \]

\[= \frac{J_1(k_\mu)}{k_\mu} \]

\[(***) \Rightarrow 100 \frac{J_1(k_\mu)}{k_\mu} = b_\mu \sinh(10k_\mu) \frac{J_1^2(k_\mu)}{2} \]

\[\Rightarrow b_\mu = \frac{200}{k_\mu \sinh(10k_\mu) J_1(k_\mu)} \quad \text{or} \]

\[b_m = \frac{200}{k_m \sinh(10k_m) J_1(k_m)} \quad \text{for } m \geq 1. \quad \text{Thus,} \]

\[\nu(\alpha, \beta) = \sum_{m=1}^{\infty} \frac{200}{k_m \sinh(10k_m) J_1(k_m)} J_0(k_m x) \sinh(k_m x) \]

\[k_m \text{ is the } m^{th} \text{ zero of } J_0. \]