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Appendix A 
 
In this appendix, we explain the method used for relating the components of the average particle 
velocity and its variance to the values measured experimentally using Dynamic Sound Scattering 
in a cylindrical cell with a focusing transducer. 
 

 
(1)  Principles of the method to obtain average q  

In this appendix, we derive an expression for the average scattering wave vector 〈 q 〉 
when an ultrasonic wave from a spherically focusing transducer is incident on a cylindrical cell.  
The method is based on a ray approach, since this simplified approach leads naturally to a 
description in terms of scattering angles for the experimental geometry.  We are interested in the 
possible values of ′= −

 q k k , where k


 is the incident wave vector on a scatterer and ′

k  is the 

scattered vector.  Only some ( ), ′
 
k k  combinations are relevant due to the finite extent of the 

transducer.  We found all such k


, ′

k  by integrating over the surface of the transducer.  For each 

point ( ),ξ ζ  on the transducer surface, two wave vectors Lk


 and Sk


 are possible results of the 
ray propagating from ( )ζξ ,  in the direction of the focus into the interior of the sample, passing 
through the cell wall in either longitudinal (L) or shear (S) mode. 

 Geometrically it is clear that the scattered vectors ′


Lk  and ′


Sk  that arrive back at the 
transducer are anti-parallel to the set of Lk


 and Sk


: 
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  ( ) ( ), ,ξ ζ ξ ζ′ = −
 

L Lk k ;   ( ) ( ), ,ξ ζ ξ ζ′ = −
 

S Sk k . 

The various transmission and reflection coefficients bringing a given ray from ( ),ξ ζ  into the 
sample can be combined to give transfer functions ( ),LT ξ ζ  and ( ),ST ξ ζ  that express the 
relative contribution of the given k


 inside the sample.  Outgoing transfer functions ( ),ξ ζ′LT  and 

( ),ξ ζ′ST  express the proportion of scattered waves that arrive at the transducer as a function of 
( ),ξ ζ  (i.e., as a function of ′


k ). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1. Ray diagram illustrating refraction at the cell walls 
  

For scattering particles moving with V


 we measure an average of ( )2 2 2 2 2 2 2
r r z zq V q V q V q Vφ φ⋅ = + +

  
(simplification possible since 0r zV V= = ) and wish to know the relative contributions of 2

rV , 2
φV  

and 2
zV ; thus, we are interested in the average or net 2

iq  (for i = r, φ, z) that results from the 
range of k


, ′

k  produced and observed by the transducer.  Hence the required quantity is 

 ( ) ( ) ( ) ( )( )22
2

modes

1net , , , ,ζ ξ ζ ξ ζ ξ ζ ξ ξ ζ ξ ζ′ ′ ′ ′ ′ ′ ′ ′≡ = −∑ ∫ ∫i i i i
S S

q Q d d T d d T k k
A

,  

where the integrals are over the surface S of the transducer ( )2 2 Rξ ζ+ <  and the sum indicates 
that we must account for L and S modes in both directions.  For computation, we have: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

mod

2

1 , , ,

, , ,

2 , , , ,

ζ ξ ζ ξ ξ ζ ζ ξ ζ ξ

ζ ξ ζ ξ ζ ξ ζ ξ ξ ζ

ζ ξ ζ ξ ξ ζ ζ ξ ζ ξ ξ ζ

   
′ ′ ′ ′ ′=    

   
   

′ ′ ′ ′ ′ ′ ′ ′+    
   
   

′ ′ ′ ′ ′ ′ ′ ′−    
   

∑ ∫ ∫

∫ ∫

∫ ∫

i i
es S S

i
S S

i i
S S

Q d d T k d d T
A

d d T d d T k

d d T k d d T k
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Since ( ) ( ), ,ξ ζ ξ ζ′ = −k k  

 

2 2
2

modes

1

2

ζ ξ ζ ξ ζ ξ ζ ξ

ζ ξ ζ ξ

     
′ ′= +     

     
  

′+   
  

∑ ∫ ∫ ∫ ∫

∫ ∫

i i i
S S S S

i i
S S

Q d d T k d d T d d T d d T k
A

d d T k d d T k

 

Accounting for all pairs of modes leaves us with six integrals: 

 1 3 3 1 2 2
2

1 2 ′ ′ ′= + +
 i i i i i i iQ I I I I I I

A
 

where 
 ( )1 2 2

, ,i L i L S i S
S

I d d T k T kζ ξ= +∫  

 ( )2
, ,i L i L S i S

S

I d d T k T kζ ξ= +∫  

 ( )3
i L S

S

I d d T Tζ ξ= +∫  

and similarly for ′j
iI , replacing T with T′. 

 In the computations, six sums are kept, calculated with 

 











≈




















= ∑ '''1

1
'' 323

323

2
,,

2
,,

, iii

iii

SiSi

LiLi

SL

SL
i III

III
A
m

kk

kk
TT
TT

S
ζξ

, 

where m is number of elements in the summation. 
After summing, the Qi are formed from the S matrix, e.g. 

 [ ]2

1 (1,1) (2,3) (2,1) (1,3) 2 (1,2) (2,2)iQ S S S S S S
m

= + + . 

A similar calculation yields the net values of qi: 

 

( ) [ ]

2
modes

2 3 3 2
2 2

1net ' '

1 1' ' (1,2) (2,1) (1,1) (2,2) .

i i i i
S S S S

i i i i

P q d d Tk d d T d d T d d T k
A

I I I I S S S S
A m

ξ ζ ξ ζ ξ ζ ξ ζ
 

≡ = + 
 

= + = +

∑ ∫ ∫ ∫ ∫
 

A computer program was written in MATLAB to calculate Qi and Pi.  The output of the program 
is  

 φ φ  r z r zQ Q Q P P P . 
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This result can be used to find the variance or average velocity along the r, ϕ and z directions 
from measurements along 3 different transducer orientations, by solving the matrix equation 
involving the Q’s or P’s.  For example for the variance, we have to solve 

 

12 2
1 1 1 2

22 2 2 2 2 2

3 3 3 2 32 2

( )
( )
( )

r z r

r z

r z z

q VQ Q Q V
Q Q Q V q V
Q Q Q V q V

φ

φ φ

φ

δδ
δ δ
δ δ

 
     
     =     
           

 

[calculated for 3 
geometries (1,2,3)] 

[Desired 
(common)] 

[Measured for 3 
geometries (1,2,3)] 

 
In the next sections, the various steps that need to be considered in the calculation of the transfer 
functions are described.   
 

(2)  Conversion from the experimental angle describing transducer orientation (a) to the 
incident angle used for calculations (m) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The geometry relating these angles (a, m) is defined in Figure A2.   
To relate the angles a to m, we use the x and y coordinates, and intersect the circle Ryx =+ 22  
with a line having slope tan ≡ aa T , passing through ( )( ),0R d− + , i.e., 

 ( )( )= + +ay T x R d  

 ( ) ( )( )22 2 2 22+ + + + + =ax T x R d x R d R  

δ 
δ 

m 

y R 
a 

x 

y 

d 

Figure A2.  Finding the incident angle in terms of the transducer angle.  
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 ( ) ( )( ) ( )22 2 2 21 2 0+ + + + + − =a ax T x R d R d T R  

The next step is to solve for y, so 

 ( )− + =ay T R d x  

 ( ) ( )2
2 2 22 + 

− + − = − 
 a a

y R dy R d R y
T T

 

 ( ) ( ) ( )( )22 2 21 2 0+ − + + + − =a a ay T yT R d R d R T  

 
( ) ( ) ( )( )

( )

22 2 2 2

2

2 4 4 1 2

2 1

+ ± + − + +
=

+
a a a a

a

T R d T R d T d RD T
y

T
 

The solution for y that we are seeking is the closer of the two possibilities to 0, i.e., the 
appropriate root has the negative sign for Ta > 0 and the positive sign for Ta < 0.  We can 
generalize this by factoring out the Ta

2 from the radical: 

 
( ) ( ) ( ) ( )

( )

2 2 2

2

1 2

1

+ − + − + +
=

+
a a a

a

T R d T R d T d Rd
y

T
 

or 

 
2

2 2
2 1 1 2

1

     = + − − −   +      

a
a a

a

Ty d d dT T
R T R R R

 

Now Ry=δsin  and δ+= am , so ( )Ryam 1sin −+= . 
 

(3)  Ray from transducer to cell wall. 

 The transducer was divided into small elements and the calculation was done for each 
element position on the transducer surface. 

 Let us create the ray from this element of the transducer to the (0,0,0) point on the surface 
of the cell. 

 
 
 
 
 
 
 
 
 
 
Figure A3.  Diagram illustrating the ray from an element on the transducer to the point (0,0,0).   

(x,y,z) 
(0,0,0) 

 

ζ 
ξ 
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This ray is described by Euler angles 

 ( )zxa 1tan −=  
 ( )zyb /tan 1−=  

Refraction at the interface is treated with plane wave equations.  The angle of incidence θ is 
given by 

 ba 22 tantantan +=θ  

And, upon entering the solid, there are both shear and longitudinal modes produced. 

 The Euler angles are obtained from the refraction angles using the fact that the incident 
and refracted rays lie in a plane with the normal to the surface, and thus, e.g., 

 
L

L

b
a

b
a

tan
tan

tan
tan

=  

So the refraction routine determines: 

 ba 22 tantantan +=θ  

 
θ

θθ
2tan1

tansin
+

=  

 θθ sinsin
,2

1

L
L n

n
=  , 

where θL is angle of refraction. 

Euler angles are efficiently found considering: 
 zxa /tan =  

 LLL zxa /tan =  

 
z

yx 22

tan
+

=θ  

 
L

LL
L z

yx 22

tan
+

=θ  

and LL yxyx =/  so 

 
( )( )
( )( ) a

a
x
z

z
x

z
z

xyx

xyx L

L

L

L

LLLL

tan
tan

1

1
tan
tan

22

22

==
+

+
=

θ
θ  

i.e., 





=

θ
θ

tan
tantantan L

L aa  

and similarly 





=

θ
θ

tan
tantantan L

L bb  . 
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(4)  Transmission coefficient for solid S and L modes 

We calculate θL and θS via the usual refraction conditions, e.g., θθ sinsin 1,2 nn LL = . 

The impedances are 
θ

ρ
cosn

z = . 

Then 

( )
( ) ( ) 2

1

1
22 2sin2cos

2cos2
ρ
ρ

θθ
θ

zzz
z

t
sssL

sL
L ++
=  

( )
( ) ( ) 2

1

1
22 2sin2cos

2sin2
ρ
ρ

θθ
θ

zzz
zt

sssL

sS
S ++

−
=  

( ) ( ) 1
22 2sin2cos

21
zzz

zr
sssL ++

−
=

θθ
. 

These are the field transmission coefficients; the normalization condition is 

 1
cos
cos

cos
cos 2

11

,22,22

11

,22,22 =+







+








r

n
n

t
n

n
t SS

S
LL

L θρ
θρ

θρ
θρ

 

(These modified coefficients are referred to as “intensity” transmission and refraction 
coefficients.) 

 We are also interested in the transmission of “outgoing” rays – those originating in the 
interior.  We examine the longitudinal and shear waves in the cell wall that would yield a 
refracted angle θ in the water, in which the transducer is located, surrounding the cell.   
 
(5)  “Deviation of the normal” for the 2nd interface 

 We now have S and L rays in the cell wall.  To refract at the next interface, we must 
account for the curvature of the cell walls.  This is referred to as the “deviation of the normal”; 
the question is:  by what angle do the normals to the cell walls differ (due to the curvature) for a 
ray that has traveled obliquely through the wall with initial angle of refraction α (see Figure 
A4)? 

The curvature will only affect the α Euler angle (β ′ = β).  This is the same problem as 
the conversion from “a” to “m” coordinates: 

 
2

2 2
2cos 1 1 2

1
α

α α
α

δ
     ′ = + − − −   +      

T d d dT T
T R R R

 

with tanα α=T . 

Then α’ = α + δ ′.  Note δ ′ is different for the S and L waves: αL′ = αL + δL′, αS′ = αS + δS′. 
(See Figure A4 for the definitions of these angles.) 
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 Refraction at the cell-interior interface is once again calculated using refraction.  Note 
that since δL′ ≠  δS′, the refraction angles inside the cell will not be equal in general, αL″ ≠ αS″, 
(they are probably pretty close though).   

Once again the transmission coefficients are found for shear→liquid, 
longitudinal→liquid for “ingoing” rays,  and liquid→shear, liquid→longitudinal for “outgoing” 
rays.   The final ingoing and outgoing, shear and longitudinal transmission coefficients, are 
found by: 

 32
,

21
,,

→→ ×= LinLinLin TTT  

 2 1 3 2
, , ,out L out L out LT T T→ →= ×  

etc. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A4:  Refraction angles for transmission through the cell wall. 
 

(5)  k


 inside the cell 

 We have delineated the propagation of rays to the interior of the sample, and we need the 
k


 components here.  These are different for L and S waves. 

 Normalized so 1=x , the x″, y″, z″ components (see Figure A5) are found from the Euler 
angles 

 
1tantan

tan
22 +′′+′′

′′
=′′

LL

L
Lx

βα

α  

 

R d 
α δ ′ 

α ″ α ′ 

m 
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1tantan

tan
22 +′′+′′

′′
=′′

LL

L
Ly

βα

β
 

 
2 2

1
tan tan 1

L

L L

z
α β

′′ =
+ +

 

where the angles are defined in Figure A5.   

The correspondence between the (x″, y″, z″) coordinates and the cell (r, φ, z) coordinates 
is  

 ( ) ( ).ˆ,ˆ,ˆ~ˆ,ˆ,ˆ yxzzr ′′′′′′φ  

We have thus determined the k


 vector (or the direction of such) of ray propagation from (ξ, ζ) 
in the transducer to the focus inside the cell via each mode in solid.  This is related to the k


 

vector of the ray at the focus which would propagate to (ξ, ζ) on the transducer by, e.g., 
inLoutL kk ,,


−= .  For (ξ, ζ) we have thus found ink


 and outk


 for L and S modes, as well as the 

transmission coefficients, ingoing and outgoing, for both modes. 

 

 
 
 
 
 
 
 
 
Figure A5:  Refraction angles and double primed coordinate system for the interior of the cell.   
 
 
 
 

α” 

x” 

y” 

“Top view” 

β” 

y” 

z” 

“Side view” 


