Supplemental Material - Acoustic double negativity induced by position correlations within a disordered set of monopolar resonators

Maxime Lanoy,^{1,2,3} John H. Page,¹ Geoffroy Lerosey,² Fabrice Lemoult,² Arnaud Tourin,² and Valentin Leroy³

¹Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

²Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, Paris, France

³Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), Paris, France

(Dated: November 27, 2017)

I. SCATTERING OF A PAIR OF MONOPOLES

We consider a plane wave impinging on a pair of scatterers placed at r_A and r_B (see Fig. S1). The pressure scattered

FIG. S1: A pair of scatterers of radius a, separated by a distance d.

at point r_M can be written:

$$p(\mathbf{r}_{\mathbf{M}}) = p_0 + p_A f \frac{e^{-ik_0||\mathbf{r}_{\mathbf{M}} - \mathbf{r}_{\mathbf{A}}||}}{||\mathbf{r}_{\mathbf{M}} - \mathbf{r}_{\mathbf{A}}||} + p_B f \frac{e^{-ik_0||\mathbf{r}_{\mathbf{M}} - \mathbf{r}_{\mathbf{B}}||}}{||\mathbf{r}_{\mathbf{M}} - \mathbf{r}_{\mathbf{B}}||}$$
(S1)

with

$$||\boldsymbol{r}_{\mathbf{M}} - \boldsymbol{r}_{\mathbf{A}}|| = \sqrt{\frac{d^2}{4} + r_{\mathrm{M}}^2 + r_{\mathrm{M}}d\cos\theta}$$
(S2)

and

$$||\mathbf{r}_{\mathbf{M}} - \mathbf{r}_{\mathbf{B}}|| = \sqrt{\frac{d^2}{4} + r_{\mathrm{M}}^2 - r_{\mathrm{M}}d\cos\theta}.$$
(S3)

where r is the distance to the center of the pair and $\theta = 0$ in the forward direction. The pressures exerted on A and B can be obtained by inverting the multiple scattering matrix of the system:

$$\begin{bmatrix} p_A \\ p_B \end{bmatrix} = \begin{bmatrix} 1 & -f(\omega)\frac{e^{ik_0d}}{d} \\ -f(\omega)\frac{e^{ik_0d}}{d} & 1 \end{bmatrix}^{-1} \times \begin{bmatrix} p_{0A} \\ p_{0B} \end{bmatrix}$$
(S4)

with, here,

$$p_{0A} = e^{-ik_0 d/2}$$
 et $p_{0B} = e^{ik_0 d/2}$. (S5)

Finally, we extract the scattering function of a pair by dividing the scattered pressure by $e^{ik_0r_M}/r_M$. A zero order expansion in r_M/d yields the following expression:

$$f_d(\theta) = \frac{d^2 f}{d^2 - f^2 e^{2ik_0 d}} \Big[e^{-ik_0 \frac{d}{2}(1 - \cos \theta)} \Big(1 + \frac{f}{d} e^{2ik_0 d} \Big) + e^{ik_0 \frac{d}{2}(1 - \cos \theta)} \Big(1 + \frac{f}{d} \Big) \Big].$$
(S6)

We can then easily determine analytic expressions for the forward and backward scattering:

$$f_d(0) = \frac{d^2 f}{d^2 - f^2 e^{2ik_0 d}} \left[2 + \frac{f}{d} \left(1 + e^{2ik_0 d} \right) \right]$$
(S7)

$$f_d(\pi) = \frac{d^2 f}{d^2 - f^2 e^{2ik_0 d}} \left[2\cos(k_0 d) + 2\frac{f}{d} e^{ik_0 d} \right]$$
(S8)

As in Eq. (2) of the main document, the expression for the scattering function is:

$$f = \frac{-a}{1 - \omega_0^2 / \omega^2 + i(k_0 a + \delta)}.$$
(S9)

After substituting this expression for f in Eqs. (S7) and (S8), one can obtain the symmetric and antisymmetric parts of the scattering function:

$$f_s = \frac{f_d(0) + f_d(\pi)}{2} = \frac{2a}{\left(\frac{\omega_0}{\omega}\right)^2 - (1 + \frac{a}{d}) - i(2k_0a + \delta)}$$
(S10)

$$f_a = \frac{f_d(0) - f_d(\pi)}{2} = \frac{k_0^2 d^2 a/2}{\left(\frac{\omega_0}{\omega}\right)^2 - \left(1 - \frac{a}{d}\right) - i(k_0^3 a d^2/6 + \delta)}.$$
(S11)

II. NEGATIVE REFRACTION

Knowing the forward and backward scattering functions for the pairs of bubbles, we can now apply Waterman and Truell model to the assembly of pair-correlated bubbles. The full multiple scattering process occurring within a pair is included (thanks to f_a and f_s). However, we neglect the recurrent sequences (loops) and the position correlations between distinct pairs. One then obtains

$$\frac{\chi_{\text{eff}}}{\chi_0} = 1 + \frac{4\pi(n/2)}{k_0^2} f_s,$$
(S12a)

$$\frac{\rho_{\text{eff}}}{\rho_0} = 1 + \frac{4\pi (n/2)}{k_0^2} f_a \tag{S12b}$$

where the n/2 term comes from the fact that pairs are half as concentrated as single scatterers. Let us introduce the following parameters:

$$\omega_1 = \omega_0 / \sqrt{1 + a/d}$$

$$\Omega_s = (\omega_0 / \omega)^2 - (\omega_0 / \omega_1)^2$$

$$B_s = 4\pi na/k_0^2$$

$$\Delta_s = 2k_0 a + \delta$$

 $\quad \text{and} \quad$

$$\omega_2 = \omega_0 / \sqrt{1 - a/d}$$

$$\Omega_a = (\omega_0 / \omega)^2 - (\omega_0 / \omega_2)^2$$

$$B_a = \pi n d^2 a$$

$$\Delta_a = k_0^3 a d^2 / 6 + \delta$$

Equations (S12) then become

$$\frac{\chi_{\text{eff}}}{\chi_0} = 1 + \frac{B_s}{\Omega_s - i\Delta_s},\tag{S13a}$$

$$\frac{\rho_{\text{eff}}}{\rho_0} = 1 + \frac{D_a}{\Omega_a - i\Delta_a}.$$
(S13b)

Their arguments can be written as

$$\arg[\chi_{\text{eff}}] = \arg\left[\frac{\Omega_s + B_s - i\Delta_s}{\Omega_s - i\Delta_s}\right]$$

=
$$\arg\left[\left(\Omega_s + B_s - i\Delta_s\right)\left(\Omega_s + i\Delta_s\right)\right],$$
 (S14)

$$\arg[\rho_{\text{eff}}] = \arg\left[\frac{\Omega_a + B_a - i\Delta_a}{\Omega_a - i\Delta_a}\right]$$

=
$$\arg\left[\left(\Omega_a + B_a - i\Delta_a\right)\left(\Omega_a + i\Delta_a\right)\right].$$
 (S15)

Both expressions have the same form, but they contain a significant difference: while B_s can be large (because it is proportional to $1/k_0^2$), B_a is small. We will see that the condition for negative density will thus be more difficult to fulfill.

The condition for the real part of χ_{eff} or ρ_{eff} to be negative takes the following form in both cases:

$$\Omega^2 + B\Omega + \Delta^2 < 0, \tag{S16}$$

where the two cases can be distinguished by adding subscript s for χ , and a for ρ . The roots of this equation are

$$\Omega = -\frac{B}{2} \pm \frac{\sqrt{B^2 - 4\Delta^2}}{2},\tag{S17}$$

leading to a simple criterion for obtaining negativity:

$$B > 2\Delta.$$
 (S18)

i) Negative compressibility

As B_s can be large, criterion (S18) is easy to satisfy. For instance, for the case considered in Fig. 1 (main document), at resonance ($\omega = \omega_0$), $B_s \simeq 4$ and $\Delta_s \simeq 0.2 + \delta$. Except in the case of very large dissipation, we therefore have $B_s \gg 2\Delta_s$, and the condition $\operatorname{Re}(\chi_{\text{eff}}) < 0$ can be satisfied over a large frequency range.

ii) Negative density

The same condition for density is not as easy to satisfy, because B_a is smaller. In the example of Fig. 1 (main document), $B_a \simeq 0.05$. The radiative part of Δ_a is also much smaller than in the symmetrical case $(k_0^3 a d^2/6 \simeq 6 \times 10^{-4})$, which means that negative density is possible when dissipation is neglected, as shown in Figs. 1, 2 and 3. For the realistic case with losses, however, dissipation makes criterion (S18) unsatisfied.

ii) Negative index

Negative refraction does not require double-negativity. It is enough to satisfy condition $\arg[\rho_{\text{eff}}\chi_{\text{eff}}] > \pi$. This condition is easier to satisfy close to ω_2 , the frequency of the antisymmetrical mode, where we have

$$\arg[\rho_{\text{eff}}\chi_{\text{eff}}] \simeq \pi + \frac{\Delta_s}{\Omega_s} + \frac{B_a}{\Delta_a},$$
(S19)

from which we can establish the following criterion for negative refraction:

$$\pi n d^2 a > \frac{(\delta + 2k_0 a)(\delta + k_0^3 a d^2/6)}{1 + a/d - \omega_0^2/\omega^2}$$
(S20)