Supplemental Material - Acoustic double negativity induced by position correlations within a disordered set of monopolar resonators

Maxime Lanoy, ${ }^{1,2,3}$ John H. Page, ${ }^{1}$ Geoffroy Lerosey, ${ }^{2}$ Fabrice Lemoult, ${ }^{2}$ Arnaud Tourin, ${ }^{2}$ and Valentin Leroy ${ }^{3}$
${ }^{1}$ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ${ }^{2}$ Institut Langevin, ESPCI ParisTech, CNRS (UMR 7587), PSL Research University, Paris, France
${ }^{3}$ Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot, CNRS (UMR 7057), Paris, France (Dated: November 27, 2017)

I. SCATTERING OF A PAIR OF MONOPOLES

We consider a plane wave impinging on a pair of scatterers placed at $\boldsymbol{r}_{\boldsymbol{A}}$ and $\boldsymbol{r}_{\boldsymbol{B}}$ (see Fig. S1). The pressure scattered

FIG. S1: A pair of scatterers of radius a, separated by a distance d.
at point $\boldsymbol{r}_{\boldsymbol{M}}$ can be written:

$$
\begin{equation*}
p\left(\boldsymbol{r}_{\boldsymbol{M}}\right)=p_{0}+p_{A} f \frac{e^{-\mathrm{i} k_{0}\left\|\boldsymbol{r}_{\boldsymbol{M}}-\boldsymbol{r}_{\boldsymbol{A}}\right\|}}{\left\|\boldsymbol{r}_{\boldsymbol{M}}-\boldsymbol{r}_{\boldsymbol{A}}\right\|}+p_{B} f \frac{e^{-\mathrm{i} k_{0}\left\|\boldsymbol{r}_{\boldsymbol{M}}-\boldsymbol{r}_{\boldsymbol{B}}\right\|}}{\left\|\boldsymbol{r}_{\boldsymbol{M}}-\boldsymbol{r}_{\boldsymbol{B}}\right\|} \tag{S1}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\|\boldsymbol{r}_{\mathbf{M}}-\boldsymbol{r}_{\mathbf{A}}\right\|=\sqrt{\frac{d^{2}}{4}+r_{\mathrm{M}}^{2}+r_{\mathrm{M}} d \cos \theta} \tag{S2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\boldsymbol{r}_{\mathbf{M}}-\boldsymbol{r}_{\mathbf{B}}\right\|=\sqrt{\frac{d^{2}}{4}+r_{\mathrm{M}}^{2}-r_{\mathrm{M}} d \cos \theta} \tag{S3}
\end{equation*}
$$

where r is the distance to the center of the pair and $\theta=0$ in the forward direction. The pressures exerted on A and B can be obtained by inverting the multiple scattering matrix of the system:

$$
\left[\begin{array}{c}
p_{A} \tag{S4}\\
p_{B}
\end{array}\right]=\left[\begin{array}{cc}
1 & -f(\omega) \frac{e^{i k_{0} d}}{d} \\
-f(\omega) \frac{e^{i k_{0} d}}{d} & 1
\end{array}\right]^{-1} \times\left[\begin{array}{c}
p_{0 A} \\
p_{0 B}
\end{array}\right]
$$

with, here,

$$
\begin{equation*}
p_{0 A}=e^{-\mathrm{i} k_{0} d / 2} \quad \text { et } \quad p_{0 B}=e^{\mathrm{i} k_{0} d / 2} \tag{S5}
\end{equation*}
$$

Finally, we extract the scattering function of a pair by dividing the scattered pressure by $e^{\mathrm{i} k_{0} r_{M}} / r_{\mathrm{M}}$. A zero order expansion in r_{M} / d yields the following expression:

$$
\begin{equation*}
f_{d}(\theta)=\frac{d^{2} f}{d^{2}-f^{2} e^{2 \mathrm{i} k_{0} d}}\left[e^{-\mathrm{i} k_{0} \frac{d}{2}(1-\cos \theta)}\left(1+\frac{f}{d} e^{2 \mathrm{i} k_{0} d}\right)+e^{\mathrm{i} k_{0} \frac{d}{2}(1-\cos \theta)}\left(1+\frac{f}{d}\right)\right] . \tag{S6}
\end{equation*}
$$

We can then easily determine analytic expressions for the forward and backward scattering:

$$
\begin{equation*}
f_{d}(0)=\frac{d^{2} f}{d^{2}-f^{2} e^{2 \mathrm{i} k_{0} d}}\left[2+\frac{f}{d}\left(1+e^{2 \mathrm{i} k_{0} d}\right)\right] \tag{S7}
\end{equation*}
$$

$$
\begin{equation*}
f_{d}(\pi)=\frac{d^{2} f}{d^{2}-f^{2} e^{2 \mathrm{i} k_{0} d}}\left[2 \cos \left(k_{0} d\right)+2 \frac{f}{d} e^{\mathrm{i} k_{0} d}\right] \tag{S8}
\end{equation*}
$$

As in Eq. (2) of the main document, the expression for the scattering function is:

$$
\begin{equation*}
f=\frac{-a}{1-\omega_{0}^{2} / \omega^{2}+\mathrm{i}\left(k_{0} a+\delta\right)} \tag{S9}
\end{equation*}
$$

After substituting this expression for f in Eqs. (S7) and (S8), one can obtain the symmetric and antisymmetric parts of the scattering function:

$$
\begin{gather*}
f_{s}=\frac{f_{d}(0)+f_{d}(\pi)}{2}=\frac{2 a}{\left(\frac{\omega_{0}}{\omega}\right)^{2}-\left(1+\frac{a}{d}\right)-\mathrm{i}\left(2 k_{0} a+\delta\right)} \tag{S10}\\
f_{a}=\frac{f_{d}(0)-f_{d}(\pi)}{2}=\frac{k_{0}^{2} d^{2} a / 2}{\left(\frac{\omega_{0}}{\omega}\right)^{2}-\left(1-\frac{a}{d}\right)-\mathrm{i}\left(k_{0}^{3} a d^{2} / 6+\delta\right)} \tag{S11}
\end{gather*}
$$

II. NEGATIVE REFRACTION

Knowing the forward and backward scattering functions for the pairs of bubbles, we can now apply Waterman and Truell model to the assembly of pair-correlated bubbles. The full multiple scattering process occurring within a pair is included (thanks to f_{a} and f_{s}). However, we neglect the recurrent sequences (loops) and the position correlations between distinct pairs. One then obtains

$$
\begin{align*}
& \frac{\chi_{\mathrm{eff}}}{\chi_{0}}=1+\frac{4 \pi(n / 2)}{k_{0}^{2}} f_{s}, \tag{S12a}\\
& \frac{\rho_{\mathrm{eff}}}{\rho_{0}}=1+\frac{4 \pi(n / 2)}{k_{0}^{2}} f_{a} \tag{S12b}
\end{align*}
$$

where the $n / 2$ term comes from the fact that pairs are half as concentrated as single scatterers.
Let us introduce the following parameters:

$$
\begin{aligned}
\omega_{1} & =\omega_{0} / \sqrt{1+a / d} \\
\Omega_{s} & =\left(\omega_{0} / \omega\right)^{2}-\left(\omega_{0} / \omega_{1}\right)^{2} \\
B_{s} & =4 \pi n a / k_{0}^{2} \\
\Delta_{s} & =2 k_{0} a+\delta
\end{aligned}
$$

and

$$
\begin{aligned}
\omega_{2} & =\omega_{0} / \sqrt{1-a / d} \\
\Omega_{a} & =\left(\omega_{0} / \omega\right)^{2}-\left(\omega_{0} / \omega_{2}\right)^{2} \\
B_{a} & =\pi n d^{2} a \\
\Delta_{a} & =k_{0}^{3} a d^{2} / 6+\delta
\end{aligned}
$$

Equations (S12) then become

$$
\begin{align*}
& \frac{\chi_{\mathrm{eff}}}{\chi_{0}}=1+\frac{B_{s}}{\Omega_{s}-\mathrm{i} \Delta_{s}} \tag{S13a}\\
& \frac{\rho_{\mathrm{eff}}}{\rho_{0}}=1+\frac{B_{a}}{\Omega_{a}-\mathrm{i} \Delta_{a}} \tag{S13b}
\end{align*}
$$

Their arguments can be written as

$$
\begin{align*}
\arg \left[\chi_{\mathrm{eff}}\right] & =\arg \left[\frac{\Omega_{s}+B_{s}-\mathrm{i} \Delta_{s}}{\Omega_{s}-\mathrm{i} \Delta_{s}}\right] \tag{S14}\\
& =\arg \left[\left(\Omega_{s}+B_{s}-\mathrm{i} \Delta_{s}\right)\left(\Omega_{s}+\mathrm{i} \Delta_{s}\right)\right]
\end{align*}
$$

$$
\begin{align*}
\arg \left[\rho_{\mathrm{eff}}\right] & =\arg \left[\frac{\Omega_{a}+B_{a}-\mathrm{i} \Delta_{a}}{\Omega_{a}-\mathrm{i} \Delta_{a}}\right] \tag{S15}\\
& =\arg \left[\left(\Omega_{a}+B_{a}-\mathrm{i} \Delta_{a}\right)\left(\Omega_{a}+\mathrm{i} \Delta_{a}\right)\right]
\end{align*}
$$

Both expressions have the same form, but they contain a significant difference: while B_{s} can be large (because it is proportional to $1 / k_{0}^{2}$), B_{a} is small. We will see that the condition for negative density will thus be more difficult to fulfill.

The condition for the real part of $\chi_{\text {eff }}$ or $\rho_{\text {eff }}$ to be negative takes the following form in both cases:

$$
\begin{equation*}
\Omega^{2}+B \Omega+\Delta^{2}<0 \tag{S16}
\end{equation*}
$$

where the two cases can be distinguished by adding subscript s for χ, and a for ρ. The roots of this equation are

$$
\begin{equation*}
\Omega=-\frac{B}{2} \pm \frac{\sqrt{B^{2}-4 \Delta^{2}}}{2} \tag{S17}
\end{equation*}
$$

leading to a simple criterion for obtaining negativity:

$$
\begin{equation*}
B>2 \Delta \tag{S18}
\end{equation*}
$$

i) Negative compressibility

As B_{s} can be large, criterion (S18) is easy to satisfy. For instance, for the case considered in Fig. 1 (main document), at resonance $\left(\omega=\omega_{0}\right), B_{s} \simeq 4$ and $\Delta_{s} \simeq 0.2+\delta$. Except in the case of very large dissipation, we therefore have $B_{s} \gg 2 \Delta_{s}$, and the condition $\operatorname{Re}\left(\chi_{\text {eff }}\right)<0$ can be satisfied over a large frequency range.

ii) Negative density

The same condition for density is not as easy to satisfy, because B_{a} is smaller. In the example of Fig. 1 (main document), $B_{a} \simeq 0.05$. The radiative part of Δ_{a} is also much smaller than in the symmetrical case $\left(k_{0}^{3} a d^{2} / 6 \simeq 6 \times 10^{-4}\right)$, which means that negative density is possible when dissipation is neglected, as shown in Figs. 1, 2 and 3. For the realistic case with losses, however, dissipation makes criterion (S18) unsatisfied.

ii) Negative index

Negative refraction does not require double-negativity. It is enough to satisfy condition $\arg \left[\rho_{\text {eff }} \chi_{\text {eff }}\right]>\pi$. This condition is easier to satisfy close to ω_{2}, the frequency of the antisymmetrical mode, where we have

$$
\begin{equation*}
\arg \left[\rho_{\mathrm{eff}} \chi_{\mathrm{eff}}\right] \simeq \pi+\frac{\Delta_{s}}{\Omega_{s}}+\frac{B_{a}}{\Delta_{a}} \tag{S19}
\end{equation*}
$$

from which we can establish the following criterion for negative refraction:

$$
\begin{equation*}
\pi n d^{2} a>\frac{\left(\delta+2 k_{0} a\right)\left(\delta+k_{0}^{3} a d^{2} / 6\right)}{1+a / d-\omega_{0}^{2} / \omega^{2}} \tag{S20}
\end{equation*}
$$

