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I. SCATTERING OF A PAIR OF MONOPOLES

We consider a plane wave impinging on a pair of scatterers placed at rArArA and rBrBrB (see Fig. S1). The pressure scattered

FIG. S1: A pair of scatterers of radius a, separated by a distance d.

at point rMrMrM can be written:

p(rMrMrM ) = p0 + pAf
e−ik0||rMrMrM−rArArA||

||rMrMrM − rArArA||
+ pBf

e−ik0||rMrMrM−rBrBrB ||
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(S1)

with
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4
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M + rMd cos θ (S2)

and
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4
+ r2

M − rMd cos θ. (S3)

where r is the distance to the center of the pair and θ = 0 in the forward direction. The pressures exerted on A and
B can be obtained by inverting the multiple scattering matrix of the system:[
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]
(S4)

with, here,

p0A = e−ik0d/2 et p0B = eik0d/2. (S5)

Finally, we extract the scattering function of a pair by dividing the scattered pressure by eik0rM /rM. A zero order
expansion in rM/d yields the following expression:
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. (S6)

We can then easily determine analytic expressions for the forward and backward scattering:

fd(0) =
d2f

d2 − f2e2ik0d
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f

d

(
1 + e2ik0d

)]
(S7)
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fd(π) =
d2f

d2 − f2e2ik0d

[
2 cos(k0d) + 2

f

d
eik0d

]
(S8)

As in Eq. (2) of the main document, the expression for the scattering function is:

f =
−a

1− ω2
0/ω

2 + i(k0a+ δ)
. (S9)

After substituting this expression for f in Eqs. (S7) and (S8), one can obtain the symmetric and antisymmetric parts
of the scattering function:

fs =
fd(0) + fd(π)

2
=

2a(
ω0

ω

)2 − (1 + a
d )− i(2k0a+ δ)

(S10)

fa =
fd(0)− fd(π)

2
=
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. (S11)

II. NEGATIVE REFRACTION

Knowing the forward and backward scattering functions for the pairs of bubbles, we can now apply Waterman and
Truell model to the assembly of pair-correlated bubbles. The full multiple scattering process occurring within a pair
is included (thanks to fa and fs). However, we neglect the recurrent sequences (loops) and the position correlations
between distinct pairs. One then obtains

χeff

χ0
= 1 +

4π(n/2)

k2
0

fs, (S12a)

ρeff

ρ0
= 1 +

4π(n/2)

k2
0

fa (S12b)

where the n/2 term comes from the fact that pairs are half as concentrated as single scatterers.
Let us introduce the following parameters:

ω1 = ω0/
√

1 + a/d

Ωs = (ω0/ω)2 − (ω0/ω1)2

Bs = 4πna/k2
0

∆s = 2k0a+ δ

and

ω2 = ω0/
√

1− a/d
Ωa = (ω0/ω)2 − (ω0/ω2)2

Ba = πnd2a

∆a = k3
0ad

2/6 + δ

Equations (S12) then become

χeff

χ0
= 1 +

Bs
Ωs − i∆s

, (S13a)

ρeff

ρ0
= 1 +

Ba
Ωa − i∆a

. (S13b)

Their arguments can be written as

arg[χeff] = arg
[Ωs +Bs − i∆s

Ωs − i∆s

]
= arg

[(
Ωs +Bs − i∆s

)(
Ωs + i∆s

)]
,

(S14)
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arg[ρeff] = arg
[Ωa +Ba − i∆a

Ωa − i∆a

]
= arg

[(
Ωa +Ba − i∆a

)(
Ωa + i∆a

)]
.

(S15)

Both expressions have the same form, but they contain a significant difference: while Bs can be large (because it is
proportional to 1/k2

0), Ba is small. We will see that the condition for negative density will thus be more difficult to
fulfill.

The condition for the real part of χeff or ρeff to be negative takes the following form in both cases:

Ω2 +BΩ + ∆2 < 0, (S16)

where the two cases can be distinguished by adding subscript s for χ, and a for ρ. The roots of this equation are

Ω = −B
2
±
√
B2 − 4∆2

2
, (S17)

leading to a simple criterion for obtaining negativity:

B > 2∆. (S18)

i) Negative compressibility
As Bs can be large, criterion (S18) is easy to satisfy. For instance, for the case considered in Fig. 1 (main document),
at resonance (ω = ω0), Bs ' 4 and ∆s ' 0.2 + δ. Except in the case of very large dissipation, we therefore have
Bs � 2∆s, and the condition Re(χeff) < 0 can be satisfied over a large frequency range.

ii) Negative density
The same condition for density is not as easy to satisfy, because Ba is smaller. In the example of Fig. 1 (main docu-
ment), Ba ' 0.05. The radiative part of ∆a is also much smaller than in the symmetrical case (k3

0ad
2/6 ' 6× 10−4),

which means that negative density is possible when dissipation is neglected, as shown in Figs. 1, 2 and 3. For the
realistic case with losses, however, dissipation makes criterion (S18) unsatisfied.

ii) Negative index
Negative refraction does not require double-negativity. It is enough to satisfy condition arg[ρeffχeff] > π. This
condition is easier to satisfy close to ω2, the frequency of the antisymmetrical mode, where we have

arg[ρeffχeff] ' π +
∆s

Ωs
+
Ba
∆a

, (S19)

from which we can establish the following criterion for negative refraction:

πnd2a >
(δ + 2k0a)(δ + k3

0ad
2/6)

1 + a/d− ω2
0/ω

2
(S20)


