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Abstract. We present measurements of the diffusion coefficient of ultra-
sound in strongly scattering three-dimensional (3D) disordered media
using the dynamic coherent backscattering (CBS) effect. Our experi-
ments measure the CBS of ultrasonic waves using a transducer array
placed in the far-field of a 3D slab sample of brazed aluminum beads
surrounded by vacuum. We extend to 3D media the general micro-
scopic theory of CBS that was developed initially for acoustic waves
in 2D. This theory is valid in the strong scattering, but still diffuse,
regime that is realized in our sample, and is evaluated in the diffuse far
field limit encountered in our experiments. By comparing our theory
with the experimental data, we obtain an accurate measurement of the
Boltzmann diffusion coefficient of ultrasound in our sample. We find
that the value of DB is quite small, 0.74± 0.03 mm2/μs, and comment
on the implications of this slow transport for the energy velocity.

1 Introduction

Coherent backscattering (CBS) has for several decades been used to measure trans-
port parameters of disordered media in the diffuse regime. The CBS effect is caused
by interference between multiply-scattered waves travelling reciprocal paths inside
a disordered medium [1]. Experimentally, this phenomenon may be observed as an
enhancement (of around 2) in intensity at exact backscattering. Away from exact
backscattering the CBS intensity profile decreases, forming a ‘cone’ shape which con-
tains valuable information about scattering parameters of the medium [2–5]. As has
been observed experimentally for various types of diffuse waves and scattering me-
dia [2–9], the width of the static (single frequency or time-integrated dynamic) CBS
profile is directly related to the transport mean free path, �∗. The dynamic (time-
dependent) CBS profile provides opportunities to measure additional quantities. In
the diffuse regime, the dynamic CBS profile can directly yield a measurement of the
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Boltzmann diffusion coefficient DB without the influence of absorption. Most mea-
surements of DB using dynamic CBS have been performed for acoustic waves in 2D
media [6,7,10,11]. However, the first acoustic study of CBS by Bayer et al. in 1993
[6] also investigated 3D samples, in which dynamic CBS from a very thick (effec-
tively semi-infinite) gravel medium was observed. These data were interpreted using
theory taken directly from electromagnetics, which includes assumptions which may
not be justified for acoustics. Here, we present a microscopic derivation of dynamic
CBS for acoustic waves in 3D, in which we also consider the conditions encountered
in experiments with ultrasonic transducer arrays. The theory takes into account the
diffuse near field, which would be measured if a detector were placed at a distance
from the sample that is comparable to, or less than, the width of the diffuse halo
at the surface. In our experiments, the transducer array is placed much farther from
the sample surface than this distance, so that the theory is specifically evaluated in
the diffuse far field limit that applies to our data. We compare our theory with ex-
perimental measurements of time-dependent acoustic CBS from a 3D medium, and
show that our approach yields an accurate measurement of the Boltzmann diffusion
coefficient. In addition to enabling other fundamental studies of wave transport in
disordered 3D materials, which may even be too thick for transmission measurements
to be feasible, this approach may facilitate the use of acoustic and elastic waves in the
characterization of heterogeneous media such as slurries, concrete or coarse-grained
steels that are relevant for industrial and processing applications.

2 Experiment

Backscattered ultrasound was measured from a slab-shaped mesoglass sample com-
posed of aluminum beads brazed together to form a disordered elastic network
(Fig. 1). The bead volume fraction in the sample was ∼ 55%, and the mean bead
diameter was 3.93 mm with a polydispersity of about 20%, which helps to randomize
bead positions. The sample has a cross-section of 230×250 mm2 much larger than its
thickness L = 25± 2 mm, which helps to minimize contributions from the edges of
the sample when performing backscattering experiments. Other details of the sample
characteristics have been described in References [12–14].
An ultrasonic array with central frequency fc = 1.6 MHz was used to measure the

backscattered field from the sample. The experiment was done in a large plexiglass
water tank, with sample and array immersed in water, parallel to each other and sepa-
rated by a distance of a = 182 mm. Before the experiment was performed, the sample
was waterproofed by enclosing it with a thin acoustically transparent film made from
the same heat-sealable plastic bag material that is used for vacuum storage of foods.
By also attaching and sealing a plastic tube to the bag enclosure, the air in the pores
could be evacuated and the sample held under vacuum for the duration of the experi-
ment, so that the propagation of ultrasonic waves inside the sample occurs only in the
elastic network. Note that in this set-up, compressional and shear waves propagate in
the sample, but at the transducers all excitations have been mode-converted back to
compressional waves. As a result, the CBS is essentially a scalar phenomenon, despite
the vector nature of the waves in the sample. The experimental acquisition process is
sketched in Figure 2: a single element emits a short pulse, and then all (64) elements
record the time-dependent backscattered field. By repeating this process, emitting
with each element in turn, the time-dependent ‘response matrix’ was acquired [7,12].
Configurational averaging was performed by translating the array parallel to the sam-
ple surface and acquiring the response matrices for 302 different positions. Prior to
each experiment, careful checks were carried out to minimize and hopefully eliminate
any spurious reflections that could have contributed to the backscattered field from
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(a)

(b)

Fig. 1. (a) Sample L1 has a thickness of L = 25± 2 mm and a cross-section of
230×250 mm2. (b) The bead structure of sample L1.

Fig. 2. First step of the acquisition sequence for an ultrasonic array of N elements.

the sample, including the small possible contribution from signals that had travelled
through the sample, reflected off either a sample support or a tank wall, and then
travelled back through the sample en route to the detector.
To study a particular frequency range, the data were filtered using a Gaussian

envelope of standard deviation 0.025 MHz, centered in this case around f = 1.65
MHz. This frequency has been shown to exhibit conventional diffusive behaviour of
ultrasound [14] (as opposed to subdiffusive or localized behaviour, which has been
studied for this sample at other frequencies [12,13]). However, the scattering is still
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Fig. 3. Schematic for the experimental geometry and coordinate systems. The
source/detector plane (an ultrasonic array) is approximately parallel to sample surface, al-
though source S and detector D may be separated in the z direction by a small distance w
(exaggerated in the diagram for clarity). Inside the sample, scattering is described by the
coordinate system shown on the upper right. The origin of this R,φ system, (0, 0, 0), is on
the ray normal to the emitting transducer array element at S. Vector R is in the xy plane,
which is parallel to the input/output sample surface.

very strong at 1.65 MHz, as is evidenced by the significant contribution to the total
backscattered intensity from recurrent scattering processes, which reduce the CBS
enhancement below 2 [12]. On average, over all times investigated here (between
∼20–220μs), recurrent scattering constitutes as much as 37% of the total backscat-
tered intensity, and for the latest times (between 170–220μs), the observed recurrent
scattering contribution is still more than 15% [12,14]. This contribution complicates
the analysis of CBS, since it adds to the flat, angle-independent background intensity
level (the intensity contribution given by Eq. (5) in the next section) [12,15,16]. To
avoid this complication, the recurrent scattering contribution was removed from the
total backscattered intensity using the approach developed by Aubry et al. [12]. The
result of experiments and data-processing is a large set of configurationally-averaged,
time-dependent backscattered intensity profiles I(ρ, t), where ρ is the distance be-
tween source and receiver elements of the ultrasonic array, and t is time. To eliminate
the effect of absorption, I(ρ, t) was normalized by I(0, t), since at time t the effect
of absorption is the same for both numerator and denominator of this ratio, and
therefore should cancel [13,17].

3 Theory

Here we outline our theory for the backscattering of diffuse, strong scattered acoustic
waves. The geometry of the system is shown in Figure 3. Source S is positioned at
(0, 0,−a), and detector D at (0,−ρ,−a− w), where a is the perpendicular distance
between S and the sample surface, and w describes any additional distance between S
and D, in the z direction. In an experiment with an ultrasonic array, w is minimized
by aligning the array as parallel as possible to the sample surface, but it is still useful
to be able to account for any residual misalignment in the theoretical analysis. The
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first scattering event occurs in the ‘skin layer’ of the sample, at a distance equal
on average to the scattering mean free path �s. The theory presented here assumes
that the scattering length is small, i.e., a� �s, and neglects any phase shift which
might occur in the skin layer. Additionally, we assume that the problem is symmetric
in φ, and that k0a� 1, where k0 is the wave vector in the water in front of the
sample.
We start with the general expression for intensity from a scattering medium:

〈|ψS→D|2〉 ∝
∫
G(r1)G

∗(r3)Γ(r1, r2, r3, r4)G(r2)G∗(r4)dr1dr2dr3dr4, (1)

where propagation between source and sample is given by ensemble averaged Green’s
functions G(r1) and G(r3), and propagation between sample and detector is given by
G(r2) and G(r4). In the far-field approximation |R− r1| → ∞, and in the diffusive
regime where k�s � 1 (k = 2πf/vp is the wavevector in the medium, vp is the velocity
of the longitudinal waves), the ensemble averaged Green’s function between source
and sample in 3D may be approximated as

G(S → (R1,3, z) ∈ skin) = −e
ik
√
a2+R21,3e−

z
2μ�s

4π
√
a2 +R21,3

, (2)

with μ1,3 = cos γ = a/
√
a2 +R21,3. To more accurately express the intensity drop

due to propagation from the last point in the sample at (R2,4, z), to detector D at
(0,−ρ,−a− w), the ensemble averaged Green’s function between sample and detector
is written as

G((R2,4, z) ∈ skin→ D) = −e− z
2μ�s

eik
√
a2+R22,4

4π
√
(a− w)2 +R22,4 + ρ2 − 2ρR2,4 cosφ

. (3)

All scattering inside the medium is described by vertex Γ(r1, r2, r3, r4). For the in-
coherent contribution to backscattered intensity, Γ = F3D(r1, r2)δ1,3δ2,4, where in
the ladder approximation (the diffuse regime), the 3D ladder kernel F3D is a so-
lution to the diffusion equation. For a slab-shaped medium with partial reflection
of energy at the boundaries, i.e., F3D = 0 at z = z0, z = L+ z0, the 3D ladder
kernel is [18]

F3D(R, z1, z2, t) = C
e−R

2/4DBt

DBt

∞∑
m=1

e−m
2π2DBt/B

2

×
[
cos

(
πm(z1 − z2)

B

)
− cos

(
πm(z1 + z2 − 2z0)

B

)]
, (4)

where DB = vE�
∗/3 is the Boltzmann diffusion coefficient in 3D (cf. Ref. [19]), vE is

the energy velocity, �∗ is the transport mean free path, and R = |R1 −R2|. The ex-
trapolation length in 3D is z0 = (2/3)(1 +Rrefl)/(1−Rrefl)�∗, effective sample thick-
ness is defined as B ≡ L+ 2z0, and C is a constant. Through the boundary conditions,
the transport mean free path �∗ has now been introduced, and is allowed to differ
from the scattering mean free path �s (anisotropic scattering).
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We now evaluate equation (1) for our particular experimental geometry. The in-
tegrations over z are the same as in the theory for 2D [20] with some differences in
the denominators, and once evaluated, give for the incoherent background intensity

|ψLS→D|
2
(t) =

∫ ∞
0

dR1R1

∫ ∞
0

dR2R2

∫ 2π
0

dφ1

∫ 2π
0

dφ2

×
exp
(
−R21+R22−2R1R2cosφ124Dt

)

(a2 +R21) (a
2 +R22 + ρ

2 − 2ρR2 cosφ2)
∞∑
m=1

e−m
2π2Dt/B2Lm(μ1, μ2),

(5)

where the Lm terms are [20]

Lm(μ1, μ2) =
2(A1 +B1)(A2 +B2)

(a21 + b
2
m)(a

2
2 + b

2
m)

(6)

with a1,2 = 1/lsμ1,2, bm = πm/B, and

A1,2(m) = sin(bmz0)a1,2
[
1 + (−a1,2)m e−a1,2L

]

B1,2(m) = cos(bmz0)bm
[
1 + (−a1,2)me−a1,2L

]
.

To calculate the backscattered intensity due to the CBS effect (the coherent con-
tribution), the scattering vertex is Γ = F3D(r1, r2)δ2,3δ1,4. This means that contri-
butions from interferences between pairs of reciprocal paths through the sample are
taken into account. The expression for the coherent contribution to backscattered
intensity thus includes an extra phase factor compared to the incoherent case:

|ψCS→D|
2
(t) =

∫ ∞
0

dR1R1

∫ ∞
0

dR2R2

∫ 2π
0

dφ1

∫ 2π
0

dφ2

× cos [k0(μ1 − μ2)w + k0(s1 sinφ1 − s2 sinφ2)ρ]

×
exp
(
−R21+R22−2R1R2 cosφ124Dt

)

(a2 +R21)(a
2 +R22 + ρ

2 − 2ρR2 cosφ2)
∞∑
m=1

e−m
2π2Dt/B2Lm(μ1, μ2),

(7)

for w �
√
a2 +R21,2 and ρ�

√
a2 +R21,2, and where s1,2 = sin γ =

√
1− μ21,2. To

partially evaluate the integral, we apply the diffuse far-field assumption a2 � 4DBt.
This corresponds physically to a diffuse halo on the sample that is much smaller than
the distance between the sample and transducer. For strong scattering, it is important
to assess whether or not the experimental data obey this assumption. In our exper-
iment, the longest times collected are around 220 μs, and for a diffusion coefficient
DB of order 0.7 mm

2/μs (see the next section), the assumption a2 = (182mm)2 ≈
33000mm2 � 4DBt ≈ 4(0.7 mm2/μs)(220 μs) ≈ 600 mm2 holds. In our experiment,
the array misalignment w was too small to be measurable, and thus is set to zero from
now on. Because of the exponential factor in the integral, the dominant contributions
in the diffuse far field approximation come from the points R1 and R2 = R1 +ΔR
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separated by small distances relative to a, so that it is convenient to change coor-
dinates from R1 and R2 to R and ΔR. Then, equation (7) can be simplified by
expanding the argument of the cosine factor to first order in ΔR and integrating
over ΔR. The coherent backscattered intensity then simplifies to

|ψCS→D|
2
(t) ∼=

∫ ∞
0

dRR

∫ 2π
0

dφ
exp
(
μ2
(k0ρ)

2Dt
a2

[
s4 sin2 φ+ 1− 2s2 sin2 φ])

(a2 +R2)(a2 +R2 + ρ2 − 2ρR cosφ)

×
∞∑
m=1

e−m
2π2Dt/B2Lm(μ, μ), (8)

where μ = a/
√
a2 +R2 [21]. In the diffuse coda, t > τD = B

2/π2DB (τD is the diffu-
sion time), only the m = 1 term in equation (6) survives, simplifying the calculation.
This m = 1 term can be further simplified if the optically thick slab approxima-
tion, B � �∗, applies. In our slab, the smallest possible value of B = L+ 2z0 =
L+ 2(2/3)l∗(1 +Rrefl)/(1−Rrefl) is B = 25mm+ 2(2/3)(4mm)(1 + 0.65)/(1−
0.65) ≈ 50mm. Thus, the approximation of B � �∗ is obeyed since
B = 50mm� 4mm. However, in our experimental situation we measure up
to 220 μs, so most times considered are smaller than the smallest possible
τD ≈ (50mm)2/π2(0.7mm2/μs) ≈ 360μs. Thus, the diffuse coda approximation does
not hold, and all of the terms in the Lm series of equation (6) are included in our
calculations.
As shown by equation (8), the shape of the CBS dynamic cone is determined by

the dimensionless parameter k0ρ(DBt/a
2). At each time t the CBS intensity profile

has an almost Gaussian shape, with a width (kρ)FWHM that depends on time as

(k0ρ)FWHM = Γa
2/DBt, (9)

where Γ is a dimensionless constant. This coherent contribution adds to the uniform
incoherent background given by equation (5). At ρ = 0, the coherent and incoherent
contributions to total backscattered intensity should be equal.
For the sake of completeness, we note that the static CBS intensity profile may

be found (in the absence of absorption) simply by integrating equations (5) and (8)
over all time. Assuming B � �∗, the ratio of coherent to incoherent intensity can be
expressed analytically as

|ψCS→D|2
|ψLS→D|2

∼= a
2
3�s + z0

∫ 1
0

μdμ

∫ 2π
0

dφ

2π

1− exp
(
−Q 2μ�s+2z0

a

)

Q
, (10)

where

Q = μ

√
μ4 sin2 φ+ cos2 φ k0ρ.

As has been found for other systems, the width of the static profile depends inversely
on �∗ [5,7,22].
For technical reasons, experimental results for the static CBS intensity profile are

not included in this work. This is mainly due to the fact that at early times the signal is
dominated by large specular reflections which could not be completely eliminated with
the recurrent scattering filter [12]. In addition, we do not have data at sufficiently late
times to accurately calculate the static cone; due to the strong scattering nature of the
sample, the dynamic backscattered ‘cones’ do not narrow very quickly, but the range
of accessible times in the measurements is limited to times before the arrival of the
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next echo between sample surface and transducer (after a time interval of 2a/vwater
≈ 240 μs). These considerations demonstrate the advantages of our dynamic CBS
measurements, which do not require data for all times but can yield accurate results
as long as the range of times experimentally available is sufficient to demonstrate the
dynamics of the CBS profiles.

4 Extensions of theory to account for experimental conditions

Several modifications to the above theory were made for a more accurate compar-
ison between theory and experiment. The theory so far assumes point sources and
detectors, whereas experimentally the source and detector have a finite rectangular
shape, with width W = 0.25 mm (in the x direction of Fig. 3) much less than height
H = 12mm (y direction of Fig. 3). This means that the directivity (directional de-
pendence) of each element should be taken into account, especially in the x direction
where the spreading of waves due to diffraction from the narrow elements is not
insignificant. Here we estimate the directivity along x using the ideal profile for a
rectangular transducer of width W in the far field:

ψ(θ) = ψ(0) sinc

(
πW sin θ

λ

)
. (11)

The same expression can be used in the y direction, so that for an array in 3D, the
total angular sensitivity is

Ω(θx, θy) = sinc
2

(
πW sin θx

λ

)
sinc2

(
πH sin θy

λ

)
. (12)

The correction is incorporated in equation (8) as:

|ψCS→D|
2
(t) =

∫ ∞
0

dRR

∫ 2π
0

dφ Ω(θx,S , θy)Ω(θx,D, θy)

×
exp
(
μ21
(kρ)2Dt
a2

[
s4 sin2 φ+ 1− 2s2 sin2 φ])

(a2 +R2)(a2 +R2 + ρ2 − 2ρR cosφ)

×
∞∑
m=1

e−m
2π2Dt/B2Lm(μ1, μ2), (13)

where θx,S , θx,D and θy are found from

tan(θx,S) =
R cosφ

a

tan(θx,D) =
R cosφ− ξ

a

tan(θy) =
R sinφ

a
.

An additional correction was performed to account for the height of the array ele-
ments, since the height of H = 12mm means that signal is being collected over a
significantly greater area than was supposed by our theory. The effect is not so large
that interference cancellation of ultrasonic field at the array surface is important, so
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Fig. 4. Experimental CBS profiles (symbols) with fits from diffusion theory (lines) for
four representative times: 52.5μs, 102.5μs, 152.5μs, and 202.5μs. Error bars represent the
experimental uncertainty in the configurational average.

an integration over detected intensity is sufficient to account for the influence of ele-
ment height. The correction consists of performing an explicit (numerical) integration
of the intensity distribution |ψ(ρ, t)|2 over all possible source points (y1) and receiver
points (y2), by calculating an effective ρ for each pair of points:

|ψ(ρ, t)|2corr =
∫ H/2
−H/2

dy1

∫ H/2
−H/2

dy2|ψ(
√
ρ2 + (y2 − y1), t)|2. (14)

The same procedure (with the replacement of H by W ) is performed to account for
the finite width of the array elements. Overall, the geometrical corrections presented
in this section do not change the global trend of equation (9), but do change the
multiplicative factor Γ.

5 Fitting and results

Representative experimental CBS profiles are shown in Figure 4 (symbols). In prin-
ciple, after the removal of the recurrent scattering contribution, the incoherent back-
ground intensity level should be at 0.5. Our experimental data deviate from this value
slightly at some times, with the deviations being especially small at late times. This
may be caused by an inaccuracy in the recurrent scattering filter, especially at early
times where the initial specular reflection is very large and difficult to remove entirely
[12]. Additionally, our theory shows that the enhancement factor may be slightly
changed due to the finite size of the array elements.
To measure the diffusion coefficientDB , the experimental CBS profiles Iexp(ρ, texp)

were fitted with the predictions of the diffusion theory outlined in the previous sec-
tion. The theory calculations require several parameters as input, including scattering
mean free path �s and reflection coefficient Rrefl. From measurements of the coherent
ballistic pulse in transmission [23], we can determine �s � 1.1 mm. We also measured
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Fig. 5. Results of the method used to determine the diffusion coefficient. Shown here are the
DBttheory values obtained from the best fit of the theory to the rho-dependent experimental
CBS profiles at each time (symbols). The slope of a weighted linear fit to the data (dashed
line) gives the overall value of DB . Notable parameters used to calculate the theory in
this plot are �s = 1.1 mm, �

∗ = 4 mm, and Rrefl = 0.75. From this analysis of the data, we
measure a value of DB = 0.74± 0.03 mm2/μs. Error bars on each data point are determined
from the goodness of fit of Itheory(ρ,DBt) to Iexp(ρ, texp) (see text).

the longitudinal phase velocity vL � 2.8 mm/μs [14] inside the sample, which is re-
quired to calculate Rrefl. This calculation, based on methods developed by [24–27],
assumes that after a few scattering events, there is equipartition of energy between all
polarizations of waves inside the sample, allowing equipartition to be taken into ac-
count when determining Rrefl. In this calculation, the phase velocity of the dominant
shear (transverse) waves inside the sample, vT , is estimated to be vT ∼ vL/2 ≈ 1.4
mm/μs. Because shear waves dominate inside the sample, but longitudinal waves are
detected outside the sample, the average reflection coefficient is large, Rrefl ≈ 0.75.
Theoretical backscattering profiles Itheory(ρ,DBt) were calculated as a function

of parameter DBt (diffusion coefficient multiplied by time) using equations (5), (8),
and (13). Then, all experimental CBS profiles were compared to all theoretical pro-
files, i.e., for each time texp, Iexp(ρ, texp) was fitted with each theoretical CBS pro-
file Itheory(ρ,DBt). In this way, a best-fit value of DBt is determined for each texp.
Figure 4 shows representative experimental CBS profiles for four different times texp,
along with the best theoretical fits. Figure 5 shows the DBt values resulting from each
best fit versus texp. The slope of a linear fit to these points gives a direct measurement
of DB . The data are well-described by the linear fit, confirming the prediction that
Δρ−2 ∝ DBt.
Since there is some uncertainty in the values of input parameters Rrefl and �

∗
(cf. [13,14]), fitting was performed over the range of physically reasonable values
for these parameters: �∗ = 4− 8 mm and Rrefl = 0.65− 0.85. It was found that over
these ranges, the best-fit value of DB only varies by less than 0.01 mm

2/μs, which
is less than the fitting uncertainty in the determination of DB for any pair of these
parameters (±0.02 mm2/μs). This shows that the measurement of DB by dynamic
CBS is largely insensitive to the precise values of �∗ and Rrefl, which only enter
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into the theory via the boundary conditions. Thus, our uncertainty in these para-
meters is unimportant for determining DB reliably, and the fitting of the CBS data
with the theory presented here gives an accurate and precise measurement of DB =
0.74± 0.03mm2/μs. This value agrees with results from the measurement on the
same sample of the transverse spread of the transmitted intensity, which gives
DB = 0.71± 0.02 mm2/μs [14]. It is worth noting that the transmitted transverse
width =

√
4Dt is known to be independent of absorption and boundary conditions

[17,25], so that the excellent agreement between these reflection and transmission
methods further confirms the accuracy of our present analysis of the dynamic CBS
profiles.
The value of DB seems small if we compare the measured value with a very

rough calculation using estimates of the equipartitioned velocity (1.6 mm/μs, which
is close to the shear wave velocity) and transport mean free path (4 mm); this would
give DB ∼ 2 mm2/μs. Given the plausible range of �∗ values, which are supported
by independent transmission experiments, we infer that the energy velocity vE itself
must be very small; we find from our analysis that vE (= 3DB/�

∗) is between 0.2
and 0.6 mm/μs. Such values are much smaller (around 2.5− 7 times smaller) than
either the shear or equipartitioned velocities of elastic waves in the sample (and
5− 15 times smaller than the longitudinal velocity), directly indicating how very
slow the transport of energy by diffuse waves is in this strongly scattering sample.
(We note that the energy velocity of diffuse waves has also been found to be small
in other types of samples containing resonant scatterers [19,28,29].) Our result is in
striking contrast with the surprising large values of vE (approximately 3− 5 times
larger than the velocity of longitudinal waves) previously deduced from the analysis
of data for a similar sample in the localization regime [17]. This suggests that the
large values of transport velocities observed previously are associated with Anderson
localization [30].
Our results for DB demonstrate that careful consideration of sample and experi-

mental details is necessary to obtain an accurate measurement of DB . Without taking
into account details about the geometry of the experiment, the theoretical prediction
for the diffusion coefficient is given simply by Δρ−2 = k2DBt (see the previous sec-
tion, and [6,7]). If this relation were used to measure DB from our experimental data,
we would obtain DB = 0.5 mm

2/μs, which differs by 30% from the actual value.

6 Conclusions

In this work, we have studied the dynamic coherent backscattering of ultrasound
from a 3D medium in the diffusion regime. We used an ultrasonic transducer array
to measure the backscattered ultrasound from a slab-shaped ‘mesoglass’, enabling
us to perform a very substantial amount of configurational averaging and to use a
sophisticated filtering technique to remove, for times> 20 μs, other contributions from
specular reflections, single scattering and recurrent scattering. As a result, accurate
measurements of the dynamic CBS intensity profiles were obtained as a function of
time and space/angle. We have described a microsopic derivation of the theory of CBS
for acoustic waves in 3D, which provides an excellent description of the experimental
data. The fitting of our CBS data with theory enables an absorption-free measurement
of the diffusion coefficient of ultrasound in our sample, which was determined to be
DB = 0.74± 0.03 mm2/μs and which agrees with results from separate transmission
experiments.
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11. A. Aubry, A. Derode, Phys. Rev. E 75, 026602 (2007)
12. A. Aubry, L.A. Cobus, S.E. Skipetrov, B.A. van Tiggelen, A. Derode, J.H. Page, Phys.
Rev. Lett. 112, 043903 (2014)

13. L.A. Cobus, A. Aubry, S.E. Skipetrov, B.A. van Tiggelen, A. Derode, J.H. Page, Phys.
Rev. Lett. 116, 193901 (2016)

14. L.A. Cobus, Doctoral thesis, University of Manitoba, 2016
15. D.S. Wiersma, M.P. van Albada, B.A. van Tiggelen, A. Lagendijk, Phys. Rev. Lett. 74,
4193 (1995)

16. B.A. van Tiggelen, D.A. Wiersma, A. Lagendijk, Europhys. Lett. 30, 1 (1995)
17. H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, Nat. Phys. 4,
945 (2008)

18. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University
Press, 1995)

19. H.P. Schriemer, M.L. Cowan, J.H. Page, P. Sheng, Z. Liu, D.A. Weitz, Phys. Rev. Lett.
79, 3166 (1997)

20. A. Tourin, Doctoral thesis, Université Paris VII, 1999
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