Supplementary material: Recurrent scattering and memory effect at the Anderson localization
transition
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RECURRENT SCATTERING FILTER [S3] and will be briefly recalled. The third step constituttes
important new extensioaf the previous method. This novel

This section describes the method to separate the recurreff€p is necessary to tackle the medium-range correlatibns o
scattering (RS) and the conventional multiple scatterig) ~ the MS field in the strongly scattering regime.
contributions. Our approach is inspireg previous studies
that have shown how to separate single scattering (SS) and
MS in weakly scattering media [S1-S3]. RS actually displays
the same statistical properties as 5&a deterministic spatial
coherence along the antidiagonals of the array reponséxmatr A rotation of matrix data is performed as depicted in
K, which is a manifestation of a long-range memory effect.Fig. SXa)-(b). It consists in building two matrices*) and
The idea is to take advantage of this property to filter RS fromA ) from matrixK:
the conventional MS background. However, albeit more re- @ _ [ 40 ) ,
stricted, a memory effect also exists for the MS contributio A = [Alm} of dimension(2M — 1) x (2M — 1),
[S4, S5]. For the matrixK, this implies that the MS far-field  sych thatd[1,m] = K[l +m — 1,m — [ + 2M — 1](S2)
speckle exhibits a finite correlation lengiH{S6, S7], which 5 @ ) _
can be expressed in units of the array pitchs AR = |:Alm:| of dimension(2M — 2) x (2M — 2),

5 ~ Awa/[pW (1)], (S1) such thatd® I, m] = K[l +m,m — 1 +2M — 1](S3)

Matrix rotation

with \,, the wavelength in wateg, the array-sample distance it 17 — (N + 3)/4. HereN = 61, soM = 16 is an

and W(t) the dynamic size of the diffusive halo as a func- gyen number. This rotation of data is illustratedFiig. S1

tion of time. In a weakly scattering regime, the diffusive halo Fig. SXa) shows an example of matri measured exper-
grows quickly enoughW’(¢) o v'Dt, with D the diffusion  jmentally at a given time. Fig. Sib) displays the matrix
constant) to consider the multiple scattering field as fully A (1) gptained after the rotation of data described above. The
correlated. The separation of SS and MS is then relatively.qjymns of matricesA ™ and A correspond to the an-

easy [S1-S3]. In a strongly scattering regime, the difisiv giagonals ofik. Therefore the coherence of recurrent scat-
halo grows much more slowly and can even saturate at th?ering now manifests itself along the columns Af!) and
Anderson transition. Hence, the separation between RS angl(z) A (1) contains the antidiagonals for which the source

conventional MS is more tricky but still possible. index s and the receiver index are of same parity, such that
The method used for this separation considta four-step  ; _ (s—7)/2+M+1andm = (s+r)/2 — M + 1 are

process: . . integers. A(?) contains the antidiagonals for whighand r

* Rotation of the matriXK(¢) and construction of two sub-  gre of opposite parity, such that (s—r—1)/2+ M and

matricesA ) (t) and A3 (1). m = (s +r+1)/2 + M are integersln the next subsection,

» Singular value decomposition (SVD) of matric&$? with e will no longer make the difference between matriaé$)
¢ = 1,2) in the frequency domainA (%) is decomposed as andA (2 pecause they are filtered in the same way. They will
the sum of two matricesA(?) = S + N, whereS andN  oih pe calledA. P is the dimension ofs.. For matrixA (1),
correspond to the signal subspace mainly associated with RS _ o,/ _ 1: for matrix A, P = 20/ — 2. Because of
and the noise subspace associated with conventional MS.  gatia| reciprocityK is symmetric ks, = k). Thus,A also
» Correction of the signal and noise subspaces to obtain egypibits a symmetry: each line of its upper part is identioal
timators of the RS and MS contributions in the time domain:g |ine of its lower part.
A%‘) (t) andAﬁ) (t). This correction is based on energy ar-
guments.
« Construction fromA{% (¢) and A (¢) of RS and MS ma- Singular value decomposition of A
trix estimatordk g () andKy (¢).

The first, second and fourth steps (rotation of data, SVD of A Fourier analysis of the matriA (¢) is first performed by
antidiagonals) have already been presented in a previodyg st means of a discrete Fourier transform (DFT). This yieldsta se
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FIG. S1: Different steps for the separation of RS and MS illustrated fepeesentative example of theatrix K at a given timg = 185 us
and frequencyf = 1.25 MHz. (a) Measured matri¥. (b) Matrix A*) deduced fronK by rotation of data. (c) Reduced matiik deduced
from A by back-rotation of data. (d) Signal subsp&ef A [Eq. (S9)] (e) Noise subspad® of A [Eq. (S10)] (f) Intensity profiles of
antidiagonal matrices: total intensify(continuous black line), signal subspace intengigy(blue dashed line), noise subspace intensity
(red dashed line)s + I (black dashed line), estimated RS intendity(blue continuous line), estimated MS intensity (red continuous
line). (g) Estimated RS antidiagonal matg . (h) Estimated MS antidiagonal matriy;. (i) Estimated RS matri&g. (j) Estimated MS
matrix Kyg.

of matricesA (f) at each frequency. The matrixA containa  MS contribution does not display such a deterministic behav
SS/RS component (matrixg) and MS componenAy that  ior. It can be expressed as a correlated random wave field:
we want to separate: Antllm] = vy, (S6)
A=ArtAm (S4) wherec; andd,,, are random coefficients. The memory ef-
Using the paraxial approximation to describe the wave propafect gives rise to a correlation between the line\gf;. This
gation outside of the scattering sample and assuming pointorrelation can be quantified with the coefficidii’] =<
like scatterersthe SS/RS contribution can be expressed ag;c;,;, >. We define the correlation lengthas the typical
[S1-S3] length scale of this correlation. In the experimental cbods
ke p? of the Letter, a typical value faf is of 4 array pitches
Ag[l,m] = exp {jZ(s — r)Q} Tm (S5) As in Ref. S3 a singular value decomposition (SVD) of
a the matrix A can be performed to separate SS/RS from MS.
with k,, the wave number in water ang, a random coeffi- The SVD decomposes a matrix into two subspacesigaal
cient. Remember that = (s — r)/2 + M + 1 for AM[I,m]  subspace (a matrix characterized by a long-range cowglati
and thatl = (s — r — 1)/2 + M for A®)[I,m]. Hence, each between its lines and/or columns) andaisesubspace (a ran-
column of the matrixAgr exhibits a known dependence as a dom matrix with possibly some short or medium-range corre-
function of indexi (parabolic phase term) which is the mani- lations between its entries). When the SVD is applied to the
festation of a long-range memory effect. On the contramy, th matrix A, we expect theignal subspacei ., the largest sin-
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gular values) to correspond to the SS/RS contributidz  subspaces as a function of tifieS(¢) andIN(¢). The partial
and thenoisesubspaceif. the smallest singular values) to mixing of RS and MS in noise and signal subspaces can be

correspond to the MS contributior ). pointed out by investigating the intensity profilesand/y as
The SVD of matrixA is given by a function ofl which is directly related to the distance between
- the sources and the receiver:
A=UAVI =Y\ u@v@! (S7)
g=1

Isll] = <|Slm|2> andIy[i] = <|Nlm|2> (S11)
where the symbof stands for transpose conjugatd. is &  \here the symbok - -- > denotes an ensemble averagée
square diagonal matrix of dimensidW, containing the real  paye checked that these mean intensities are indeed indepen
positive singular values, in a decreasing ordeA{ > A> > gent ofm. An example of the intensity profiles obtained at
> )\p).. U andY are square unitary matrices of dimension 5 given timet is shown in Fig.S1(f). Whereas the intensity
N. Their respective column&/‘@ and V(@ correspond to profile I associated with the signal subspace is a flat plateau
the singular vectors associated with each singular vajue characteristic of single/recurrent scattering, the isitgrpro-

A general issue is to determine which rank of singular valugie 7, does not display an intensity profile typical of multiple
separates theignal subspace from thaoisesubspace [S3].  gcatteringj.e a coherent backscattering peak on top of a flat

However, the paraxial approximation can be made here sinGgoherent background. This is because a part of the MS con-
the array-sample distaneeis much larger than the tranverse tinution emerges along the signal subspace. One can also

size of the arrayVp. The SS/RS contribution is then given by nqte that the sum afs and Iy is not equal to the total inten-
Eq. (S5)andAr is of rank 1. Hence, only the eigenspace as- . B 2 :
sociated with the first singular value corresponds to the sig- sity I[i} = <|Alm‘ > computed from the matrid. Although

nal subspace. For point-like scatterers, the elementg(df  the subspaceS andN are orthogonal in the frequency do-
are given by main, they are not necessardgin the time domain.

@ ewp? , To investigate the coupling between RS and MS

u;’ = exp [J 1 5T } /NP (S8)  eigenspacess andN can be expressed as a functionfof
and A by substituting Eq. (S4jnto Egs. (S9) and (S10)

withl = (s—r)/2+ M +1for A® andl = (s—r—1)/2+M  Thisyields

for A(?), In practice, due to the directivity of transducers and

the finite size of scatterers, the modulusf!) is not per-

fectly uniform. Consequently, a SVD d is needed to esti- S = Ag + UMUMTA, (S12)
mate the SS/RS subspace with the be_st precision. The signal N = Ay — UDUMIA,, (S13)
(S) and noiseN) subspaces are thus given by,

s = uMWyuMfa (S9)

N = A_UOyWia (S10) This last pair of equationspoints out the coupling term

ULDUDT A,
An example of the result provided by the SVD Afis shown
in Fig. S1 The signal and noise subspaces deduced fAom
[Fig. S1(b)]are shown irFFig. S1d) and (e), respectively. Ide-
ally, S should be devoid of conventional MS. However, the
latter contribution is not strictly orthogonal to the SS/&- .
space, especially as the MS field exhibits medium-range cofNt© Ed- (S13)
relations. Hence, a post-treatment is needed to correst thi
contamination of the signal subspace by MS.

We now derive the expressions of the noise and signal ma-
trix elementsN[l, m] andS[l, m|, as well as the correspond-
ing intensitiesI [/] and Is[l]. An expression for the noise
matrix entriesN|[l, m] can be found bygubstituting Eq. (S6)

P
Nit,m] = [cz —uV Zuﬁ”*ci] d  (S14)

Correction of the signal and noise subspaces i=1

An inverse discrete Fourier transform is first performed to
return to the time domain. This yields the signal and noiseThe intensity/ y[{] [EqQ. (S11)]can then be deduced:



P , P P
In[l] = | < |a* > —2Re {ul(l) Zugl)*F[Z — z]} + ‘ul(l)’ ZZugl)*ugl)F[i — 4| <ldml* > (S15)
i=1

i=1 j=1

(

Making the approximation thdt[i] = 0 for |i| > ¢ and as- u§1>*u§1> ~ 1/Pfor |i—j| < ¢ and the last equation becomes
suming thata/k,, >> p*§? (valid in our experiment), then

J

P P P
2 L1
Inll] = [< |cl\2>—ﬁ§ F[l—z]+ﬁ§:§: z—j] <l|dm|* > (S16)
=1 i=1j5=1

(

Finally, if P >> § (which is the case in our experiment), Zf; Zle Tli—j]~2P an:of[m]- It then follows that

J

IN[]—<|cl|2><|dm|2>+— Z 1—z+Zr ]<dm|2> (S17)

m=0

Inr [l]

Cnll]

This expression (S17) shows explicitly that[l] is given by  One can then derive the corresponding intensliy{l]
the sum ofthe conventional MS intensitl,; and a coupling [Eq. (S11)]
termCy . If we consider the case= 1, we can see that'y
vanishes and thaly [l = 1] ~ I [l = 1].
An expression for the signal matredementsS|l, m| can
also be found bgubstitutinghe expressiofor Ar [EQ. (S5)]
andAn [Eq. (S6)]into Eq. (S12):

P

S[tym] = uM v + Yl eid, (S18)
=1

|

2 P ?
= ‘ul(l)‘ < |rml? >+ <2Re {rf Zugl)*ci de} 1 |utV > (S19)
S——— =1 m

Ir[l]

Csll]

with Ir the recurrent scattering intensity ag a coupling  Cg, one can use the fact that the sumigfand I, should
term due to the residual multiple scattering intensity ia th be equal to the total intensity=< |a;,,|* >

2
signal subspace. If we make the approximation #b%t)‘

P~ [Eq. (S8)] Cs can be considered constant over
To estimate the residual multiple scattering contribution IMl] = IRl + Inm[l] (S20)
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FIG. S2: Numerical validation of the RS/MS separation method.
matrix Aj;. (c) Corresponding matriA’

(a) EMapnfsimulated RS matriAg. (b) Example of simulated MS

Ar + A} (d) Estimated RS matriA . (€) Estimated MS matriA},. (f) Intensity profiles

(continuous line):Ir(blue), Irs (red) and! (black) - Estimated intensity profiles before correction (dashed lings)blue), I (red) and
In + Is (black). Estimated intensity profiles after correction (square symhbbisjblue) and/ x (red).

UsingEgs. (S17)-(S19)we obtain
Cs + Cn[l] = Isl] + In[l] = I[I] (821)

Considering the last equatiamhen! = 1 and recalling that
Cn|l = 1] ~ 0 allows one to calculate the coefficiefit

Cs’ifs[l:1]—|—IN[ZZI]—IU=1] (822)

e if (s —r)/2is an integer,

then, K pa[s, 7] = Ay [(s — ) /2 + M, (s + 1) /2]

e if (s —r)/2is not an integer,

then, K g arfs, 7] = AR [(s —r —1)/2+ M, (s + 7 —1)/2]
Kgr andKy are estimators of the RS contribution and of the
conventional MS contribution, respectively.

OnceCys is known, one can deduce estimators for the RS in-

tensity and the conventional MS intensity:
Ipll) = Isll] - Cs (S23)
Inll) = 101 = Is[l] - Cs (S24)
This operation is illustrated ifig. S1(f) We check thaf

displays a profile typical of multiple scattering: a coheren

Numerical validation of the RS/M S separation method

In order tovalidateour approach, a numerical test has been
performed by generating random matrices with the same sta-
tistical properties as the experimental antidiagonal icest

The RS antidiagonal matribAgr has been simulated nu-

backscattering peak on top of a flat incoherent backgroungherically as follows. The procedurdirst consists in gener-

with an enhancement factor close to 2.

Estimators for the matriceAr and Ap; can be obtained
by renormalizingS andN such that/g[l] =< |Ag[l, m]|*> >
andly[l] =< |Ap[l,m]|? >. This renormalization yields

Ar =aS, Ay = A — oS, (S25)
1—-Cs/1Is[1]
This operation is illustrated iffig. S1 A and Ay shown

in Figs. S1(g)-(hjare obtained following the renormalization
of S andN [Figs. S1(d)-(e)]

with a =

Back-rotation of data

The last step is the reverse of the first one. Fn&m and
Ay, two estimators of the matricdér and Ky, of dimen-
sion(2M — 1) x (2M — 1), are built [sed~ig. S1(i)-(j)] with
a change of coordinates, back to the original system:

ating numerically a line vectoR whose elements are cir-
cularly symmetric complexzaussiarrandom variables with
zero mean. Then a matrix} is built by multiplying the col-
umn vectorU®) [Eq. (S8)]with the random line vectoR
[Eg. (S5)] One can show that the matrixy = UVR ex-
hibits the same correlation properties as the experim&tal
antidiagonal matriA r. The parameters that appear in the ex-
pression of vectotJ(Y) [Eq. (S8)]are chosen to be the same
as in the experimentz = 182 mm,p = 0.5 mm, f = 1.2
MHz. An example of numerical matriA thus obtained is
shown inFig. SZa).

As for the conventional MS contribution, the correlatam?
efficientI"; is firstassumedo follow a Gaussian dependence
I, = exp(—(?/4%). We will consider a correlation length of
4 array pitchesq = 4), a typical value in our experiment.
From this correlation coefficient, one can build a covar@anc
matrix J whose coefficients are given bj; = I';_;. The
next step consists in generating numerically a random colum
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FIG. S3: Backpropagation of the first singular vector versus time atahwle surface for eight realizations of disorder at frequehey1.2
MHz. z represents the coordinate along the surface.

vectorR’ whose elements are circularly symmetric complexeigenvectorU™) which yields the signal subspac® =
Gaussiarrandom variables with zero mean. Then, a corre-UMUMTA’ and the noise subspa® = A’ — S. The

lated random vectdB is built from R/, such that corresponding intensity profiles are shown in dashed lines i
Lo Fig. S2(f) As for experimental data, the noise subspace does
B =J'?R (S26)  not provide an intensity profile typical of multiple scattey

) . ) (flat incoherent background). However, once the correction
Or?e. can show that_th_e entriesBfexhibit the co_rr.elat|on €O~ given by Eq. (S23)s applied[square symbols in Fig. S2(f)]
efficientl’;. The antidiagonals should also exhibit the featurespa mean intensity profilel; andI,; are nicely recovered.

of spatial reciprocity and of coherent backscattering eNts As for the estimators of the RS and MS matricz?eg and
regime. o that aim, a new column vectdr= ¢} is built by Aivl, the agreement is not as good as for the intensity pro-

i B o ;o
surr;]n:;]ngz.B = [b] and its flipped counterpaB’ = [bp—i]  aq nyt sl acceptable. The RS and MS estimators shown in
such that: Figs. S2(d)-(epre compared to the RS and MS matrieeg
PR R
o =b +bp_, (S27) and Ay, [Figs. S2(a)-(b)] The averaged degree of similarity

between those matrices reaches values &f @dd 804 for
This vectorC is finally multiplied by a random line vector RS and MS, respectively.
D to yield a matrixA}; = C x D [Eq. (S6)] This matrix This numerical test validates our method unties con-
thus generated displays the same properties as the experimdlitions of our experiment. One has to remember that two
tal MS matrixAp;. An example of numerical matria}, is ~ Main conditions have to be fulfilled for the RS/MS separation
shown inFig. S2(b) As expected, it displays medium-range Method to be successfdu/k,, >> p?s* andP >> 4.
correlations along its columns. It also exhibits the featoir
spatial reciprocity since each line of its upper part is ozt

to a line of its lower part:A),[l,m] = A},[P — I, m]. The RECURRENT SCATTERING HOT SPOTS
corresponding intensity profil&,[/] has been calculated by
averaging| 4’;[{, m]|*> over m and over 1000 different real-  In the Letter, the singular value decomposition of the ma-

izations.I,, is displayed irFig. S2(f)and exhibits a coherent trix K has been investigated. A one-to-one correspondence
backscattering cone whose line shape is governed by the cdras been demonstrated between the highest singular values
relation coefficient’;. and predominant recurrent scattering paths ardu2dvHz.

Once the matriceA; andA}, are obtained, one can build The first singular vectoV; back-focuses on the same par-
the matrix A’ [Fig. S2(c)] as the sum of the RS and MS ticular location at regular time intervals (every 48 for the
contributions[Eq. (S4)] The corresponding intensity profile example shown in the LetterOur hypothesis is that this hot
Il =< |A%L[l,m]|* + | A4, [l,m]|? > is shown inFig. S2(fy  spot corresponds to the entry/exit point of a RS path at the
It displays a coherent backscattering peak with a linewidthsurface of the sample. The occurrence of the same hot spot
and an enhancement factor similar to experimental reséts [ periodically in time seems to indicate that it corresporals t
Fig. S1(f)]. successive round trips along the same RS path.

The previously described RS/MS separation method has The goal of this supplementary material is to demonstrate
been tested on randomly generated antidiagonal matAces that this result is not specific to the configuration of dissrd
To that aim, we have projected the mate over the RS  considered in the Letter. To that aim, the backpropagation



of V; is shown inFig. S3for eight other configurations of
disorder. Except irFig. S3(h) V; back-focuses on particu-

lar locations at regular time intervgBigs. S3(a)-(f)] These [S1] A. Aubry and A. Derode, Phys. Rev. Let02, 084301 (2009).

time intervals dependn the realization of disordewith val- [S2] A. Aubry and A. Derode, J. Appl. Phy06, 044903 (2009).

ues rangingrom 30 us [Fig. S3(g)] to 10Qus [Fig. S3(d)]  [s3] A. Aubry and A. Derode, J. Acoust. Soc. Ad®9, 225 (2011).
The variation of this time interval according the realizatof ~ [S4] I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. 62328
disorder strongly suggests that these hot spots are nobdue t  (1988).

specular reflections from the front and back sample boundS3] S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett.
aries, since then the intervals would be the same whateger th 61, 834 (1988). .

configuration of disorder. Note that Fig. S3(f) V, back- >0l I Freund, M. Rosenbluh, and R. Berkovits, Phys. Red9

. e ) 12403 (1989).
focuses onto two different Iocatlon$._: 12.5 mm at times [S7] E. Akkermans and G. Montambaux, Mesoscopic Physics of
t =90 and160 ps, andr = 9 mm at timest = 140 and210 Electrons and Photons(Cambridge University Press, London,
us. The emergence of these two hot spséparated byhe 2006).

same interval of time could indicate that thslyare parts of
the same recurrent scattering path.



