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RECURRENT SCATTERING FILTER

This section describes the method to separate the recurrent
scattering (RS) and the conventional multiple scattering (MS)
contributions. Our approach is inspiredby previous studies
that have shown how to separate single scattering (SS) and
MS in weakly scattering media [S1–S3]. RS actually displays
the same statistical properties as SS,i.e a deterministic spatial
coherence along the antidiagonals of the array reponse matrix
K, which is a manifestation of a long-range memory effect.
The idea is to take advantage of this property to filter RS from
the conventional MS background. However, albeit more re-
stricted, a memory effect also exists for the MS contribution
[S4, S5].For the matrixK, this implies that the MS far-field
speckle exhibits a finite correlation lengthδ [S6, S7], which
can be expressed in units of the array pitchp as

δ ∼ λwa/[pW (t)], (S1)

with λw the wavelength in water,a the array-sample distance
andW (t) the dynamic size of the diffusive halo as a func-
tion of time. In a weakly scattering regime, the diffusive halo
grows quickly enough (W (t) ∝

√
Dt, with D the diffusion

constant) to consider the multiple scattering field as fullyun-
correlated. The separation of SS and MS is then relatively
easy [S1–S3]. In a strongly scattering regime, the diffusive
halo grows much more slowly and can even saturate at the
Anderson transition. Hence, the separation between RS and
conventional MS is more tricky but still possible.

The method used for this separation consistsof a four-step
process:
• Rotation of the matrixK(t) and construction of two sub-
matricesA(1)(t) andA(2)(t).
• Singular value decomposition (SVD) of matricesA

(q) (with
q = 1, 2) in the frequency domain.A(q) is decomposed as
the sum of two matrices:A(q) = S + N, whereS andN
correspond to the signal subspace mainly associated with RS
and the noise subspace associated with conventional MS.
• Correction of the signal and noise subspaces to obtain es-
timators of the RS and MS contributions in the time domain:
Â

(q)
R (t) andÂ(q)

M (t). This correction is based on energy ar-
guments.
• Construction fromÂ(q)

R (t) andÂ(q)
M (t) of RS and MS ma-

trix estimatorŝKR(t) andK̂M(t).
The first, second and fourth steps (rotation of data, SVD of

antidiagonals) have already been presented in a previous study

[S3] and will be briefly recalled. The third step constitutesthe
important new extensionof the previous method. This novel
step is necessary to tackle the medium-range correlations of
the MS field in the strongly scattering regime.

Matrix rotation

A rotation of matrix data is performed as depicted in
Fig. S1(a)-(b). It consists in building two matricesA(1) and
A

(2) from matrixK:

A
(1) =

[

A
(1)
lm

]

of dimension(2M − 1)× (2M − 1),

such thatA(1)[l,m] = K[l +m− 1,m− l + 2M − 1](S2)

A
(2) =

[

A
(2)
lm

]

of dimension(2M − 2)× (2M − 2),

such thatA(2)[l,m] = K[l +m,m− l + 2M − 1](S3)

with M = (N + 3)/4. HereN = 61, soM = 16 is an
even number. This rotation of data is illustrated inFig. S1.
Fig. S1(a) shows an example of matrixK measured exper-
imentally at a given timet. Fig. S1(b) displays the matrix
A

(1) obtained after the rotation of data described above. The
columns of matricesA(1) and A

(2) correspond to the an-
tidiagonals ofK. Therefore the coherence of recurrent scat-
tering now manifests itself along the columns ofA

(1) and
A

(2). A
(1) contains the antidiagonals for which the source

indexs and the receiver indexr are of same parity, such that
l = (s − r)/2 + M + 1 andm = (s + r)/2 − M + 1 are
integers.A(2) contains the antidiagonals for whichs andr
are of opposite parity, such thatl = (s − r − 1)/2 +M and
m = (s+ r + 1)/2 +M are integers.In the next subsection,
we will no longer make the difference between matricesA

(1)

andA(2) because they are filtered in the same way. They will
both be calledA. P is the dimension ofA. For matrixA(1),
P = 2M − 1; for matrix A

(2), P = 2M − 2. Because of
spatial reciprocity,K is symmetric (ksr = krs). Thus,A also
exhibits a symmetry: each line of its upper part is identicalto
a line of its lower part.

Singular value decomposition of A

A Fourier analysis of the matrixA(t) is first performed by
means of a discrete Fourier transform (DFT). This yields a set
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FIG. S1: Different steps for the separation of RS and MS illustrated for arepresentative example of thematrixK at a given timet = 185 µs
and frequencyf = 1.25 MHz. (a) Measured matrixK. (b) MatrixA(1) deduced fromK by rotation of data. (c) Reduced matrixK deduced
from A by back-rotation of data. (d) Signal subspaceS of A [Eq. (S9)]. (e) Noise subspaceN of A [Eq. (S10)]. (f) Intensity profiles of
antidiagonal matrices: total intensityI (continuous black line), signal subspace intensityIS (blue dashed line), noise subspace intensityIN
(red dashed line),IS + IN (black dashed line), estimated RS intensityÎR (blue continuous line), estimated MS intensityÎM (red continuous
line). (g) Estimated RS antidiagonal matrix̂AR. (h) Estimated MS antidiagonal matrix̂AM. (i) Estimated RS matrix̂KR. (j) Estimated MS
matrixK̂M.

of matricesA(f) at each frequencyf . The matrixA contain a
SS/RS component (matrixAR) and MS componentAM that
we want to separate:

A = AR +AM (S4)

Using the paraxial approximation to describe the wave propa-
gation outside of the scattering sample and assuming point-
like scatterers, the SS/RS contribution can be expressed as
[S1–S3]

AR[l,m] = exp

[

j
kwp

2

4a
(s− r)2

]

rm (S5)

with kw the wave number in water andrm a random coeffi-
cient. Remember thatl = (s − r)/2 +M + 1 for A(1)[l,m]
and thatl = (s − r − 1)/2 +M for A(2)[l,m]. Hence, each
column of the matrixAR exhibits a known dependence as a
function of indexl (parabolic phase term) which is the mani-
festation of a long-range memory effect. On the contrary, the

MS contribution does not display such a deterministic behav-
ior. It can be expressed as a correlated random wave field:

AM [l,m] = cldm (S6)

wherecl anddm are random coefficients. The memory ef-
fect gives rise to a correlation between the lines ofAM. This
correlation can be quantified with the coefficientΓ[l′] =<
clc

∗
l+l′ >. We define the correlation lengthδ as the typical

length scale of this correlation. In the experimental conditions
of the Letter, a typical value forδ is of 4array pitches.

As in Ref. S3, a singular value decomposition (SVD) of
the matrixA can be performed to separate SS/RS from MS.
The SVD decomposes a matrix into two subspaces: asignal
subspace (a matrix characterized by a long-range correlation
between its lines and/or columns) and anoisesubspace (a ran-
dom matrix with possibly some short or medium-range corre-
lations between its entries). When the SVD is applied to the
matrixA, we expect thesignalsubspace (i.e., the largest sin-
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gular values) to correspond to the SS/RS contribution (AR)
and thenoisesubspace (i.e., the smallest singular values) to
correspond to the MS contribution (AM).

The SVD of matrixA is given by

A = UΛV
† =

P∑

q=1

λqU
(q)

V
(q)† (S7)

where the symbol† stands for transpose conjugate.Λ is a
square diagonal matrix of dimensionN , containing the real
positive singular valuesλq in a decreasing order (λ1 > λ2 >
... > λP ). U andV are square unitary matrices of dimension
N . Their respective columnsU(q) andV(q) correspond to
the singular vectors associated with each singular valueλq.

A general issue is to determine which rank of singular value
separates thesignal subspace from thenoisesubspace [S3].
However, the paraxial approximation can be made here since
the array-sample distancea is much larger than the tranverse
size of the arrayNp. The SS/RS contribution is then given by
Eq. (S5)andAR is of rank 1. Hence, only the eigenspace as-
sociated with the first singular valueλ1 corresponds to the sig-
nal subspace. For point-like scatterers, the elements ofU

(1)

are given by

u
(1)
l = exp

[

j
kwp

2

4a
(s− r)2

]

/
√
P (S8)

with l = (s−r)/2+M+1 for A(1) andl = (s−r−1)/2+M
for A(2). In practice, due to the directivity of transducers and
the finite size of scatterers, the modulus ofU

(1) is not per-
fectly uniform. Consequently, a SVD ofA is needed to esti-
mate the SS/RS subspace with the best precision. The signal
(S) and noise (N) subspaces are thus given by,

S = U
(1)

U
(1)†

A (S9)

N = A−U
(1)

U
(1)†

A (S10)

An example of the result provided by the SVD ofA is shown
in Fig. S1. The signal and noise subspaces deduced fromA

[Fig. S1(b)]are shown inFig. S1(d) and (e), respectively. Ide-
ally, S should be devoid of conventional MS. However, the
latter contribution is not strictly orthogonal to the SS/RSsub-
space, especially as the MS field exhibits medium-range cor-
relations. Hence, a post-treatment is needed to correct this
contamination of the signal subspace by MS.

Correction of the signal and noise subspaces

An inverse discrete Fourier transform is first performed to
return to the time domain. This yields the signal and noise

subspaces as a function of timet, S(t) andN(t). The partial
mixing of RS and MS in noise and signal subspaces can be
pointed out by investigating the intensity profilesIS andIN as
a function ofl which is directly related to the distance between
the sources and the receiverr:

IS [l] =
〈

|Slm|2
〉

andIN [l] =
〈

|Nlm|2
〉

(S11)

where the symbol< · · · > denotes an ensemble average.We
have checked that these mean intensities are indeed indepen-
dent ofm. An example of the intensity profiles obtained at
a given timet is shown in Fig.S1(f). Whereas the intensity
profile IS associated with the signal subspace is a flat plateau
characteristic of single/recurrent scattering, the intensity pro-
file IN does not display an intensity profile typical of multiple
scattering,i.e a coherent backscattering peak on top of a flat
incoherent background. This is because a part of the MS con-
tribution emerges along the signal subspace. One can also
note that the sum ofIS andIN is not equal to the total inten-

sity I[l] =
〈

|Alm|2
〉

computed from the matrixA. Although

the subspacesS andN are orthogonal in the frequency do-
main, they are not necessarilysoin the time domain.

To investigate the coupling between RS and MS
eigenspaces,S andN can be expressed as a function ofAR

andAM by substituting Eq. (S4)into Eqs. (S9) and (S10).
This yields

S = AR +U
(1)

U
(1)†

AM (S12)

N = AM −U
(1)

U
(1)†

AM (S13)

This last pair of equationspoints out the coupling term
U

(1)
U

(1)†
AM.

We now derive the expressions of the noise and signal ma-
trix elementsN [l,m] andS[l,m], as well as the correspond-
ing intensitiesIN [l] and IS [l]. An expression for the noise
matrix entriesN [l,m] can be found bysubstituting Eq. (S6)
into Eq. (S13):

N [l,m] =

[

cl − u
(1)
l

P∑

i=1

u
(1)∗
i ci

]

dm (S14)

The intensityIN [l] [Eq. (S11)]can then be deduced:
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IN [l] =



< |cl|2 > −2Re

{

u
(1)
l

P∑

i=1

u
(1)∗
i Γ[l − i]

}

+
∣
∣
∣u

(1)
l

∣
∣
∣

2 P∑

i=1

P∑

j=1

u
(1)∗
i u

(1)
j Γ[i− j]



 < |dm|2 > (S15)

Making the approximation thatΓ[i] = 0 for |i| > δ and as-
suming that2a/kw >> p2δ2 (valid in our experiment), then

u
(1)∗
i u

(1)
j ∼ 1/P for |i−j| < δ and the last equation becomes

IN [l] =



< |cl|2 > − 2

P

P∑

i=1

Γ[l − i] +
1

P 2

P∑

i=1

P∑

j=1

Γ[i− j]



 < |dm|2 > (S16)

Finally, if P >> δ (which is the case in our experiment),
∑P

i=1

∑P
j=1 Γ[i− j] ∼ 2P

∑δ
m=0 Γ[m]. It then follows that

IN [l] = < |cl|2 >< |dm|2 >
︸ ︷︷ ︸

IM [l]

+
2

P

[

−
P∑

i=1

Γ[l − i] +

δ∑

m=0

Γ[m]

]

< |dm|2 >

︸ ︷︷ ︸

CN [l]

(S17)

This expression (S17) shows explicitly thatIN [l] is given by
the sum of the conventional MS intensityIM and a coupling
termCN . If we consider the casel = 1, we can see thatCN

vanishes and thatIN [l = 1] ≃ IM [l = 1].
An expression for the signal matrixelementsS[l,m] can

also be found bysubstitutingthe expressionfor AR [Eq. (S5)]
andAN [Eq. (S6)]into Eq. (S12):

S[l,m] = u
(1)
l rm + u

(1)
l

P∑

i=1

u
(1)∗
i cidm (S18)

One can then derive the corresponding intensityIS [l]
[Eq. (S11)]

IS [l] =
∣
∣
∣u

(1)
l

∣
∣
∣

2

< |rm|2 >
︸ ︷︷ ︸

IR[l]

+

〈

2Re

{

r∗l

P∑

i=1

u
(1)∗
i ci

∑

m

dm

}

+

∣
∣
∣
∣
∣
u
(1)
l

P∑

i=1

u
(1)∗
i cidm

∣
∣
∣
∣
∣

2〉

︸ ︷︷ ︸

CS [l]

(S19)

with IR the recurrent scattering intensity andCS a coupling
term due to the residual multiple scattering intensity in the

signal subspace. If we make the approximation that
∣
∣
∣u

(1)
l

∣
∣
∣

2

∼
P−1 [Eq. (S8)], CS can be considered constant overl.

To estimate the residual multiple scattering contribution

CS , one can use the fact that the sum ofIR andIM should
be equal to the total intensityI =< |alm|2 >

I[l] = IR[l] + IM [l] (S20)
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FIG. S2: Numerical validation of the RS/MS separation method. (a) Example of simulated RS matrixA′

R. (b) Example of simulated MS
matrixA′

M. (c) Corresponding matrixA′
= A

′

R +A
′

M. (d) Estimated RS matrix̂A′

R. (e) Estimated MS matrix̂A′

M. (f) Intensity profiles
(continuous line):IR(blue), IM (red) andI (black) - Estimated intensity profiles before correction (dashed lines):IS (blue), IN (red) and
IN + IS (black). Estimated intensity profiles after correction (square symbols):ÎR (blue) andÎN (red).

UsingEqs. (S17)-(S19), we obtain

CS + CN [l] = IS [l] + IN [l]− I[l] (S21)

Considering the last equationwhen l = 1 and recalling that
CN [l = 1] ≃ 0 allows one to calculate the coefficientCS

CS ≃ IS [l = 1] + IN [l = 1]− I[l = 1] (S22)

OnceCS is known, one can deduce estimators for the RS in-
tensity and the conventional MS intensity:

ÎR[l] = IS [l]− CS (S23)

ÎM [l] = I[l]− IS [l]− CS (S24)

This operation is illustrated inFig. S1(f). We check that̂IM
displays a profile typical of multiple scattering: a coherent
backscattering peak on top of a flat incoherent background
with an enhancement factor close to 2.

Estimators for the matricesAR andAM can be obtained
by renormalizingS andN such that̂IR[l] =< |ÂR[l,m]|2 >
andÎM [l] =< |ÂM [l,m]|2 >. This renormalization yields

ÂR = αS, ÂM = A− αS, (S25)

with α =
√

1− CS/IS [1]

This operation is illustrated inFig. S1. ÂR andÂM shown
in Figs. S1(g)-(h)are obtained following the renormalization
of S andN [Figs. S1(d)-(e)].

Back-rotation of data

The last step is the reverse of the first one. FromÂR and
ÂM, two estimators of the matricesKR andKM, of dimen-
sion(2M − 1)× (2M − 1), are built [seeFig. S1(i)-(j)] with
a change of coordinates, back to the original system:

• if (s− r)/2 is an integer,
then,K̂R,M [s, r] = Â

(1)
R,M [(s− r)/2 +M, (s+ r)/2]

• if (s− r)/2 is not an integer,
then,K̂R,M [s, r] = Â

(2)
R,M [(s− r− 1)/2+M, (s+ r− 1)/2]

K̂R andK̂M are estimators of the RS contribution and of the
conventional MS contribution, respectively.

Numerical validation of the RS/MS separation method

In order tovalidateour approach, a numerical test has been
performed by generating random matrices with the same sta-
tistical properties as the experimental antidiagonal matrices.

The RS antidiagonal matrixAR has been simulated nu-
merically as follows. The procedurefirst consists in gener-
ating numerically a line vectorR whose elements are cir-
cularly symmetric complexGaussianrandom variables with
zero mean. Then a matrixA′

R is built by multiplying the col-
umn vectorU(1) [Eq. (S8)] with the random line vectorR
[Eq. (S5)]. One can show that the matrixA′

R = U
(1)

R ex-
hibits the same correlation properties as the experimentalRS
antidiagonal matrixAR. The parameters that appear in the ex-
pression of vectorU(1) [Eq. (S8)]are chosen to be the same
as in the experiment:a = 182 mm, p = 0.5 mm, f = 1.2
MHz. An example of numerical matrixA′

R thus obtained is
shown inFig. S2(a).

As for the conventional MS contribution, the correlationco-
efficientΓl is first assumedto follow a Gaussian dependence
Γl = exp(−l2/δ2). We will consider a correlation length of
4 array pitches (δ = 4), a typical value in our experiment.
From this correlation coefficient, one can build a covariance
matrix J whose coefficients are given byJij = Γi−j . The
next step consists in generating numerically a random column
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FIG. S3: Backpropagation of the first singular vector versus time at thesample surface for eight realizations of disorder at frequencyf = 1.2

MHz. x represents the coordinate along the surface.

vectorR′ whose elements are circularly symmetric complex
Gaussianrandom variables with zero mean. Then, a corre-
lated random vectorB is built fromR

′, such that

B = J
1/2

R
′ (S26)

One can show that the entries ofB exhibit the correlation co-
efficientΓl. The antidiagonals should also exhibit the features
of spatial reciprocity and of coherent backscattering in the MS
regime. To that aim, a new column vectorC = [cl] is built by
summingB = [bl] and its flipped counterpartB′ = [bP−l]
such that:

cl = bl + bP−l (S27)

This vectorC is finally multiplied by a random line vector
D to yield a matrixA′

M = C×D [Eq. (S6)]. This matrix
thus generated displays the same properties as the experimen-
tal MS matrixAM. An example of numerical matrixA′

M is
shown inFig. S2(b). As expected, it displays medium-range
correlations along its columns. It also exhibits the feature of
spatial reciprocity since each line of its upper part is identical
to a line of its lower part:A′

M [l,m] = A′
M [P − l,m]. The

corresponding intensity profileIM [l] has been calculated by
averaging|A′

M [l,m]|2 overm and over 1000 different real-
izations.IM is displayed inFig. S2(f)and exhibits a coherent
backscattering cone whose line shape is governed by the cor-
relation coefficientΓl.

Once the matricesA′
R andA′

M are obtained, one can build
the matrixA′ [Fig. S2(c)] as the sum of the RS and MS
contributions[Eq. (S4)]. The corresponding intensity profile
I[l] =< |A′

R[l,m]|2 + |A′
M [l,m]|2 > is shown inFig. S2(f).

It displays a coherent backscattering peak with a linewidth
and an enhancement factor similar to experimental results [see
Fig. S1(f)].

The previously described RS/MS separation method has
been tested on randomly generated antidiagonal matricesA.
To that aim, we have projected the matrixA′ over the RS

eigenvectorU(1) which yields the signal subspaceS =
U

(1)
U

(1)†
A

′ and the noise subspaceN = A
′ − S. The

corresponding intensity profiles are shown in dashed lines in
Fig. S2(f). As for experimental data, the noise subspace does
not provide an intensity profile typical of multiple scattering
(flat incoherent background). However, once the correction
given by Eq. (S23)is applied[square symbols in Fig. S2(f)],
the mean intensity profilesIR andIM are nicely recovered.

As for the estimators of the RS and MS matricesÂ
′
R and

Â
′
M, the agreement is not as good as for the intensity pro-

files but still acceptable. The RS and MS estimators shown in
Figs. S2(d)-(e)are compared to the RS and MS matricesA

′
R

andA′
M [Figs. S2(a)-(b)]. The averaged degree of similarity

between those matrices reaches values of 90% and 80% for
RS and MS, respectively.

This numerical test validates our method underthe con-
ditions of our experiment. One has to remember that two
main conditions have to be fulfilled for the RS/MS separation
method to be successful:2a/kw >> p2δ2 andP >> δ.

RECURRENT SCATTERING HOT SPOTS

In the Letter, the singular value decomposition of the ma-
trix K has been investigated. A one-to-one correspondence
has been demonstrated between the highest singular values
and predominant recurrent scattering paths around1.2 MHz.
The first singular vectorV1 back-focuses on the same par-
ticular location at regular time intervals (every 40µs for the
example shown in the Letter). Our hypothesis is that this hot
spot corresponds to the entry/exit point of a RS path at the
surface of the sample. The occurrence of the same hot spot
periodically in time seems to indicate that it corresponds to
successive round trips along the same RS path.

The goal of this supplementary material is to demonstrate
that this result is not specific to the configuration of disorder
considered in the Letter. To that aim, the backpropagation
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of V1 is shown inFig. S3for eight other configurations of
disorder. Except inFig. S3(h), V1 back-focuses on particu-
lar locations at regular time intervals[Figs. S3(a)-(f)]. These
time intervals dependon the realization of disorder,with val-
ues rangingfrom 30µs [Fig. S3(g)] to 100µs [Fig. S3(d)].
The variation of this time interval according the realization of
disorder strongly suggests that these hot spots are not due to
specular reflections from the front and back sample bound-
aries, since then the intervals would be the same whatever the
configuration of disorder. Note that inFig. S3(f), V1 back-
focuses onto two different locations:x = 12.5 mm at times
t = 90 and160 µs, andx = 9 mm at timest = 140 and210
µs. The emergence of these two hot spotsseparated bythe
same interval of time could indicate that theyshare parts of
the same recurrent scattering path.
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