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Abstract: Materials properties show a dependence on the dimensionality of the systems stud-
ied. Due to the increased importance of surfaces and edges, lower-dimensional systems display
behavior that may be widely different from their bulk counterparts. As a means to comple-
ment the newly developed experimental methods to study these reduced dimensional systems,
a large fraction of the theoretical effort in the field continues to be channeled towards computer
simulations. This chapter reviews briefly the computational methods used for the low dimen-
sional materials and presents how the materials properties change with dimensionality. Low
dimensional systems investigated are classified into a few broad classes: D nanoparticles, D
nanotubes, nanowires, nanorods, and D graphene and derivatives. A comprehensive literature
will guide the readers’ interest in computational materials sciences.

Introduction

Hierarchy of Methods

Methods for materials modeling are based on the particular length and time scales used for the
investigation of various materials properties that operate only over those scales. This has led
to basically four independent methodological streams, which may be categorized as ab-initio
density functional theory, molecular dynamics, statistical methods based onMonte Carlo algo-
rithms, and continuum mechanics (see > Fig. - for the ranges of them). Each of these is
computationally intensive within its own range. However, the expanding capabilities of com-
putational methods due to the increasing power of computers and continuing development
of efficient algorithms, together with advances in the synthesis, analysis, and visualization of
materials at increasingly finer spatial and temporal resolutions, have spawned a huge effort in
the modeling of materials phenomena.

Since the materials properties are directly related with the dimensionality of materials,
particularly at the nanoscale, it would be better to classify the methods of modeling of nanos-
tructures with respect to the dimensionality, such as zero-dimensional (D), one-dimensional
(D), two-dimensional (D), and three-dimensional (D) materials. At the nanoscale the
first three dimensionalities (D, D, D) are commonly used, but the D materials are usu-
ally considered as macroscopic systems; therefore those materials are not the subject of
this chapter.

D Structures: Nanoparticles

The class of nanomaterials that may be termed zero-dimensional comprise systems that are con-
fined within up to several hundreds of nanometers in all three dimensions. Although there
exists no clear-cut size threshold at which a system switches from a zero-dimensional system
to bulk, there is a rather well-defined class of systems that fit the above definition with unique
and intriguing properties.Themost commonly studied zero-dimensional systems are quantum
dots, nanoparticles (or clusters), and cage-like structures. In this section, we shall begin with an
overview of methods used to study such materials.

After the s, the field of nanoparticles has seen increasing activity. The results of these
studies and their applications have been collected in several reviews (Balasubramanian ;
Baletto and Ferrando ; Bonacic-Koutecky et al. ; Brack ; de Heer ; Halicioglu



Modeling of Nanostructures  

1 Å

1 ps

1 ns

1 μs

1 ms

T
im

e

1 s

10 s

10 Å 100 Å 1000 Å 1 μm 10 μm

Length

Molecular
Dynamics

Density
Functional

Theory

(a)

(b)

(c)

(d)
Monte Carlo

Methods

Continuum
Equations

⊡ Fig. -
Rangesof scalesused fordifferentmethods inmaterialsproperties (Adapted fromVvedensky)

andBauschlicher ;Morse ;Ustunel andErkoc ;Weltner andVanZee ). Studies
on clusters have been concentrated on such diverse applications as catalysis, chemisorption and
substrate adsorption, laser applications, magnetism, nucleation, photographic processes, and
reactivity.

The term clustermay, in the broadest sense, be defined as an aggregate of atoms ormolecules
that form a size regime between molecules and bulk materials. It is far from a straightforward
task to define the range of number of atoms which constitute a cluster. In contrast to their bulk
counterparts, structural and electronic properties of clusters display a rather strong dependence
on size and geometric configuration due to their large surface-to-volume ratio. Thus in order
to understand the properties of clusters a careful determination of the equilibrium structure is
crucial. In general, the equilibrium geometry is determined by locating the global minimum of
the potential energy surface (PES) of a cluster, which in principle can be mapped out by calcu-
lating the total energy as a function of all possible locations of the atoms. Unfortunately even
the smallest clusters often have extremely complicated potential energy surfaces with practi-
cally countless local minima.This requires a thorough search over the entire PES for a realistic
determination of the equilibrium structure.

An added complication to the difficulty of determining the global minima is that clusters
with different but similar sizes of the same material may present PESs that are entirely dif-
ferent. It is likely then that the equilibrium shape of a cluster of a given material and size is
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significantly different from a different size cluster of the same material. Fortunately, some sim-
ilarities may be found in the vast number of possible structures. Mass spectroscopy of clusters
reveal that certain sizes of clusters are preferred over others, indicated by the high abundance
detected (Martin ). The number of atoms or molecules in a preferred cluster is commonly
referred to as a magic number. The origin of a magic number may be the completion of a geo-
metric or an electronic shell of the cluster. The particular geometric or electronic shell being
completed obviously depends upon the constituents of the clusters and the bonding between
them. For instance, noble gases are found in polyhedral form whereas metallic clusters prefer
cubic or prolate structures (Johnston ).The search for magic numbers has been the subject
of a very large number of works (Anagnostatos ; Balasubramanian ; Bonacic-Koutecky
et al. ; Haberland ; Jarrold and Constant ; Moraga ; Yang et al. ).

In order to map out the energy landscape of nanoparticles an adequate model for the
interatomic interactions within the cluster needs to be employed. Empirical potentials, the
tight-binding approximation, and density-functional theory whose brief description has been
given in previous sections are the most commonly used methods in literature. While empiri-
cal potentials (Erkoc , ) offer an efficient means of exploring the PES and determining
the equilibrium structure of large clusters, calculations based on the tight-binding approxima-
tion and density functional theory are preferred for more accurate and detailed description of
geometrical and electronic properties of small to medium sized clusters.

Once the method of choice is determined for interatomic interactions, the corresponding
potential energy surface may be explored using global search algorithms to determine the low-
est lying minima. A concise review of global optimization methods are given in the reviews
(Baletto and Ferrando ; Dugan and Erkoc ; Wales and Doye ). Here, we shall
briefly describe a few of them.

The basin hopping algorithm (Wales and Doye ) belongs to a class of optimization
methods called hypersurface deformation methods. These methods aim to simplify the PES by
applying a map that smooths it out. The global minimum of the simplified PES is then mapped
back to that of the real PES assuming that it leads back to the global minimumof the real PES. In
the basin hopping algorithm, the original, complicated PES, U(r⃗), is transformed onto a step-
like function Ũ(r⃗) according to the rule (Baletto and Ferrando ; Wales and Doye )

Ũ(r⃗) = min[U(r⃗)], (.)

where the min function implies that a local minimization is to be applied such as the conjugate
gradients algorithm (Hestenes and Stiefel ).

In many of the cluster applications using basin hopping (Bromley and Flikkema ; Doye
andWales ; Hsu and Lai ;Wales andDoye ), this transformed PES is sampled with
a Monte Carlo algorithm, sometimes with a fixed acceptance (Wales and Doye ).

The second method we shall mention is the simulated annealing method (Kirkpatrick et al.
), in which the system is evolved at high temperature and then gradually cooled down.
Assuming that the system does not get trapped in a basin of attraction which is not the mini-
mum, it reaches the state of lowest energy during the cooling process. Attempts to use simulated
annealing to find the global energy minimum in larger systems is frustrated by high-energy
barriers that trap the system in metastable configurations (Ma andWang ).

Finally, we briefly describe a class of algorithms that has recently gained popularity, namely,
genetic algorithms. Genetic algorithms(GAs) are based on ideas borrowed from natural evolu-
tion. As explained in Darby and coworkers (), they employ operators that are analogues of
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the evolutionary processes of genetic crossover, mutation, and natural selection. A GA can be
applied to any problem where the variables to be optimized can be encoded to form a string,
each string representing a trial solution to the system. In cluster terminology each string is
a list of coordinates of a cluster. An initial number of clusters are chosen according to some
generation scheme (usually random) and locally minimized.

After the creation of the initial generation of strings, each member of this generation is
assigned a fitness parameter based on a fitness function. In Darby and coworkers (), for
example, this function was chosen to be the negative exponent of the deviation of the total
energy of each cluster from the cluster with minimum energy.

Once a fitness parameter is assigned to eachmember of the population, a new generation is
created: Two parents are chosen from members with high fitness parameter for each offspring
(member of the new generation) and then subjected to the crossover operation. A crossover
operation for clusters consists of a particular rearrangement and combination of the atomic
coordinates in the parent clusters. For an example, see Darby and coworkers (). After each
new cluster is generated a local minimization is performed. Mating continues in this way until
the desired number of offsprings are generated. New fitness parameters are assigned to each
offspring. In order tomaintain diversity, new genetic material is introduced into the population
by means of the mutation operator. After mutation in a cluster population, clusters are once
again locally minimized.

Finally the next generation is completed by applying natural selection.The previous genera-
tion and the new generation are ranked in order of fitness and the best N individuals (clusters)
are chosen, whereN is the population of the original population.TheseN individuals constitute
the new generation, and mating is performed again.

The process of mating, mutation, and selection is repeated for a predetermined number
of generations or until a given criterion is reached. This criterion could be, for example, the
convergence of the highest fitness to a plateau so that consecutive generations do not produce
better results.

Other global search algorithms include parallel random tunneling, conformational space
annealing, greedy search method, simulated annealing, quantum annealing, smoothing and
hypersurface deformation techniques, lattice methods, growth sequence analysis, and replica
exchange method.

Global Optimization with Empirical Potentials

In spite of the wealth of information they provide, global search algorithms ordinarily fail to
identify all the minima of a given cluster.The best explored potential surface for clusters belong
to possibly the simplest empirical potential, namely, the Lennard-Jones potential.The Lennard-
Jones potential is a simple model that captures the long- and short-range behavior of atoms
and molecules. It was proposed in  by J. E. Lennard-Jones () and has been used in
innumerable studies ever since. It has the following simple form

V(r) = є [(
σ
r
)

− (

σ
r
)

] , (.)

where є and σ are parameters that determine the depth and the width of the potential well,
respectively, and r is the interatomic distance between atom pairs.
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The four known structural forms for the LJ potential are (Hartke ) as seen in
> Fig. -:
. Icosahedral: formed by starting from the pentagonal bipyramid and adding a further layer

of atoms.
. Decahedral: icosahedral core surrounded by fcc stacks.
. Tetrahedral: tetrahedron of atoms in the innermost core.
. Face-centered cubic : sections of the fcc bulk structure.

For N < , , Lennard-Jones clusters follow an icosahedral pattern growth with magic
numbers corresponding to Mackay icosahedra (Mackay ) for N = , , , , etc.
In between thesemagic numbers,most of the structures areMackay-like with incomplete outer
layers. Exceptions occur when there are alternative structures with complete shells. These are
mostly Marks decahedra (Doye ) but there are instances of an fcc truncated octahedron
and a Leary tetrahedron (Noya and Doye ). The preference for icosahedral structures of
Lennard-Jones clusters at small sizes is thought to be due to a trade-off between optimal bond
distance and strain (Hartke ; Krainyukova ).

In spite of its simplicity, the Lennard-Jones potential may not be used for accurate descrip-
tion of cluster properties with the possible exception of noble gas clusters. Often empirical
potentials that involve a larger number of parameters than the two-parameter Lennard-Jones
potential are employed for structural determination.

To understand their behavior at finite temperature, Wu and coworkers studied Zn clusters
using the Gupta potential by means of molecular dynamics (Wu et al. ). Zn clusters are
found to display peculiar structures that are very different from other sp-type metal clusters.
The N =  cluster, for instance, has a disordered structure instead of the icosahedral struc-
ture found in most metals of the same size. The Cv curve also differs in that it has a double

n = 147

n = 98 n = 38

n = 103 Decahedral

Face-centered cubic

Icosahedral

Tetrahedral

⊡ Fig. -
The four basic structures of Lennard-Jones clusters (Reprinted with permission fromHartke ().
© () by Wiley-VCH Verlag GmbH & Co. KGaA)
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peak structure, whereas icosahedral structures display a single peak.The ΔE study inWu et al.
() reveals that magic structures are found at N = , , , , , , , and .

In a study byRey and coworkers (), several transitionmetal clusters (Ni, Pd,Au, andAg)
were studied using different model potentials. Three different embedded atom models (EAM)
and two different parameterizations of an N-body analytical potential were considered. For Ni
clusters, although the binding energies provided by the various models showed differences, the
peak stability was obtained for all the models at N =  (icosahedron) and N =  (double
icosahedron). In this work (Rey et al. ), earlier experiments on large Ni clusters (N = –
) are also quoted where icosahedral growth was observed. For Ni the EAM that was fitted
to bulk values(EAM) gave poorer results than the one fitted to diatomic values. For Pd, Au,
and Ag, only EAM and one of parameterizations of the analytical potential(TBM) were com-
pared. EAM failed to yield enhanced stability for N =  and N = , while TBM mostly gave
icosahedral structures for both sizes. This shows the importance of parameterization for the
accuracy of the model potentials.

In a recent study by Doye (), results for Pb clusters were calculated and compared for
theGupta potential and a glue potential in combinationwith a basin-hopping algorithm.Within
the Gupta potential framework, Pb clusters, in contrast to Si, Ge, and Sn, do not show any
tendency to form prolate or oblate structures. Their structures are mostly spherical with deca-
hedra being the most favored structure followed by close-packed. This study also presents an
interesting comparison between the Gupta potential and the glue potential, which reveals that
there is virtually no agreement between the two potentials neither in the magic numbers nor in
the resulting structures. This sharp discrepancy demonstrates that one should be very careful
while comparing results from differentmethods.More disordered structures are favored for the
glue potential than the Gupta potential because the embedding term dominates for the latter.

An interesting result from thework ofDoye () is that for theGupta potential the uncen-
tered Mackay icosahedron with N =  is more stable than the complete N =  Mackay
icosahedron. This is because of the strain applied by the external atoms on the center, making
it unfavorable to be occupied.

As a final remark on empirical potentials, we note that the particular parameterization
of the potential plays a crucial role in correctly identifying structural properties, and caution
should therefore be used in interpreting results for empirical potentials. For instance, according
to (Michaelian et al. ), the global minima of Au clusters are difficult to localize because of
the short range of the Au potential. As the range of a potential decreases, the number of global
minima associatedwith the potential increases. As a result of this, different studies have identi-
fied different global minima for Au clusters. In addition different potential models for themetal
yield different ordering of the lowest lying minima.

Local Optimization with Higher AccuracyMethods

Outside of the domain of simple empirical potentials, identifying the global minima of clus-
ter PESs becomes a prohibitively demanding task. Therefore, most studies on the theoretical
determination of cluster minima employ methods that either focus on local minima obtained
through an adequate initial guess or a mixture of global search algorithms with simple poten-
tials to reduce the number of minima followed by local minimization techniques that are more
accurate.
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Themajority of elements, regardless of whether they prefer atomic shells or electronic shells
form clusters that are more or less spherical. The only elements that deviate from this behav-
ior is the group IVA elements. This is especially remarkable in carbon, which goes from linear
chains all the way to fullerenes. Clusters of Si and Ge first grow in one dimension and then
abruptly change to form spherical clusters (Shvartsburg and Jarrold ). Some similarities
exist between the growth patterns of Si and Ge cluster but major differences also occur espe-
cially concerning the size at which transition to bulk-like structures takes place (Shvartsburg
and Jarrold ).

Because Si clusters undergo such a drastic change in cross section, an excellent experimental
technique exists for studying the structure as a function of size. This technique (Jarrold and
Constant ) is based upon the difference in the mobility of cluster ions that have different
shapes.The ionmobility of a cluster depends on its rotationally averaged collision cross section,
which depends on its size. Prolate and oblate geometries have a larger cross section and therefore
smaller mobilities (Sieck et al. ). Mobility studies indicate that Sin clusters undergo a phase
transition at about n = – from elongated to spherical whereas for the Ge clusters this
transition size is between n =  and n =  (Jarrold and Constant ; Shvartsburg and
Jarrold ).

The growth sequence of Si is realized by adding on small building blocks to smaller struc-
tures. In particular, Si (Shvartsburg and Jarrold ) and Si (Baletto and Ferrando )
have enhanced stability and, therefore, act as the fundamental building blocks. On the other
hand, medium-sized Si clusters are quasispherical but not crystalline. Crystallinity does not
become apparent until N gets as large as a few hundred atoms (Baletto and Ferrando ).

In the simulated annealing and DFT-based tight-binding work by Sieck and cowork-
ers (), a prolateness parameter is defined as follows

p =


∑
j=
(I j − Î) = −

I

+ I −

I

, (.)

where  < I ≤ I and Î = (I + I)/. For an oblate structure p < , for a prolate structure
p > , and for a spherical structure p = . Sieck and coworkers () studied various different
isomers corresponding to three fixed sizes, namely, N = , , and . In > Fig. -, the
cohesive energy versus the prolateness parameter for the low-lying isomers is displayed. An
investigation into the most stable structures clearly indicate the tendency to go from elongated
to spherical structures as the clusters grow in size.

An important point is noted by Sieck and coworkers (), which is that differentmethods,
even different flavors of the same method (LDA/GGA in DFT) may disagree about the exact
energetic ordering of clusters, however, usually the lowest energy structures are local minima
in all of them.

As an example to the multiscale methods mentioned above Bulusu and coworkers ()
used a basin-hopping algorithm combined with DFT to explore low-lying minima for Ge–
Ge. Global minima for the Ge clusters in this size range is compared to minima of Si clusters.
Various checks were performed to make sure different starting points yield the same global
minima, such as different seeding patterns. Unlike most studies in the literature, zero-point
motion is taken into account while calculating the binding energies.

In the same work (Bulusu et al. ) of Si and Ge clusters in the size range – were
compared and clusters of both Si and Ge were shown to have prolate geometries. However,
their growth patterns were found to diverge at N = . The global minima for Ge clusters of
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size – are obtained by adding atoms to the Ge tetracapped trigonal prism (TTP) struc-
ture familiar from Si clusters (Bulusu et al. ). For low energy Si clusters TTP-to-six-fold
puckered ring(six/six) transition occurs at N =  and clusters with higher number of atoms
all contain the six/six pattern. In contrast, TTP-to-six/six pattern may occur at N =  for Ge
clusters and at N = , the magic number cluster Ge appears to be the preferred structural
motif.

According to Shvartsburg and Jarrold () , clusters of Sn up to n ≈  follow the trend of
germanium andprolate silicon clusters (Shvartsburg and Jarrold ). ForN > , themobility
of Sn clusters show larger fluctuations than either Si or Ge. This might indicate the presence of
multiple isomers of Sn clusters in this size range (Shvartsburg and Jarrold ). Even though the
α⇒ β transition occurs between  K and≈ K in the bulk, Sn clusters do not undergo such
a transition even at higher temperatures. In fact, mobility measurements show that Sn clusters
do not show significant changes in structure for a very broad temperature range. Transition
from prolate to spherical growth in Sn clusters is not abrupt like the transition in Si and Ge
clusters but occurs in steps. Clusters of N ≤  adopt a stacked prolate morphologymuch like Si
andGe clusters.This is unexpected because these highly noncompact structures are suitable for
covalentmaterialswhereas bulk Snunder ambient conditions is ametal. In a sense, the covalent-
to-metal transition that occurs between the fourth and fifth row of the periodic table for the
carbon series in the bulk fail to occur in their clusters. Shvartsburg and Jarrold () also find
that Pb−n and Pb+n clusters display different magic numbers.

Going down the group IV in the periodic table a comprehensive set of data is given by
Shvartsburg and Jarrold (). Their findings reveal that Pb clusters are structurally different
from Si, Ge, and Sn cluster for N < . While the latter clusters have low mobilities in this
size range indicating a prolate structure, Pb clusters exhibit much higher mobilities meaning
they are quasispherical in shape. For N > , Si clusters also display mobilities in accord with a
spherical shape. However, their mobilities are considerably smaller than the Pb clusters in the
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same size range. This is attributed to the densely-packed nature of the Pb clusters in contrast
with the open, cage-like arrangement of the Si clusters.

Transition metals form the largest group of elements considered in this section. Even as
bulk materials, they exhibit very interesting and diverse properties, in particular magnetism.
Interesting questions therefore arise concerning whether such properties as magnetism are
maintained or altered in clusters (Briere et al. ; Kabir et al. ). Appearance ofmagnetism
in the clusters of d elements (such as Ru, Rh, and Pd) is a very interesting phenomenon as these
elements are nonmagnetic in the bulk. Clusters of d elements (such as Fe, Co, and Ni), which
are already magnetic in the bulk, exhibit enhanced magnetic moments in the cluster form due
to narrower band widths and the increased localization of the electrons (Kumar and Kawazoe
; Pawluk et al. ). Indeed, a recent Stern–Gerlach experiment revealed that Mn clus-
ters in the range N = – display ferromagnetic ordering even though no such ordering is
observed in the bulk phase (Knickelbein ). These results reveal PES minima at N =  and
N =  and PES maxima at N =  and N = –.

We should mention here that most of the magnetism studiesmentioned in this section take
into account only the electronic spin contribution to the magnetic moment. This can be done
only in the cases where the spin-orbit coupling can be neglected.

In the work by Rodríguez-López and coworkers (), Co clusters in the range N = –
were studied by means of an evolutive algorithm based on the Gupta potential and tight-
binding. Experiments reveal thatmuch like the Cr clusters (Payne et al. ), different isomers
of Co clusters coexist with distinct magnetic moments. In this work two sets of isomers are
identified for each size – the lowest and the second-lowest lying. For the lowest-lying isomers
an icosahedral growth is observed with structures derived by adding atoms to the main icosa-
hedral sizes at N = , , , , , , , and . For the second isomers no particular growth
pattern was identified. The stability of these sizes were also confirmed by the second energy
difference ΔE in addition to other, intermediate icosahedral structures.

Relative thermodynamic populations of the lowest-energy isomers were used to simu-
late possible experimental conditions. Isomers coexist particularly evenly between sizes of
enhanced stability.This is due to the influence of the entropic contribution of the low-frequency
normal modes of the isomers to the free energy. For both the global minimum and the sec-
ond isomer, a nonmonotonic decrease is observed with increasing size. The greatest difference
between the two sets of clusters arises in the range N = –, which corresponds to the
range where the average interatomic distance and average coordination of the two sets show
significant difference. In this size range, two effects seem to compete for determining the mag-
netization of the two sets of configurations. On the one hand, the average coordination is
higher for the global minima, which should result in lower magnetic moments for the global
minima. On the other hand, the average nearest-neighbor distance is higher for the global
minima, which should yield higher magnetic moments. The results indicate that the average
coordination number effect dominates.

For noble and transition metals, the interactions between atoms are not pairwise and
simple empirical potentials are inappropriate (Barreteau et al. ). Therefore incorporat-
ing many-body effects into the potentials is essential. Moreover, for magnetism studies, ab
initio methods need to be employed, which render global optimization efforts extremely
computation-intensive. Therefore, most results we shall quote here will be based on restricted
searches of the potential energy surface.

In thework byBarreteau and coworkers (), for instance, the relative stability of cubocta-
hedra andMackay icosahedra is determined for Rh and Pd clusters for N = , , , , and
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 using a tight-binding method. Since both structures have an identical sequence of magic
numbers it is interesting to determine the transition size. A continuous transition is possi-
ble from the Mackay icosahedron to the cuboctahedron, and for the Rh and Pd clusters, this
pathway is explored. An analysis of theMackay transition from the cuboctahedron to the icosa-
hedron reveals that for N = , the cuboctahedron is unstable for both Rh and Pd, becoming
metastable for larger sizes with an increasing activation barrier with size.Themagneticmoment
of rhodium was found to disappear for sizes more than  atoms, and palladium clusters were
found to be hardly magnetic.

In Mn clusters, on the other hand, magnetism plays an important role in determining the
ground state structures. As mentioned in the work by Briere and coworkers (), many spin
isomers can lie close in energy. In this work, a few local geometric configurations of N = ,
, , and  were studied using spin-polarized calculations. At all sizes except N = , the
structure with the lowest energy was found to be icosahedral. For N = , a bcc configuration
was found to be favorable. In terms of spin, all the structures were found to be ferrimagnetic
with alternating domains of different spin configurations (see > Fig. -). Except for N = ,
the mean value of the integrated spin density was found to decrease with increasing size.

In the DFT work by Kabir and Mookerjee (), the ground state structure for Mn was
found to be the icosahedron with the two pentagonal rings that are coupled antiferromagneti-
cally. Therefore, the resulting magnetization is small, namely, .μB/atom.This magnetization
is considerably smaller than the neighboring sizes  and . The N =  structure differs from
the N =  structure by a single capping atom. However, the presence of this atom changes
the magnetization arrangement considerably. In this case the pentagonal rings are ferromag-
netically coupled and the magnetization is .μB/atom.The case of Mn is worth mentioning
because of the discrepancy between two DFT studies by Briere and coworkers () and
Kabir and Mookerjee (). In the latter, the ground state structure was found to be icosa-
hedral with a magnetic moment of .μB/atom whereas Briere et al. () found a bcc

Mn23Mn19

Mn13
Mn15 bcc Mn15 icosahedral

⊡ Fig. -
Lowest energy structures of some Mn clusters. Relative spin alignments are marked with dark for
spin up and light for spin down (Reprinted with permission fromBriere et al. (). © () by the
American Physical Society)
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structure with .μB/atom. For N = , a double icosahedron was observed, which again
has a smaller magnetic moment, .μB/atom, than its neighboring clusters. The central
pentagonal ring is AFM coupled to the neighboring pentagonal rings. This behavior is per-
sistent in the N =  cluster, which has a magnetic moment of .μB/atom. In the range
N =  − , spin segregation is observed, where like spins tend to cluster. The binding energy
is observed to increase monotonically with increasing size. This is due to the increased sp
bonding. However, when compared with other transition metals, Mn clusters remain weakly
bound.

An interesting property of Ta clusters were demonstrated in a recent study (Fa et al.
), where ferroelectricity and ferromagnetism was proven to coexist. Initial structures were
obtained by simulated annealing using an empirical potential.These structures were later reop-
timized with DFT calculations. The magic numbers for Ta clusters were found to be , , ,
, and . It was therefore deduced that Ta clusters do not prefer icosahedral growth. For
N = , for instance, the lowest energy structure among those studied was found to be a dis-
torted five-capped hexagonal bipyramid. For N = , the most stable structure is decahedral in
contrast with the double icosahedron, which was found to be stable for many other clusters. No
perfectly symmetric structureswere found indicating that Jahn-Teller distortions play an impor-
tant role in determining the ground state structures of Ta clusters. In the size range studied in
this work (Fa et al. ), the atomic packing shows differences such that each size behaves like
an individual system rather than steps of a continuous growth sequence. In addition, electronic
dipole moment and magnetic moment were also calculated.The electronic dipole moment was
found to have the same trend as the inverse coordination number, which is a parameter that
reflects the asymmetry of the cluster. This agreement is attributed to the strong correlation
between the structure and the electronic dipole moment of the clusters. Odd-N Ta clusters also
display a magnetic moment of about μB , which suggests the possibility of the coexistence of
ferroelectricity and ferromagnetism. The growth pattern of Ta was found to be very similar to
that of Nb. However, when compared with vanadium clusters, this similarity is absent (Fa et al.
).

In a similar work by Fa and coworkers (), Nb clusters were also found to display fer-
roelectricity supported by a recent experimental study. This is an important discovery because
ferroelectricity was never observed in single element bulk materials. For N ≥ , the electric
dipole moment exhibits even–odd oscillations. This suggests that there is a strong correlation
between the structure and the ferroelectricity.

In the work by Pawluk and coworkers (), the structure and stability of several Ir clusters
were studied using DFT. Rather than using a global optimization algorithm, possible configura-
tions both truncated frombulk and built independentlywere relaxed locally.The results indicate
that Ir clustersmostly prefer cube-like structures up toN = , except for N = , which assumes
an elongated structure. At N = , the lowest structure among the ones studied is the icosahe-
dron. This is in contrast with Ru and Pt, which prefer simple cubic structures. When compared
to clusters cut from the fcc bulk, simple cubic structures turn out to be more stable up to a size
of N = . This transition occurs near N =  in Ru and N =  for Pt. Another interesting
property studied in this work is the fluidity of clusters.The results indicate that while the Pt clus-
ters exhibit a more a more fluidlike character and will thus easily coalesce with other clusters,
Ir clusters are more rigid and have less tendency toward coalescence.

An interesting experimental result concerning Pt clusters was reported by Liu and cowork-
ers (), who found that Pt clusters exhibit substantial magnetism (about .μB/atom)
even though bulk Pt is not magnetic.
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Although for such clusters as Ni and Au the icosahedral structure is calculated to be
metastable with stability decreasing with size, experiment reveals that icosahedral structures
are found in clusters containing several thousands of atoms. This means that kinetic effects
are also very important in determining the structure of a cluster (Gafner et al. ). In order
to simulate these kinetic effects, a  Ni cluster was studied using tight-binding by Gafner
and coworkers in (). The cluster was heated to ,K (Tmelt = , K) and subsequently
cooled to K. The melting and crystallization curves are determined from a sudden change
in the potential energy as a function of temperature.They found that slow cooling results in an
fcc structure whereas fast cooling results in the formation of a metastable icosahedral structure.

In the study by Köhler and coworkers (), the potential surface of a few sizes (N = ,
–) of Fe clusters were mapped out with respect to magnetization and volume change using
a DFT-based tight-binding scheme. Icosahedra were found to be the most stable structures for
the magic numbers N =  and N = . Two local minima were observed for the N =  icosa-
hedron, one ferromagnetic and one antiferromagnetic. The PESs for clusters with N = –
were mapped out using a genetic algorithm-based procedure. Derivatives of the N =  struc-
ture were considered for N = , , , and . Generally icosahedra and icosahedron-derived
structures have relatively small magnetic moments.The structures without apparent symmetry
show higher magnetic moment than icosahedra. No ferromagnetic ordering was found for the
Fe cluster.

Tiago and coworkers provide a very comprehensive explanation of the origin of magnetism
in small Fe clusters in their article (Tiago et al. ). In the Fe atom, the magnetic moment is
a result of exchange splitting. The d

↑
states are occupied by  electrons, while the d

↓
states are

occupied by a single electron, which results in a rather high magnetic moment of μB . When
the atoms come together to form a crystal, hybridization of the large s bands and the d bands
reduce the magnetism down to .μB . In clusters, hybridization is not so strong because of
the reduced coordination numbers of the surface atoms. Because this hybridization depends
on orientation, clusters with faceted surfaces are expected to have different magnetic proper-
ties than those with irregular faces. According to Tiago and coworkers (), this effect is
the likely cause of the nonmonotonic suppression of magnetic moment as a function of size.
Two classes of Fe clusters were considered in this work: faceted and nonfaceted. Nonfaceted
structures are nearly spherical in shape and faceted structures are built using the conventional
layer-by-layer growth model.The magnetic moment was calculated as the expectation value of
the total angular momentum,

M =
μB
ħ
[gs⟨Sz⟩ + ⟨Lz⟩], (.)

where gs =  is the gyromagnetic ratio of the electron. The magnetic moments of the clusters
as a function of size is displayed in > Fig. - for all classes of clusters considered. Sup-
pression of the magnetic moment with increasing size is observed, in good agreement with
experiment. Clusters with faceted surfaces indeed have a lower magnetic moment due to more
efficient hybridization although the correlation of shape and magnetic moment is not always
well defined. Icosahedral structures are predicted to have magnetic moments lower than bcc
clusters.

Another good example of disagreement between different methods is given in Krüger
and coworkers where Pd clusters having several high-symmetry structures including icosahe-
dra, octahedra, and cuboctahedra were optimized using both the LDA and GGA in the DFT
framework. GGA yields larger bond lengths in accord with the general expectation. But the dif-
ference is almost independent of size. Icosahedral structures tend to yield larger bond lengths
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⊡ Fig. -
Magnetic moments of faceted and nonfaceted Fe clusters in the icosahedral and bcc configura-
tions: (a) atom-centered bcc, (b) bridge-centered bcc, and (c) icosahedral. Experimental data is
displayed as black diamonds for comparison (Reprinted with permission from Tiago et al. ().
© () by the American Physical Society)

than octahedral and cuboctahedral structures, also displaying a flatter variation with increas-
ing coordination number. The accuracy of this breathing mode relaxation was confirmed by
comparing to a full relaxation of the Pd cluster.

The Pd cluster was found in the work of Kumar and Kawazoe () to have an icosahe-
dral structure with a .μB/atommagneticmoment.This result agrees with some of the earlier
studies and disagreeswith some others.The central atom in the cluster is found to have a smaller
magnetic moment than the surface atom only by a very small amount unlike the large differ-
ence in the Mn study of Kabir and coworkers (). For N =  and  icosahedron-derived
structures are favored over other high-symmetry structures. The magnetic moments for both
sizes remain around .μB/atom. Going from N =  to the double icosahedron at N = , the
magnetic moment decreases from .μB/atom to .μB/atom. As the cluster sizes increase
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there is a decrease in local (atomic) magnetic moments. For N =  and N = , the lowest-
lying state was found to be theMackay icosahedra. Cubic and decahedral structures were found
to have the next highest energies, with .μB/atom and .μB/atom respectively. For the Pd
cluster, structures with smallermagnetization lie very close to the ground state andwould there-
fore be accessible at room temperature. Somagnetic order can be easily lost under experimental
conditions. In contrast to the results for Mn (Kabir et al. ), the icosahedral structures have
a higher magnetic moment than other high-symmetry structures.

In work of Nava and coworkers (), Pd clusters were studied using the spin-polarized
DFT method in the range N = –. The N =  cluster was found to have an icosahedral
structure with a high spin state. It is seen to undergo a very slight Jahn-Teller distortion, which
increases the cohesive energy only by . eV.The truncated decahedron and the cuboctahedron
are found to be less stable.

Yao and coworkers () utilized results from simulated annealing of Ni clusters using
an empirical potential as starting configurations to further optimize them using a DFT code.
This is another technique often used in cluster literature. In this work, Ni clusters with N =
– atoms were found to attain icosahedron-like structures with the N =  cluster being
a perfect icosahedron and N =  the double icosahedron. Clusters in the range N = –
have very complicated structures because they are in the transition region between the N = 
icosahedron and the N =  icosahedron. Around N =  and N = , clusters are mostly
formed by adding or removing a few atoms from the corresponding perfect icosahedra. Dips
are observed in themagneticmoment for N =  and  as expected from the compact structure
of these clusters.

While all of the studies mentioned above deal with collinear spin, which singles out one
direction along which the magnetic moment may be oriented, a very important class of clus-
ters with high magnetic moments display noncollinear spin. In these clusters, the magnetic
moment is allowed point in an arbitrary direction and thus present a new degree of freedom.
A good example for the investigation of this effect is presented in the work by Du et al. ()
where -atom clusters of Co and Mn atoms with several different compositions but always in
the octahedral geometry were investigated within the DFT theory including the noncollinear
spin formalism. Low-lying isomers with up tomore than ○ of average degree of noncollinear-
ity were identified. For certain compositions and geometries different tendencies for magnetic
coupling (AFM vs FM) is also found to cause a certain degree of spin frustration.

In the work by Zhang and coworkers (), Mo clusters were studied within the DFT
framework. An interesting result was that the initial icosahedral structure for the N =  cluster
was found to undergo a very large distortion. This distortion was explained by the tendency
of Mo clusters to form Mo dimers. The strength of the bonds in Mo is covalent, therefore,
at this size, the cluster shows nonmetallicity. At N =  , the icosahedral structure is found to
again undergo a large distortion. However in contrast to N = , the alternateOh structure was
not found to be much more stable than the distorted icosahedron. This was explained by the
decrease of nonmetallicity with size.

D Structures: Nanotubes, Nanowires, Nanorods

In nanoscience literature, the name one-dimensional was coined to describe systems where
one of the dimensions is several orders of magnitude larger than the other two dimensions.
Much like the zero-dimensional case, the border between one- and two-dimensional systems is
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ill-defined and system-dependent. For this reason, two-dimensional systems exhibit the same
richness in structural and electronic properties as in the zero-dimensional case unlike their bulk
counterparts.

One, dimensional structures may, in the broadest classification, be divided into nanotubes,
nanowires, and nanoribbons. Nanotubes are simply described as two-dimensional materials
(such as graphene, BN sheets, TiO sheets and many others) seamlessly rolled into a hollow
cylinder although the actual fabrication usually follows a muchmore involved procedure. Nan-
otubes may be regarded as a unique subset of one-dimensional structures that do not have a
surface and are thus devoid of surface effects. In this respect they are analogous to the fullerenes
in the zero-dimensional case. Nanowires on the other hand are extremely thin wires that are
grown or extracted along well-defined crystal directions and may have widely different sur-
faces. The surfaces, however, rarely remain in their bulk configuration and often reconstruct to
reduce strain or saturate broken bonds.This procedure is highly size- andmaterial-specific, and
nanowires therefore display a large variety of strongly surface-dependent properties. Finally,
nanoribbons are thin strips of two-dimensional materials such as graphene. The edges may
reconstruct or be saturated with different species to modify their properties.

In addition to structural and electronic properties that are explored in zero-dimensional
materials, one-dimensional materials also exhibit rather interesting elastic properties. We
shall begin this section with a brief review of elastic considerations regarding one-dimensional
nanomaterials and afterward move onto structural and electronic properties.

Elastic and Structural Properties

In nanowire applications such as AFM tips, NEMS, andMEMS, which make use of mechanical
properties, it is crucial to have a good understanding of the evolution of elastic properties all
the way down to the nanoscale. Elastic properties that are ordinarily under investigation include
elastic moduli, plasticity, crack propagation, buckling, and breaking points.

There are numerous examples of experimental determination of elastic properties of
nanowires in the literature. A recent study by Barth and coworkers () determines the
Young’s modulus of SnO nanowires by anchoring and bending them with the help of an AFM
tip. By mapping the bending amplitude to the Young’s modulus through classical elasticity
formulae the Young’s modulus is estimated at around GPa for the samples studied.

Contrary to the macroscopic scale, the elastic properties of nanoscale one-dimensional sys-
tems are often seen to depend on their physical dimensions. This intriguing fact brings forth
the necessity of studying, among others, the elastic properties of such systems as a function of
their size. In fact, the theoretical literature is very rich in examples of such studies. Empirical
potentials are particularly suitable for studies of size dependence since systems with large num-
bers of atoms may be handled with relative ease, allowing the determination of convergence
of elastic properties of nanomaterials to those of their bulk counterparts. A related question
to this fact is to what extent the laws of continuum elasticity can be applied to nanoscale sys-
tems, which has received much attention both theoretically and experimentally. A recent study
by Rudd and coworkers () opens with this very same question, where the Young’s modu-
lus of Ta ⟨⟩ and Si⟨⟩ nanowires has been determined using a Finnis-Sinclair () and
Stillinger-Weber () potential respectively in a molecular dynamics simulation. Nanowire
radii were explored up to approximately  nm and both materials were found to display a
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strong dependence on the wire width eventually converging to the bulk value. Interestingly,
the convergence trends are opposite where the Young’s modulus of the Si nanowires increases
while that of Ta nanowires decreases with radius. In the same study, DFT calculations were also
performed on Si nanowires, partially confirming the outcome of the Stillinger-Weber calcula-
tions. However, the match with continuum theory was found to be much better for the DFT
results.

Size-dependence is also demonstrated in a study by Hu and coworkers () on ZnO
nanowires and nanotubes where they use an exp- type empirical potential including Coulomb
interaction for Young’s modulus calculations. The Young’s moduli of nanowires and nanotubes
show a very strong dependence on the radius and wall thickness respectively.

Due to the extremely high surface-to-volume ratio in nanowires, the particular surfaces
that are exposed at the outer edges of the nanowires play a crucial effect in the determination of
their elastic properties. Recent evidence for this fact was demonstrated by Wang and Li ()
in their DFT-parameterized model study of Ag, Au, and ZnO nanowires with different surface
terminations. Their results show discernible albeit small differences in the size dependence of
the Young’s modulus for different surface terminations of the nanowires in question.

Nanotubes have also received a great deal of attention from researchers due to their extraor-
dinary elastic properties. They have been shown to possess an unusually high axial stiffness
in addition to very high reversibility under large distortions. In addition to the large body of
literature on experiments probing the elastic properties of nanotubes, many theoretical studies
have also been conducted. Due to their varying radii and chirality, nanotubes present end-
less possibilities for the investigation of their elastic properties. Liang and Upmanyu (),
for instance, have studied the radius (or equivalently curvature) and chirality dependence of
the torsion induced by applied axial strength of the nanotubes. Their studies, which utilize
the widely used second-generation reactive empirical bond-order potential (Brenner ),
revealed a torsional response of up to .○ nm, which varied remarkably for different radii
and chiral angles. Conversely, as reported in several early studies on nanotubes employing DFT
calculations, Young’s modulus is known to be largely independent of the chirality.

Elastic properties of nanotubes of many materials other than C have also been theoreti-
cally explored. In an exhaustive work, Baumeier and coworkers () used DFT calculations
to survey such properties as strain energy andYoung’smodulus of SiC, BN, and BeOnanotubes.
Baumeier and coworkers observe that being composed of two atomic species instead of one as
in carbon nanotubes, the nanotubes made out of these materials exhibit a different relaxation
pattern for the relevant anions and cations, suggesting possible different behavior than carbon
nanotubes. Nevertheless, the results show that at least for (n, n) and (n, ) nanotubes of sim-
ilar radii the behavior is similar. All three materials display a decreasing Young’s modulus as
a function of radius converging to the sheet value for large radii. Among the three materials,
BN nanotubes display a significantly high Young’s modulus, followed by SiC and finally by BeO
nanotubes.

The interwall attraction in multi-walled nanotubes opens up another possible avenue for
the study of elastic properties. Zhang () and coworkers have studied the Young’s modulus,
Poisson ratio and the buckling point of multi-walled nanotubes using a combination of second-
generation reactive bond-order potential to model intralayer bonding and a Lennard-Jones
potential for the interlayer interaction. The multi-walled nanotubes studied were divided into
two sets, the first formed by embedding increasingly smaller (n, n) tubes into a large (, )
nanotube (up to four walls) and the second by placing a (, ) tube into increasingly larger
(n, n) tubes (again up to four walls). A molecular dynamics algorithm was used during their



  Modeling of Nanostructures

calculation and the dependence of the moduli in addition to the buckled morphologies were
presented. Young’s modulus and Poisson’s ratio turn out to follow a different trend for the two
sets considered.While the set that grows inward display increasing (decreasing) Young’s modu-
lus (Poisson ratio) for increasing number ofwalls, the set that grows outward follow the opposite
trend.

As mentioned in the introduction to this section, one way to saturate the surface bonds
of nanowires is through passivation by different species. The elastic behavior of passivated
versus unpassivated nanowires raises an interesting question. Lee and his coworkers ()
studied several elastic properties of H-passivated nanowires of a large range of radii varying
between . nm and . nm (see > Fig. -) using DFT. As expected, the Young moduli of
H-passivated Si nanowires mostly follow predictions from continuummodels regardless of the
varying proportions of ⟨⟩ and ⟨⟩ surfaces exposed. This is attributed to the fact that the
bulk-like covalent bonding character at the surfaces is preserved when H is used to passivate
the dangling bonds at the surface.

Althoughmicroscopic modeling is of utmost importance in the understanding of nanoscale
materials, there are a number of experimental situations of interest that cannot be handled by
these time-intensive methods due to their large size. For large enough systems (such as large
portions of nanotubes suspended over a trench) continuummethodsmaybe employed (Ustunel
et al. ). However, complete coarse-graining is also not always a viable choice since one then
loses detailed information on locally nonhomogeneous regions of the system such as defects
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⊡ Fig. -
H-passivated Si nanowires of different sizes studied by Lee et al (Reprinted with permission from
Lee and Rudd (). © () by the American Physical Society)
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and local deformations. In such cases, multiscale methods which apply different methods at
different scales of the system are the methods of choice. An illustrative example was studied by
Maiti () where a micromechanical sensor made out of a nanotube was deformed by a Li
needle. The bent but undeformed portions of the nanotube were modeled by a coarse-grained
molecularmechanics simulation, while the highly deformedmidsection (enclosed in a box) was
modeled using a quantum mechanical method. The two methods were then matched at the
interface of the two regions.

Structural Properties

The novel electronic properties of nanotubes, nanowires, and nanobelts are inextricably linked
to their structural properties. This is largely due to their high surface-to-volume ratio, where
the bonding on the surface structure determines the electronic states which in turn determines
such properties of the system as conductivity and magnetism.

Asmentioned in the introductory section, nanowires nowadaysmay bemanufactured from
a great variety of materials. As fabricated, it is experimentally difficult, if not impossible, to
intuitively infer their surface structure. Simulations on the other hand provide an inexpensive
yet accurate way of studying this relation between structure and electronic properties.

The methods of preference in nanowire modeling is generally tight-binding and to a larger
extent DFT, since electronic properties depend sensitively on the structure requiring accurate
calculations. Once a material (or combination of materials) is chosen the important parameters
of nanowire modeling are the particular surfaces surrounding the nanowire and passivation,
that is, the saturation of the bonds at the surfaces. Two of the most commonly studied surface
terminations are surface reconstruction and H-passivation.

Due to the axial periodicity of one-dimensional nanomaterials, plane wave–basedmethods
which are traditionally used for crystals are very often employed. In the work of Arantes and
Fazzio (), where they study free and passivated Ge nanowires, the band gap of passivated
and unpassivated nanowires were determined using a plane wave–based GGA-DFT method.
The nanowires were grown in the ⟨⟩ and ⟨⟩ directions and their band gaps were calculated
as a function of nanowire diameter. In spite of the well-known underestimation of the band gap
by LDA and GGA methods, a trend can be obtained rather reliably. The band gaps are seen to
vary with respect to direction and size.

Though not often encountered global search algorithms are also used for determining the
structure of nanowires. Especially in the case of nanowires with smaller radii, the structure
may be so different from bulk as to prevent any a priori prediction. Chan and coworkers ()
conducted a genetic algorithm search based on the formation energy of H-terminated Si NWs
where the formation energy is defined as

f = (E − μHnH)/n − μ, (.)

where E is the total energy of theNW in question, μH and μ are the chemical potentials ofH and
Si respectively, and n is the number of Si atoms. The genetic algorithm was conducted in two
stages. In the first stage a long evolution through several generations was conducted using an
empirical potential (of theHansel-Vogel type). In the second stage the outcome structures of the
evolution for each size were relaxed using a DFT algorithm. The result, reminiscent of cluster
structures, is that certain sizes of SiNWs are preferred over other sizes.These structures are once
again termedmagic sizes. In general, structures with even number of Si atoms are preferred over
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those with an odd number. The most stable structures are observed either in a plate-like form
where chains of Si hexagons join together to form flat structures, or a hexagon-shaped cross
section.

One of the most important parameters in determining the geometric and therefore the elec-
tronic structure of nanowires is surface termination. The high-energy dangling bonds at the
surface may either be saturated by a rearrangement and rebonding of the surface atoms or by
attaching electropositive species (such as H). In general, while the reconstruction may signifi-
cantly alter the structural and electronic properties of the material, passivation by other species
leaves these properties relatively unaltered. In the recent work of Migas and Borisenko (),
⟨⟩ oriented Si nanowires were passivated by O, F and H and the structural and a large num-
ber of different sizes and geometries were studied using DFT. Under different combinations and
coverages by these elements, the band gap of the Si nanowires considered (only nanowires with
rhombic cross sections were considered) were found to vary between . and . eV, which
shows that termination can be used as a means to control the electronic properties.

Countless other studies in understanding the structure of experimentally relevant one-
dimensional structures have been done. Bi nanowires (Qi et al. ), CdSe nanorods
with hexagonal and triangular cross sections (Sadowski and Ramprasad ), and Te
nanowires (Ghosh et al. ) are some studies thatmay bementioned. In addition tomaterials
that have already been manifactured, researchers have also been interested in the possible exis-
tence and properties of nanoscale systems that have not yet been experimentally realized. Rathi
and Ray (), for instance, have examined the possibility of SiGe nanotubes, while Qi ()
and coworkers investigated Bi nanotubes and hollow Bi rods. Recently it was demonstrated
by model calculations that the stable carbon nanotube structure might be possible with non-
graphene like form (Erkoc ). Furthermore, nanorod structures constructed from benzene
rings only (called as benzorods) may also be possible.Their structural and electronic properties
were investigated by performing model calculations (Erkoc ; Malcioglu and Erkoc ).

Electronic, Magnetic and Optical Properties

As a result of the immense variation in structural properties of one-dimensional structures,
one observes an equally diverse spectra of electronic properties. Perhaps the most intriguing
property of one- and two-dimensional nanoscale systems is that after the required geometrical
deformations in order to reach their equilibrium, one might observe a stark difference between
the newly formed system and its bulk counterpart. Amaterial which is an insulator in bulk may
become a conductor when taken to the nanoscale. Similarly one- or two-dimensional nanos-
tructures of a nonmagnetic material may have a nonzero magnetic moment.These differences
usually stem from the new states introduced into the electronic structure of the material by ter-
minating structures such as surfaces, steps, edges, and corners. The interest in these emergent
properties is due to the possibilities of integrating these small-scale materials into technological
applications and controlling their properties by controlling the structure.

Due to the ease of interfacing with current technology, Si nanowires have perhaps been the
most intensely studied system. Rurali and Lorente (), for instance, explored a large range
of surface reconstructions for ⟨⟩ Si nanowires with a small radius of about . nm. They
discovered that for certain reconstructions the nanowires develop conducting states in their
band gap,while for others the semiconducting behavior is retained. This is a prime example of
effects of confinement on the electronic structure of a system.
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Another parameter that has a strong effect on the electronic properties of nanowires is sur-
face termination. As demonstrated byRurali () that both Si andC-terminatedH-passivated
SiC nanowires have a larger band gap than that of bulk SiC. As discussed by Rurali, this is
purely a confinement effect since passivation prevents reconstruction and the related introduc-
tion of gap states. However, when the nanowires are allowed to reconstruct, both species of SiC
nanowires are seen to become conducting due to the surface states introduced into the band gap.

In addition to the conventional carbon nanotubes, several other materials were inves-
tigated as viable candidates for nanotube structures. BN (Chopra et al. ) and more
recently (Sun et al. ) SiC nanotubes are two such materials which have been successfully
synthesized in the nanotube form. Following their synthesis Gao and coworkers () con-
ducted a DFT-PAW study of undoped and N-doped SiC nanotubes of varying sizes. For each
size the nanotubes were doped initially with  and  N atoms and their structural and electronic
properties were studied. For each doping level, several possibilities were investigated and the
most stable structure was identified. As an extreme case, the case in which all the C atoms were
replacedwithN atoms, in otherwords SiNnanotubes, was considered.These nanotubes, instead
of being circular were found to have a staggered or star-like cross section. In all the cases consid-
ered the nanotubes were found to be semiconducting with an indirect band gap. Recent model
calculations on binary compounds BN (Erkoc ), GaN (Erkoc et al. ), InP (Erkoc ),
ZnO (Erkoc andKokten ) nanotubes give reasonable results comparable with experimental
findings.

Although by nature rather free of defects, the few existing defects in graphene and nan-
otubes change the electronic structure of their hostmaterial drastically (Pekoz and Erkoc ).
In spite of the several experimental methods that have been developed to locate and study the
properties of such defects, theoretical methods are an indispensable tool for creating isolated
defects of the desired nature and studying their effects on electronic properties. A particularly
interesting question is the stability of well-characterized graphene defects in nanotubes of vary-
ing radius and chirality. Since a graphene sheet can be viewed as a nanotube with an infinitely
large radius, the formation energy of any nanotube defect should tend to the equivalent defect
on a graphene sheet. Amorim et al. () demonstrated an example of this behavior by study-
ing the so-called defect, which is a combination of three pentagons and three heptagons.
This defect is formed in two steps. In the first step two divacancies coalesce to form a new defect
() composed of two pentagons and an octagon. This step is followed by a further structural
change, which yields the  defect, see > Fig. -.

In graphene the  defect is found to be more stable than the  defect by . eV.
The same defects were then created in zigzag and armchair nanotubes of radius in the range
of –Å. As in the graphene case the  defect is found to be more stable in all the nan-
otubes studied.The formation energy is, however, lower than in the graphene case.The expected
tendency toward the corresponding graphene values is seen in both cases and convergence is
estimated to occur around a radius of Å.

The effect of defects on the electronic properties of their host substance is illustrated in this
work by the conductance graph calculated using the Green’s function density functional the-
ory. The results indicate that the presence of both the  and  reduce the conductance
considerably while at the same time displaying different voltage dependence.

Another investigation of defects in nanotubes for the purpose of application as a gas sensor
was conducted by Andzelm and coworkers (). The particular question at hand is the bind-
ing of NH molecule to nanotubes and whether or not binding is enhanced by defects. Three
defects are considered: a Stone-Wales defect (a defect formed by rotating a given bond by ○
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⊡ Fig. -
 (a) and  (b) defects ingraphene and (c,e) and  (d,f) defects in a nanotube in dif-
ferent orientations (Reprintedwith permission fromAmorim et al. (). © () by the American
Chemical Society)

a b

⊡ Fig. -
A Si–Ge interface shaped into a nanotube. (a) Side view, (b) cross view (Adapted from Kagimura
et al. )

resulting in the formation of two pentagons and two heptagons), a monovacancy and an inter-
stitial C atom placed on top of a bridge. In addition, the case of an O molecule dissociated
on a SW defect was also considered to mimic the environmental effects. Two different orien-
tations, straight and chiral, for the SW defect were considered. All-electron DFT calculations
reveal that the monovacancy is the most stable. Calculation of reaction barriers also reveal that
defects with preabsorbed O dissociate NH into NH and H.

The heterostructure problem, which has been widely studied in the bulk form, is becoming
an increasingly popular topic also in the one-dimensional systems.Theband alignment problem
has been addressed recently in a DFT study conducted by Kagimura and coworkers ()
where a Si–Ge interface was studied.The model for such a system is shown in > Fig. -. The
band states contributed by the surface dangling bonds were investigated as possible candidates
for the induction of a potential well.
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The search for nanoscale materials that exhibit spontaneous magnetization has become
an increasingly rich field in the past decade. Several materials such as doped nanotubes and
nanowires, defective graphene and nanoribbons of two-dimensional materials can be itemized
as candidates considered in these studies. In order to identify the suitability of a material for
spontaneous magnetization, electron density in the two spin channels, n↑(r⃗) and n↓(r⃗) are
compared. If there is a significant difference in this distribution, the material is nominated
for use in magnetic applications. If in addition the density of states in the two spin channels
show different characteristics at the Fermi level such that in one channel there is a significantly
larger number of states than the other, then the material provides promise also in spintronics
applications.

One such candidate material for magnetic applications is BN sheets and nanotubes doped
with several different elements. In a recent example, Li and coworkers (a), in their DFT
study on BN nanotubes with one, two, and three H atoms adsorbed at different locations,
observed that some of the configurations considered may give rise to a magnetic moment of
up to .. The origin of this magnetic moment is evident from the band structures where the
contribution of band gap states are due to only one of the spin channels.The states that are seen
in the gap are also shown visually and their origin is unambigiously identified as due to the
adsorbed hydrogen.

A rather novel and intriguing application of nanomaterials and its investigation using the-
oretical modeling is the subject of a recent work by Santos de Oliveira and Mina (). Their
study discusses a phenomenon called self-purification of nanomaterials, namely, the expulsion
of foreign species from the surface. Self-purification is attributed to the fact that nanoscalemate-
rials have a lower incorporation rate of impurities compared to their bulk counterpart. In this
work SiC nanowires are studied as another potential example of self-purifying materials. B and
N impurities were planted at different positions inside and on the surface of three SiC nanowire
configurations (⟨⟩ Si-coated, ⟨⟩ C coated and ⟨⟩ Si and C coated) at locations rang-
ing from the center to the surface. The formation energies of the configurations thus formed
were then calculated and compared. As a result, the self-purification process was found to be
favorable for B-doped SiC nanowires irrespective of their orientation. The B atomwas found to
segregate favorably to the surface and thus expelled.The N impurities, however, were found to
prefer the sites in the core of the nanowires, and therefore, N-doped SiC nanowires were found
to fail as self-purifying materials.

One-dimensional systems are actively sought after also for their optical properties. Using
the GW method, which is an accurate method for studying excited states, Bruno and cowork-
ers () demonstrated that optical properties of Si and Ge nanowires depend not only on the
nanowire diameter but also on the orientation.

D Structures: Graphene and Derivatives

Due to the remarkable ability of carbon to exist in different hybridization states, carbon-
based materials display an unusually rich variety. Diamond, graphene, cage-like molecules and
perhaps most notably carbon nanotubes are examples of the large selection of possibilities.

Graphene, which is a single layer of graphite, may be thought of as the building block of
most of the allotropes listed above (> Fig. -). Nanotubes are geometrically rolled up ver-
sions of graphene, and fullerenes can be formed by introducing topological defects (heptagons
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⊡ Fig. -
Graphene is a D building material for carbon materials of all other dimensionalities. It can be
wrapped up into D buckyballs, rolled into D nanotubes, or stacked into D graphite (Reprinted
with permission from Geim and Novoselov (). © () by Nature Publishing Group)

and pentagons) into the perfect honeycomb lattice structure of graphene in order to introduce
positive and negative curvature (Freitag ; Peres et al. ).

Regardless of the immense attention that graphene received in the theoretical literature, it
wasn’t until  (Novoselov et al. ) that a single layer of graphene was isolated experi-
mentally. Since two-dimensional crystals were proven to be unstable theoretically (Landau and
Lifshitz ; Mermin ), the discovery of free-standing graphene came as a surprise (Meyer
et al. ). This apparent discrepancy, however, was lifted when upon closer inspection, the
isolated graphene sheets were not perfectly flat but had corrugations reaching up to  nm
in size.

Since the discovery and isolation of graphene was achieved, many other materials were
found to form two-dimensional structures. In this chapter, we give an overview of carbon-based
two-dimensional materials including graphene, graphene nanoribbons, nanobelts, and strips in
addition to two-dimensional structures of several other materials.
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Graphene, Nanosheets, Nanoribbons, Nanobelts, Nanostrips

With the advent of several sophisticated experimental techniques, the two-dimensional
confinement of graphene layers were further extended to one-dimensional in the form of
nanoribbons. Nanoribbons are narrow strips of graphene that may exhibit quasi-metallic or
semiconducting behavior depending on the geometry of their edges. Much like nanotubes,
graphene nanoribbons (GNRs) are also termed zigzag or armchair based on the directional-
ity of the bonds with respect to the long axis (see > Fig. -). Due to the dependence of their
electronic properties on their geometry, it is important to control the morphology and crys-
tallinity of these edges for practical purposes. It has been experimentally shown that (Jia et al.
) controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons are
possible by Joule heating. During Joule heating and electron beam irradiation, carbon atoms
are vaporized, and subsequently sharp edges and step-edge arrays are stabilized, mostly with
either zigzag- or armchair-edge configurations.

In addition to the edge geometry, the electronic properties, in particular the band gap, of
nanoribbons also depend on their width (Han et al. ; Wu and Zeng ). The magnetic
properties may also be severely altered upon reduction of size to a graphene fragment (Wang
et al. ) which results in the emergence of giant spin moments.

Another path for controlling the electronic properties of nanoribbons is by an application
of an external electric field or by chemical doping of the pristine samples. Half-metallicity, for
instance, which has several applications in spintronics (Wu and Zeng ) may be introduced
through functionalization with such species as H, COOH, OH, NO, NH, and CH (Son et al.
).

Straight GNRs with zigzag, armchair, or mixed edges are proven to be semiconducting by
the experiment. In addition, GNRs can be sculpted by attaching two segments together that
are manufactured to make a  degree angle with each other thereby forming a sawtooth-like
nanoribbon (> Fig. -). The structure of a sawtooth-like GNR can be characterized by two
integers (w, l). The first integer denotes the width of the nanoribbon, while the second integer
describes its periodic length (Wu and Zeng ).

Stability is an important issue for amaterial which is intended to be used as a building block
of device applications. Even though perfect two-dimensional crystals are proven to be unstable,
graphene is found to be stabilized by corrugations in the third dimension. Understanding the
effect of GNR width on the stability is therefore also a central issue for possible applications.
Molecular dynamics computer simulations using empirical interatomic potentials predict that

a b

⊡ Fig. -
(a) Armchair graphene ribbon model. (b) Zigzag graphene ribbonmodel
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⊡ Fig. -
The model structure of a sawtooth-like GNR (Adapted fromWu and Zeng )

⊡ Fig. -
Armchair edged GNRs. Left column shows top view and right column shows tilted view. GNRs of
width five hexagonal rings are shown.  K, K, and final temperature images are given (Adapted
fromDugan and Erkoc )

structural stability of graphene nanoribbons show dependence on size (width) and edge orien-
tation (Dugan and Erkoc ). > Figures - and > Fig. - show respectively the relaxed
structures of armchair and zigzag edged GNRs with various widths.

In the recent nanoscale literature, a wealth of materials other than C have been identified,
both theoretically and experimentally, as viable candidates for future use as two-dimensional
devices.

Boron nitride, for instance, having electronic properties that resemble carbon can exist in a
hexagonal structure h-BN similar to the graphite layered geometry. Much like graphene sheets,
BN sheets can be grown on more or less lattice-matched transition metal surfaces (Corso et al.
; Huda and Kleinman ). A model BN sheet is shown in > Fig. -.

BN, being a member of the III-V semiconductor family indicates the possibility of nanorib-
bons or nanobelts made of other semiconductor families. Indeed, several oxide and other II-VI
family nanobelts have been discovered and reported (Pan et al. ) (ZnO, SnO, CdO, GaO,
PbO,ZnS, CdSe, and ZnSe). Some of the oxides in this family such as ZnO and SnO, owing
to their polarity and crystal structure, deform in novel morphologies such as rings, springs,
and spirals in order to bring together the positive and negative charges, counteracting the
charge imbalance (Yang and Wang ). These structures comprise a versatile set of nano-
materials that are promising candidates for various applications such as sensors, resonators,
and transducers.
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⊡ Fig. -
Zigzag edged GNRs. Left column shows top view and right column shows tilted view. Ribbons of
width five hexagonal rings are shown.  K, K, and final temperature images are given (Adapted
fromDugan and Erkoc )
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⊡ Fig. -
The geometric structure of BN sheet (Adapted from Venkataramanan et al. )

Nanobelts, a term coined by researchers working on these structures (Wang ), are
described as nanowires with not only a well-defined growth direction but also well-defined top,
bottom and side edges and cross-section. The nanobelt structures are usually obtained from
functional oxides, which are semiconductor materials, such as ZnO, GaO, t-SnO, o-SnO,
InO, CdO, and PbO. Puremetal nanobelt structures are also possible, Zn is one of themetals
that form fine nanobelt structures (Wang ). ZnO, being one of the most versatile materi-
als in nanoscale research alongside with carbon and BN, has once again been investigated at
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great depth in the context of nanobelts (Kulkarni et al. ; Wang ). Molecular dynamics
computer simulations using empirical interatomic potentials (Kulkarni et al. ) reveal that
ZnO nanobelts display properties that depend on their size and orientation. Depending on the
growth direction, ZnO nanobelts may exhibit an interesting shell structure or a simple surface
reconstruction.

Nanostrips are similar to nanobelts, they are usedwith the samemeaningwith nanobelts. All
these nanostructures (ribbons, belts, strips) are ideal materials for building nano-sized devices
and sensors (Lin et al. ).

In addition to the materials mentioned above, recent theoretical studies have proposed a
wealth of two-dimensional structures that are composed of less common materials. One such
example is the recently proposed BC graphene (Wu et al. ). The optimized BC graphene
structure is displayed in > Fig. -. Two neighboring CB motifs share two common boron
atoms, giving rise to a hexagon and a rhombus.ThemeanB–C and B–B bond length is . and
.Å, respectively. The sheet is slightly corrugated with a distance of only ∼.Å. The cor-
rugation is a result of an excess of p electrons normal to the sheet relative to the gas-phase CB

molecule.
The quasi-one-dimensional BC nanoribbons are finite-size graphene with parallel edges.

The width of the BC nanoribbon is defined by the number of C atoms normal to the long-
axis of the ribbon. As shown in > Fig. -, type I and II BC nanoribbons are displayed.
The dangling bonds at the edges of BC nanoribbons can be passivated by either H atoms or
CH groups.
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⊡ Fig. -
(a) A CV -CB motif structure. Each carbon atom is bondedwith four boron atoms.Optimized struc-
tures of two types BC nanoribbons with two different edge configurations, referred as type I (b)
and type II (c) (Adapted fromWu et al. )
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TiO with its uses in solar cell applications and surface catalysis has received much atten-
tion both theoretically and experimentally. Its nanostructures are of equal interest to technology
due to their chemical inertness, endurance, strong oxidizing power, large surface area, high
photocatalytic activity, non-toxicity, and low production cost. The titania nanostructures are
constructed by “cutting” of TiO monolayers into nanostrips and by rolling them into cylin-
drical nanotubes or nanorolls (Enyashin and Seifert ). There are two different topological
nanostrip models constructed fron titania. One model is obtained from () surface of tita-
nia, called as anatase layer, and the second model is obtained from () surface of titania,
called as lepidocrocite layer. A view of the structures of () and () TiO layers are shown
in > Fig. -. By rolling of these strips various nanostructures can be generated, such as
nanotubes and nanospirals (nanorolls) (Enyashin and Seifert ).

Non-carbon elemental sheet structures have also been investigated. Lau et al. () pro-
posed four possible configuration models for the boron sheet. According to this study, the
flat form, denoted {}, seen in > Fig. - is a triangular network, while the buckled
{}b and pair-buckled {}pb configurations include chain-wise and pair-wise out-of-
plane displacements. Finally, a reconstructed {} configuration is investigatedwith inversion
symmetry in the unit cell. It can be considered as a triangular–square–triangular unit network.

⊡ Fig. -
Monolayers of TiO in anatase (top (a) and side (b)) and lepidocrocite polymorphs (top (c) and
side (d))

a b

⊡ Fig. -
Idealized  (a) and reconstructed . (b) Boron sheets
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The DFT calculations reveal (Lau et al. ) that the reconstructed {} configuration
is the most stable configuration by . eV/atom relative to the idealized {} configura-
tion. Both the {}b and {}pb configurations tend to converge to the idealized {}
configuration when relaxed during the geometry optimization.

Electronic andMechanical Properties

Graphene has a unique and curious band structure which can be approximated by a double cone
close to the six Fermi points at the corners of the Brillouin zone (see > Fig. -). Commonly
referred to as Dirac electrons, the conduction electrons follow a linear energy-momentum
dispersion and have a rather large velocity.

The conduction in graphene is enabled by the delocalized π-electrons above and below the
plane. Due to their relative detachment from the tightly-knit planar network these electrons
are free to move along the graphene sheet with rather high mobility. This is of course a rather
desirable property for devices used in electronics (Li et al. b).

A good yet simple method for understanding the band structure of graphene is the tight-
binding formalism (Neto et al. ). Graphene is made out of carbon atoms arranged in
hexagonal structure, as shown in > Fig. -. The structure can be seen as a triangular lattice
with a basis of two atoms per unit cell. The lattice vectors can be written as

a =
a

(,
√
) , a =

a

(,−
√
),

where a ∼ . Å, is the carbon-carbon distance. The reciprocal-lattice vectors are given by

b =
π
a
(,
√
) , b =

π
a
(,−
√
),

Momentum

Band gap

Energy Energy

Momentum

Dirac
point

⊡ Fig. -
The band structure of a representative three-dimensional solid (left) is parabolic, with a band gap
between the lower-energy valence band and the higher-energy conduction band. The energy
bands of D graphene (right) are smooth-sided cones, which meet at the Dirac point
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⊡ Fig. -
Graphene lattice and its Brillouin zone. Left: lattice structure of graphene, made out of two inter-
penetrating triangular lattices (a and a are the latticeunit vectors). Right: corresponding Brillouin
zone. The Dirac cones are located at the K and K′ points

The two points K andK′ at the corners of the graphene Brillouin zone (BZ) are namedDirac
points. Their positions in momentum space are given by

K = (
π
a

,
π


√
a
) , K′ = (

π
a

,−
π


√
a
) .

The tight-binding Hamiltonian for electrons in graphene, considering that electrons can
hop to both nearest- and next-nearest-neighbor atoms, has the form (in units ħ = )

H = −t ∑
<i , j>,σ

(a†σ ,i bσ , j +H.c.) − t′ ∑
<<i , j>>,σ

(a†σ ,i aσ , j + b
†
σ ,i bσ , j +H.c.), (.)

where ai ,σ (a†i ,σ ) annihilates (creates) an electron with spin σ (σ =↑, ↓) on site Ri on sublattice
A (an equivalent definition is used for sublattice B), t (∼. eV) is the nearest-neighbor hopping
energy (hopping between different sublattices), and t′ (∼. eV) is the next nearest-neighbor
hopping energy (hopping in the same sublattice). The Hamiltonian in > Eq. . is solved at
various momenta and the energy bands are obtained as follows:

E
±
(k) = ±t

√
 + f (k) − t′ f (k) (.)

with

f (k) =  cos(
√
kya) +  cos(

√



kya)cos (


kx a) , (.)

where the plus sign applies to the upper (π∗) and the minus sign the lower (π) band.
As illustrated by this simple model, graphene is a semimetal or a zero-gap semiconductor.

At low temperatures it does not possess superconducting properties; however, as demonstrated
by Pathak et al. () using variational Monte Carlo, there is a possibility that doped graphene
may superconduct.

The graphene nanoribbons (GNRs) discussed in the previous sections may also be mod-
eled rather easily using the tight-binding formalism taking as the basis the usual Schrödinger’s
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equation (Ezawa ) or the massless particle Dirac equation (Sasaki et al. ).These mod-
els predict that armchair GNRs can be either metallic or semiconducting depending on their
widths, and that zigzag GNRs with zigzag shaped edges are metallic regardless of the width.

The edges of GNRs are also suitable sites for chemical functionalization (Wang et al. ).
Due to the existence of dangling bonds at the edges, the electronic properties of GNRs may be
controlled by modifying these bonds by addition of other species.

The results of first-principle calculations using linear combination of atomic orbital density
functional theory (DFT) method predict that the electronic band structures and band gaps of
the GNRs show a dependence on the edge structure of the nanoribbons (Wu and Zeng ).
Clearly, the electronic band structures are sensitive to the edge structure of the nanoribbons. All
straight GNRs are semiconducting. Two distinct features can be seen concerning the band gap.
The band gap of GNR with zigzag edges slightly decreases with increasing the width w, while
that of GNR with armchair edges varies periodically as a function of w.

Like the straightGNRs, the calculated electronic band structures of the sawtooth-like GNRs
(see > Fig. -) also show semiconducting characteristics with direct band gap. More inter-
estingly, even though the sawtooth-like GNRs have zigzag edges, their band gaps show similar
oscillatory behavior as those of straight GNRs with armchair edges, which depend on the
width w. However, for most nanoribbons, their band gap reduces monotonically with increas-
ing periodic length l . The band gaps of nanoribbons with w = , , or  reduce much rapidly,
whereas those of nanoribbons with w =  or  reduce gradually.

For (, l) sawtooth-like nanoribbons, the band gap approaches zero rapidly as the l increases
(Wu andZeng ).These results show that the band gaps of the sawtooth-like GNRs aremuch
more sensitive to their geometric structures, which is an opportunity for tuning the band gap.

Quantization of electric conductance under the action of an externalmagnetic field displays
a rather interesting trend for GNRs. In the exhaustive tight-binding study conducted by Peres
et al. (), the number of plateaus in the quantized conductance was found to be even in
armchair GNTs while the same number is odd for the zigzag edge.

Rosales et al. () investigated theoretically the effects of side-attached one-dimensional
chains of hexagons pinned at the edges of the GNRs. These one-dimensional chains could be
useful to simulate, qualitatively, the effects on the electronic transport of GNRs when benzene-
based organic molecules are attached to the edges of the ribbons.They propose a simple scheme
to reveal the main electronic properties and the changes in the conductance of such deco-
rated planar structures. For simplicity, they consider armchair and zigzag nanoribbons and
linear poly-aromatic hydrocarbons (LPHC) and poly(paraphenylene), as the organicmolecules.
The attached molecules are simulated by simple one-dimensional carbon hexagonal structures
connected to the GNRs.

These nanostructures are described using a single-band tight-binding Hamiltonian and
their electronic conductance and density of states are calculated within the Green’s function
formalism based on real-space renormalization techniques (Rosales et al. ).

As revealed by the theoretical analysis conducted byNakabayashi et al., GNRs are a solution
to the difficulty of producing an effective graphene switch for turning off the current. Zigzag
nanotubes due to their peculiar band structuresmaybe utilized for better current control rather
than graphene. A single layer of graphene has no bandgap, which makes it difficult to con-
trol current. However, Nakabayashi et al. () found that when a sheet of graphene was in
the form of nanoribbons just a few nanometers wide, its electronic structure changed so that
currents could be controlled in radically different ways in comparison to conventional semi-
conductor devices. Nakabayashi et al. () showed that when a nanoribbon was cut so that
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⊡ Fig. -
(a) The electronic band structures of several sawtooth-like GNRs with various w and l. The band
gaps versus (b) the widthw and (c) the periodic length l (Reprinted with permission fromWu and
Zeng (). © () by Springer)

its edges formed a zigzag structure with an even number of zigzag chains across its width, and
an electrostatic barrier potential applied along part of its length, then it behaved as a so-called
band-selective filter, preferentially scattering charges into either even or odd numbered bands
of its electronic structure depending on the potential. And when two such filters with different
potentials were connected in series, they showed it should be possible to completely shut off the
flow of current through the nanoribbons.

Tight-binding studies have revealed countless interesting electronic properties regarding
GNRs. GNRs, much like single-walled carbon nanotubes, can display metallic or semiconduct-
ing properties depending on their orientation and width. Similar to armchair nanotubes, zigzag
ribbons are all metallic and may have magnetic properties. Bare and H-terminated ribbons, as
studied by Barone et al. may show such effects as gap oscillations which make them a viable
choice for possible band structure engineering applications. The results of this study, which is a
careful investigation of GNRs of several orientations, widths and terminations are displayed
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Left: A representative set of semiconducting hydrogen-terminated GNRs, created by “unfolding”
and “cutting”different typesof CNTs. (a) AGNRwith a chiral angleofϕ = .○ createdbyunfolding
and cutting a C(,). (b) A GNR with a chiral angle of ϕ = .○ created by unfolding and cutting a
C(,). (c) A GNR with a chiral angle of ϕ = .○ created by unfolding and cutting a C(,). (d) A
GNRwith a chiral angle of ϕ = .○ created by unfolding and cutting a C(,). (e) An armchair GNR
(ϕ = ○) created by unfolding and cutting a zigzag CNT. Right: Dependence of the band gap on the
width of hydrogen passivated chiral GNRs. The different panels correspond to the different CNRs
presented in Left. (Reprinted with permission from Barone et al. (). © () by the American
Chemical Society)

in > Fig. - along with the details of the models used and the band gap profiles of the
corresponding models.

GNRs have localized edge states located near the Fermi level. By terminating the edges with
different species, one can change the character of these states and consequently the properties
of GNRs. In fact, a first-principles calculation within spin-unrestricted local-density functional
formalism on zigzag-edge graphene nanostrips terminatedwith hydrogen and oxygen atoms as
well as hydroxyl and imine groups show that these different species have a significant impact on
the electronic structure of these strips near the Fermi level (Gunlycke et al. ). Zigzag-edge
nanostrips terminatedwith hydrogen atoms or hydroxyl groups exhibit spin polarization, while
the nanostrips terminated with oxygen or imine groups are unpolarized. These differences of
course result in very different conductance characteristics for these systems.

In further support of the aforementioned evidence Zhang and Yang () confirmed in
their linear combination of atomic orbitals (LCAO) tight-binding study that H-terminated
armchair GNTs exhibit size dependence in their conductance properties.
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On the other hand, ZnO nanoribbons show different characteristics from that of carbon
nanoribbons. ZnO nanoribbons grown along the [] direction can form two different planar
monolayer, zigzag and armchair ribbons. First principles calculations of zinc oxide nanoribbons
show that the stability of armchair edge structures is greater than the zigzag edge configura-
tions. Furthermore, single layered armchair ribbons are semiconductors, whereas the zigzag
counterparts are metallic (Botello-Mendez et al. ). An effect that is not present in purely
carbon-based systems is the presence of two differently charged species offering different edge
configurations. For the zigzag ZnO ribbons, for instance, the exposed atoms are oxygen atoms
while the hidden are zinc. The opposite edge has the inverse structure. The armchair ribbons
are characterized by a Zn-O pair at the outer edge and another pair at the inner edge. After
relaxation, the far edge oxygen ions tend to shift outward on both sides of the ribbon. As in the
case of graphene materials, understanding the effects of edge-dimensional variation on band
gap energies will provide the new insights into the fundamental principle of architecture design
of nanodevices fabricated with ZnO nanostructured materials. A simple tight-binding model
can be used to investigate the electronic properties of nonpolar ZnO nanobelts following the
procedure described below.

Consider a simplified unit cell model (see > Fig. -) along the nanobelt growth z direc-
tion with Zn and O in the xy plane. This is the actual case for the ultrathin ZnO film oriented
along the [] direction.

In this case, the tight-binding Hamiltonian is given by (Yang andWang ):

H = ∑
r∈A

εr a†r ar +∑
r∈B

εrb†r br + ∑
r∈A,B

∑
i=,,⋯

(τr ,i a+r br+Si + τ
∗

i ,r b
+

r ar+Si),

where operators a†r (ar) and b†r (br) create (annihilate) a state at sites A (for Zn) and B (for O)
at their coordinates r, respectively. ε denotes the on-site self-interaction energy, whereas τ is the
interatomic coupling term. Similarly, the wave functions for Zn and O at their respective lattice
sites can be written as a linear combination of Bloch waves along the z direction and standing
waves along x and y as the following (Yang andWang ),

∣Zn, kx , ky >=
Mx

∑
mx=

My

∑
my=
∑
zm

cpeikz zm sin(kxmxa) sin(kymyb)a+mxmy ∣ >

mx

my

Zn (A)

O(B)

⊡ Fig. -
Schematic illustration showinga tight bindingunit cell for a ZnOnanobelt (Adapted fromYangand
Wang )
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∣O, kx , ky >=
Nx

∑
nx=

Ny

∑
ny=
∑
zn

cpeikz zn sin(kxnx a) sin(kynyb)a+nx ny ∣ >

in which lattice vectors a and b are as defined in > Fig. - and cp and cq are coefficients.
To simplify the model, onemay consider only the coupling term between the nearest neigh-

boring sites. In this case, on the same xy plane, theO-sites take the following coordinates around
a Zn center: nx = mx − , mx and mx + ; with ny = my − , my and my +  in correspon-
dence. Along the yz plane, there exist two O atoms that directly interact with the center Zn
with zn = zm ± c, respectively (Yang andWang ).

In addition to the conventional strip-like geometry, other configurations based on GNRs
have also been proposed as a part of a search for favorable transport properties. Various
graphene nanojunctions based on the GNRs have been studied, such as L-shaped, Z-shaped,
and T-shaped GRN junctions (Areshkin et al. ; Chen et al. ; Jayasekera andMintmire
). Of particular interest is the hybrid junctions which are mixtures of armchair and zigzag
GNRs. Some studies have shown that the transport properties of these hybrid GNR junctions
are very sensitive to the details of the junction region (Xie et al. ). Amodel calculation based
on tight-binding andGreen’s function methods for L-shapedGNRs show that the corner geom-
etry of the L-shaped junction has great influence on the electron transport around the Fermi
energy (Xie et al. ). The L-shaped GNRmodels considered are shown in > Fig. -. The
calculated conductance plots as a function of electron energy are shown in > Fig. -. Inter-
estingly the results reveal that the corner is the decisive factor for the electronic properties of
these junctions. As more carbon atoms are added to the inner side of the corner the junction
moves from being metal to a semiconductor, developing a band gap.

Carbon nanoribbons have also interesting mechanical properties. For instance, Raman
spectra show a remarkable dependence on ribbon width (W) (Zhou and Dong ). For the
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⊡ Fig. -
(a) A deformed LGNR (called LGNR) where a triangle graphene flake (in the dashed-line triangle) is
connected to the inside corner of a standard right-angle LGNR. (b) A deformedLGNR (called LGNR)
in which a triangle graphene flake is cut from the outside corner of LGNR in (a). NA and NZ rep-
resent the widths of the semi-infinite AGNR and ZGNR, respectively; N represents the side length
of added triangle flake, while N represents the side length of cut triangle flake (Adapted fromXie
et al. )
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Left: The conductance as a function of electron energy for the LGNR in > Fig. -awith different
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GNRs whose widths are larger than Å, the radial breathing-like mode (RBLM) frequencies
follow the /W rule:

ω = . ×

W
+ . in /cm.

But for the narrow GNRs whose widths are less than Å, their RBLM frequencies follow the
/
√
W rule:

ω = . ×

√
W

′

. in /cm.

A unified fitting function has been proposed (Zhou and Dong ), which can be suitable for
all the GNRs:

ω = . ×

W
+ .×


√
W
− . in /cm.

Another interesting application of graphene is the antidot lattices. Antidot lattices are trian-
gular arrangements of holes in an otherwise perfect graphene sheet. In each hexagonal unit cell
of the lattice, a circular hole is introduced whose radius R can be adjusted along with the length
of the hexagonal unit cell, L. Previously known applications of antidot lattices involve semi-
conductor lattices, while in a recent publication the possibility of creating antidot structures on
graphene using e-beam lithography has been reported (Pedersen et al. ).The antidot lattice
causes graphene to become a semiconductor, introducing a tuning parameter which is the dot
size and shape. In addition spin qubit states can be formed in the antidot lattice by manipulat-
ing the antidot arrangement. Pedersen et al. () demonstrated that the hole shape plays a
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⊡ Fig. -
Band structuresof a{, }antidot lattice and similar structurehavinga triangular holewith zigzag
edges. Note the dispersion less band at  eV in the triangular case (Reprintedwith permission from
Pedersen et al. (). © () by the American Physical Society)

crucial role in determining the electronic structure. A triangular hole instead of a circular hole
results in the appearance of a metallic state at the Fermi level.The different band structures are
illustrated in > Fig. -.

Magnetic and Optical Properties

Lower-dimensional systems are expected to show electronic, magnetic, and optical properties
that are not observed in their bulk counterparts. In two-dimensional structures, the inherent or
emergentmagnetic properties depend onmany factors including shape, size, and the interaction
between subregions (Jensen and Pastor ).

GNRs are a typical example of emergent and controllable magnetic systems. Spin-polarized
first-principles calculations by Gorjizadeh et al. () have shown that doping GNRs with d
transition metals result in the appearance of FM or AFM states. In particular Cr and Co provide
a largemagneticmoment and dopingwith Fe orMnat lowdensities yields half-metallic ribbons.

As discussed in the work by Enoki and Takai, as the dimension of the system decreases,
the contribution coming from the edge states increases in proportion (Enoki and Takai ).
The localized edge states in GNR, which are dispersionless states that appear at the Fermi level
give rise to interesting magnetic properties.

From the applications point of view the magnetic properties of graphene nanoribbons
are more interesting and studied both experimentally and theoretically. Particularly quasi D
GNRs have magnetic properties depending on their size and symmetry. These are edge states
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of nanoribbons with opposite spin polarization and band gaps varying with the width of the
ribbon (Topsakal et al. ).

Using first-principles plane wave calculations within the DFTmethodTopsakal et al. ()
predict that in addition to edge states electronic and magnetic properties of graphene nanorib-
bons can also be affected by defect-induced states. In particular, when H-saturated holes are
introduced into the GNT, the band structure is modified dramatically altering in return the
electronic and magnetic properties. Similarly, vacancies and divacancies induce metallization
andmagnetization in non-magnetic semiconducting nanoribbons due to the spin-polarization
of local defect states. Antiferromagnetic ground state of semiconducting zigzag ribbons can
change to ferrimagnetic state upon creation of vacancy defects. In this study, the changes in
electronic properties are studied as a function of the location and the geometry of the vacan-
cies in different types of armchair GNRs. Due to the spin polarization of localized states and
their interaction with edge states, magnetization may be introduced into the GNRs. Some of
the representative results of this work are displayed in > Fig. -.

Not only armchair, but also zigzag nanoribbons are strongly affected by defects due to single
and multiple vacancies (Topsakal et al. ). When coupled with the magnetic edge states of
the zigzag nanoribbons the vacancy defect brings about additional changes. The magnetic state
and energy band structure of these ribbons depend on the type and geometry of the defects.
In a ZGNR(;) a single vacancy formation energy is lowered by . eV when the defect is
situated at the edge rather than at the center of the ribbon. Furthermore, two defects associated
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(a) Metallization of the semiconducting AGNR() by the formation of divacancies with repeat
period of l = . (b) Magnetization of the non-magnetic AGNR() by a defect due to the single car-
bon atomvacancywith the same repeat periodicity. Isosurfaces around the vacancy correspond to
the difference of the total charge density of different spin directions. Solid (blue) and dashed (red)
lines are for spin-up and spin-down bands; solid (black) lines are nonmagnetic bands (Reprinted
with permission from Topsakal et al. (). © () by the American Physical Society)
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with two separated vacancy and a defect associated with a relaxed divacancy exhibit similar
behavior (Topsakal et al. ).

On the other hand, Pisani et al. () investigated theoretically the electronic andmagnetic
properties of zigzag graphene nanoribbons by performing first principles calculations within
DFT formalism.Theypredict that the electronic structure of graphene ribbonswith zigzag edges
is unstable with respect to magnetic polarization of the edge states.

As can be seen from the model calculations of Topsakal et al. (, ), the energy band
gaps and magnetic states of graphene nanoribbons can be modified by defects due to single or
multiple vacancies. Electronic and magnetic properties of finite length graphene nanoribbons
also show similar behavior as infinite length nanoribbons. Finite length ribbons are usually
referred to as graphene quantum dots (GQD). Tang et al. () investigated theoretically the
electronic and magnetic properties of a square graphene quantum dot. Electronic eigen-states
of a GQD terminated by both zigzag and armchair edges are derived in the theoretical frame-
work of the Dirac equation. They find that the Dirac equation can determine the eigen-energy
spectrum of a GQD with good accuracy. By using the Hartree-Fock mean field approach, they
studied the size dependence of the magnetic properties of GQDs. They find that there exists a
critical width between the two zigzag edges for the onset of the stable magnetic ordering. On the
other hand, when such a width increases further, the magnetic ground state energy of a charge
neutral GQD tends to a saturated value (Tang et al. ).

Magnetic properties of graphene show a sensitive dependence on single atomdefects; defect
concentration and packing play an important role in magnetism. Singh and Kroll () inves-
tigated the magnetism in graphene due to single-atom defects by using spin-polarized density
functional theory calculations. Interestingly, they find that while the magnetic moment per
defect due to substitutional atoms and vacancies depend on the defect density, it is independent
of defect density for adatoms.The graphene sheet with B adatoms is found to be nonmagnetic,
but with C and N adatoms it is magnetic.The adatomdefects cause a distortion of the graphene
sheet in their vicinity. The distortion in graphene due to C and N adatoms is significant, while
the distortion due to B adatoms is very small.The vacancy and substitutional atom (B,N) defects
in graphene are planar in the sense that there is in-plane displacement of C atoms near the
vacancy and substitutional defects. Upon relaxation the displacement of C atoms and the forma-
tion of pentagons near the vacancy site due to Jahn–Teller distortion depends upon the density
and packing geometry of vacancies (Singh and Kroll ). The defect models considered by
Singh and Kroll are shown in > Fig. -.

The optical absorption coefficient is one of the most important quantities in solids and
is closely related to the electronic band structure. The Kubo formula–based calculations of

ba c d

⊡ Fig. -
The model samples of (a) ideal graphene, (b) graphene with one atom vacancy, (c) graphene with
one substitutional atom and (d) graphene with one adatomdefect (Adapted from Singh and Kroll
)



Modeling of Nanostructures  

Zhang et al. indicate that at high frequencies, the optical spectrum of graphene is highly
anisotropic (Zhang et al. ). It has also been shown that the weak optical response in
graphene nanoribbons can be significantly enhanced in an applied magnetic field (Liu et al.
).

Another effect important for determining the optical properties of graphene-related mate-
rials is spin-orbit coupling. Although spin-orbit coupling is negligible at high frequencies, it is
found to have a significant enhancing effect on the optical absorption at lower frequencies as
shown in a direct solution of the spin-orbit Hamiltonian in the effective mass approximation
by Wright et al. ().

Adsorption Phenomena

Adsorption of adatoms on graphene and/or graphene nanoribbons play an important role in
functionalizing graphenematerials for various device applications, such as gas sensors and spin-
valves. Transition metal (TM) atom decorated graphene shows different magnetic properties
depending on the concentration and the species of TM atoms.There are several coverage mod-
els, such as one TM atom adsorbed on either (× ) or (×) unit cells on only one side as well
as on both sides, namely, above and below the graphene. Sevincli et al. () investigated the
possible adsorption sites of TM atoms on graphene and GNR. The geometrical configurations
of the structures they considered include bridge (over a C–C bond), atop (on top of a C atom)
and on center (over the center of a hexagon) adsorption sites for both perfect graphene and for
AGNR of various widths Na.

In relation to another very important application, doping of transition elements was found
to increase the hydrogen storage properties of materials (Shevlin and Guo ). Especially
nickel and rhodium are widely used in the hydrogenation reaction and also in the synthesis
of BN sheets. Considering the potential application of Ni and Rh nanoparticles in hydrogen
storage and in catalysis, Venkataramanan et al. () investigated the interaction of Ni and Rh
atom on the BN sheets through first-principles calculations. They also analyzed the interaction
between hydrogen molecules and the metal atoms adsorbed on the BN sheets, which might be
useful to maximize the hydrogen storage capacity.

Hydrogen adsorption studies over the metal doped BN sheets shows that both Ni and Rh
atoms can hold three hydrogen molecules. In the case of Ni doped BN sheet all three hydrogen
molecules are chemically bound and are intact. In the case of Rh doped BN sheets, the first
hydrogen molecule dissociates and the remaining hydrogen molecules are bound to the metal
atom.The absorption energy for the first hydrogen was found to have a larger value for the Rh-
doped BN sheet, whereas for the second and third hydrogen molecules, the absorption energies
were higher for the Ni doped BN sheets. Upon addition of a fourth hydrogen molecule to the
Ni doped BN sheets, the fourth hydrogen molecule moved to a distance of .Å. In the case
of Rh-doped BN sheet, the Rh atom detached and acted in a similar way to a cluster. Thus Ni
atoms are more stable on BN sheets, and have higher absorption energy compared to the Rh
doped BN sheets (Venkataramanan et al. ).

Metallized graphene can be a potential high-capacity hydrogen storage medium. Graphene
is metallized through charge donation by adsorbed Li atoms to its π∗-bands. Each positively
charged Li ion can bind up to four H by polarizing these molecules.The storage capacity up to
the gravimetric density of .wt % is possible with a favorable average H binding energy of
. eV (Ataca et al. ).
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⊡ Fig. -
Plots of the spin density and electron density for the α-spin (up) and β-spin (down) states in
nanoscale graphene. For the spin density, different colors indicate the α- and β-states, while for
the electron density distribution (α- and β-states) the different colors correspond to different signs
of the molecular orbital lobes. (a) The electron density distribution in pure graphene. (b) The
electron density distribution for graphene with adsorbed water (Reprinted with permission from
Berashevich and Chakraborty (). © () by the American Physical Society)

Water and gas molecules adsorbed on nanoscale graphene play the role of defects which
facilitate the tunability of the bandgap and allow one to control the magnetic ordering of local-
ized states at the edges (Berashevich and Chakraborty ). The adsorbedmolecules push the
α-spin (up) and β-spin (down) states of graphene to the opposite (zigzag) edges such that the α-
and β-spin states are localized at different zigzag edges.This breaks the symmetry that results in
the opening of a large gap.The efficiency of the wavefunction displacement depends strongly on
the type of molecules adsorbed on graphene (Berashevich and Chakraborty ). The influ-
ence of adsorption of water on the electronic and magnetic properties of graphene is based on
calculation of the spin-polarized density functional theory and the results of the calculations
are depicted in > Fig. -.
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