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Abstract: We discuss the electronic properties of a system of interacting electrons in 
a narrow channel in the quantum Hall effect regime. We demonstrate that the system 
undergoes phase transitions when the strength of the interaction or the geometry of 
the channel is varied. The resulting phase diagram contains odd-denominator quan- 
tum Hall states and also a stable v = �89 state. The collective mode evaluated at the 
half-filled case is strikingly similar to that of an odd-denominator state. We discuss 
the nature of the phases with non-zero total momentum or with no energy gap. We 
also analyze the spin polarizations of those stable states as a function of temperature. 
At v = �89 no two-dimensional analog exists, but for the odd-denominator states the 
temperature dependence closely resemble the ones in the corresponding two dimen- 
sional systems where the results have received support from experiments. 

1 Introduction 

One of the perhaps most spectacular demonstrations of electron correlations in nature is 
the fractional quantum Hall effect (FQHE) [ 1]. It is characterized by Hall plateaus at Lan- 
dau level filling factors v = Ne/Ns (Ne is the number  of electrons and Ns is the Landau 
level degeneracy) corresponding to certain simple fractions with mostly odd denomina- 
tors. This effect is believed to occur when a two dimensional electron system (2DES) 
in a strong perpendicular magnetic field and at low temperatures condenses into an in- 
compressible liquid state - the Laughlin state [2]. The FQHE occurs when the chemical 
potential of  the electron system is discontinuous at certain magnetic field dependent den- 
sities leading to incompressibility [3]. The energy gap structures in the excitation spectra 
are also well established for the incompressible states [4]. Interestingly, despite intense 
activities at the half-filled Landau level [5-7], such a level of understanding has not yet 
been achieved for the simplest even-denominator state, which is compressible and shows 
no sign of QHE. 

In recent years there has been a great deal of interest in the study of electron correla- 
tions in systems where electrons are confined in even lower dimensions [8]. For example, 
ballistic quantum wires fabricated [9] with long transport mean-free path and very large 
subband spacings enable one to study effects of electron-electron interactions in one- 
dimensional  systems. At high magnetic fields when the radius of the cyclotron orbit - the 
length scale in the system - is smaller than the width of the channel, it is plausible that the 
system behaves like a two-dimensional electron gas (2DEG) in the sense that it exhibits 
QH states. The boundaries of the sample are of course still important in that regime and 
therefore in theoretical models one should be able to treat the edges and bulk on the same 
footing. 
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Prior to our theoretical work presented here, there were a few earlier attempts to study 
QHE in one dimension (1D-QHE). Theoretical work on one-dimensional systems with 
hard wall boundary condition [10] indicated that as the channel width is varied there is 
a transition between the FQH state and the 2kF-charge density wave state. It was also 
noticed that the size of the FQHE gap is comparable for the filling factors v = �89 and 

v = �89 [10], which would mean that just like the stable �89 QHE state (Laughlin state), 
l v = ~ should also exhibit FQHE. Following that theoretical work, observation of incom- 

pressible states at specific filling factors in a narrow channel electron system was reported 
a few years ago [11]. In that experiment, in addition to various odd-denominator frac- 
tions, Hall resistance also showed signatures of quantization at the half-filled Landau 
level. That observation brought into focus the question about the existence and nature of 
even-denominator states in a narrow channel together with the role of boundaries of the 
sample. Theoretical interest on 1D-FQHE has been revived by recent work of Yoshioka 
[12,13] where a parabolic confinement (see below) was used and incompressible states 
were found at v = �89 and 2, but that approach was somewhat different in spirit than our 
work described below. 

2 A S y s t e m  of  Spinless  E l e c t r o n s  

In our model for the 1D-QHE, electrons (spin polarized) are confined by an electrostatic 
potential which is parabolic in the lateral direction and flat along the channel, and are also 
subjected to a strong perpendicular magnetic field. The electrons are considered to be in a 
cell of length a. The width of the cell is determined by the lateral electron density profile 
which is finite due to the presence of the confinement potential. We impose a periodicity 
condition along the length of the cell. The total Hamiltonian of the system is 

H = 5-[0 + 5q(nt (2.1) 

where -9/o includes the kinetic energy of Are electrons of effective mass m* and the elec- 
trostatic confining potential 

N . [  1 . 2 1 * 2 ' ]  
SOp=y_. 57m. +Tmm y.] 

i=1 

(2.2) 

with A being the vector potential in Landau gauge. The interaction term of the Hamilto- 
nian consists of Coulomb interactions and also terms corresponding to the neutralizing 
background 

1 fd~d~,e2p(g)O(g ') 
= 2 J  lg- ' 

~ b  = - ~, f dR e2p(R) (2.3) 
i e-lR - ~il 
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where ~ is the background dielectric constant and p(/~) is the background charge density. 
The single-electron wave functions labeled by K: = {re,n} are 

(2.4) 

where k = (2rc/a)m is the quantized wave vector and m is the momentum quantum 
I 

number. The effective Larmor radius for the cyclotron motion is ~ = (h/m*f2) 7, where 

= r + 032 and 03c = eB/m* is the cyclotron frequency. The single-electron states Eq. ~2 

(2.4) are localized around ~ = y + 2rcLam/~ta = 0. Here ~/= ~/1 + (030/mc) z is a dimen- 
sionless quantity. The single-electron states for m and m' are therefore separated spatially 
in lateral direction by an amount Aymm, = 27~(m -- m~))~Z/ya. For a very strong confine- 
ment energy with respect to cyclotron energy, spatial separation of the single-electron 
states vanishes - the system becomes truly one dimensional. On the other hand, when the 
confinement becomes weaker with respect to cyclotron energy, the states begin to sepa- 
rate spatially and the system becomes quasi-one-dimensional. In (2.4), Hn is the Hermite 
polynomial of order n. We consider the limit of a strong magnetic field and therefore, 
in what follows we set n = 0 (lowest Landau level). Ignoring the constant Landau level 
energy the single-electron energies are given by 

h 2 k 2  032 ( 2 . 5 )  

= 2m---g" ~--g" 

It should be pointed out that a related model where the electrons are confined in both x- 
and y-directions by a parabolic confinement potential, one gets a system of quantum dots 
or more popularly termed as artificial atoms [ 1 4], whose electronic properties are no less 
intriguing. 

In the non-interacting ground state, Ne electrons occupy the lowest available single- 
particle states. It is then reasonable to require that the electron density is symmetric 
around the y = 0 axis, i.e., M = ~ j m j  = O. This symmetry condition holds for odd 
number of electrons if m is an integer. In that case the boundary condition is periodic: 
~ ( 7 +  aY) = ~t~(?). For even number of electrons m has to be a half-odd integer. The 
boundary condition is then anti-periodic: ~'~:(~+ aY) = - ~ ( 7 ) .  As we turn on the inter- 
electron interaction electrons start to avoid each other. Increasing the interaction strength 
with respect to the kinetic energy it becomes energetically favorable for the electrons 
to occupy also the higher energy single-particle levels in order to reduce the Coulomb 
repulsion. 

Given the single-particle states the Hamiltonian of the many-electron system, projected 
to the lowest Landau level, is now written 

H=Z a*ma,.+ Z * *  a l~n 1,m2,m 3,m4arnl am=am3 m4 (2.6) 
m m I ~,.- ,m 4 

where arm(am) is the creation (annihilation) operator for the state m. For the Coulomb 
potential 

1 f - 2=e2 -i~,~ 
v(?) = (2rc)z Jdq---~-e (2.7) 
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where ~ = (qx,qy), the interaction matrix element is given by 

.,~l,m2,m3,m4 = l f d ? l d F a V *  l (~i)l~/t~2(~2)l,'(~)/l/m3(~2)~l/m4(~I) 

2~-s eXp le2 [ (2rC~ 2 1  ] 
- -  --2 (ml -- m4)2 

k'Ca/ 

r , exp [i2 (m3-mllq'r] exp [-�89 (Vaqy/2] 
x J dqy -~[2~(m,_-7~t ]-2-- - -  7 

~ [ ~ ]  +(aq~,) 

x fi"i +,.2,,.3+,,4 (2.8) 

with qy = qyL2/(ya) as the dimensionless integration variable, s is the unit of length and 
= e2/E)~ is a measure of the interaction strength. It is to be noted that the diagonal 

term ml = m4 (m2 = m3) diverges as expected for the long-range Coulomb potential. 
While Yoshioka used a truncated Coulomb potential (section 4), we neutralize the system 
by embedding the quantum wire into a positively charged background with a density 

Ne 

The width of the background density profile is denoted by d' and in actual calculations 
we set it equal to the length of the cell. The electrostatic energy of the background charge 
is 

1 [dRdR' e2p(/~)P(/~') 
= 2 J  el/-~ - /~ '  t 

2 eELaJdqy~eXp  

The interaction of electrons with the positive background charge is taken into account 
by the potential 5-{eb. In general, the electron-background interaction is a one-body oper- 
ator with the diagonal matrix element 

a9,.1,.= = f aTr 
, 1 , ] e 2 N e t  fdqyTSTexp i [i2=rnlq - 1 , 2 -- - ~(yaqy) ( l + d  '2) e~. a j Iqyl [. Y J 

x 5,.,,m2. (2.11) 

Using the above relations, the final form of the diagonal two-body term is 

__ 1.e 2 + {  [ i2rt(m-m')qly- l(yaqly)2] Am,ml,tr~ ,m 2E~,lfdqty exp 

-2exp [i2gmqly - 1(1 +d'2)(yaq'y) 2] +exp [-l(yad'q'y)2]} 
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Figure 1 
Expectation value of (a) ki- 
netic energy per particle and 
(b) interaction energy per par- 
ticle, as a function of tEc/Eo 
and length of the cell for the 
state M=0. The effective fill- 
�9 1 2 2 2  mg factors v = 3,3,5,7 and 
v = I are also indicated. 

where the divergent part of the electron-electron term is now cancelled by the positive 
background charge. Unlike the other theoretical models of 1D-FQHE, in our approach we 
can therefore include the long-range part of the potential. 

2.1 Filling Factors in a Narrow Channel 

We should point out that evaluation of the filling factor v in a narrow channel is somewhat 
tricky. Here the single-particle states corresponding to a particular Landau "level" are 
not degenerate. One possible way would be to calculate the areal electron density and 
number of fluxes through a unit area and determine v as the ratio of these two quantities. 
Alternatively, we count the number of occupied states and divide the number of electrons 
by that. Both methods are somewhat arbitrary: one has to choose properly either the width 
of the density profile in the first case (we have used below full width at half maximum) or, 
in the second approach, which state should be considered as occupied. We have checked 
that both methods agree reasonably well. The �89 FQH state in the present system is also 

identified from the momentum distribution function (n(k))  = (Ola~aklO) by comparing it 
with that for a Laughlin-like wave function. 
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2.2 Phase Transitions 

In all the numerical results that follow we have used o3o/COc = 0.01. One has also to be 
careful about the range of a/X, since if the ratio is too large or too small the length or 
width of the channel gets too large. In those situations, the system becomes truly one 
dimensional and the electrons prefer to line up along the bottom of the external potential 
or in the lateral direction respectively. For the various filling factors considered here, the 
range of a/~, is such that the aspect ratio remains usually around unity. 

Let us first examine how the translationally invariant state (M = 0) changes when we 
change the strength of interactions with respect to kinetic and potential energies of the 
electrons, i.e., U-c/Eo (where E0 = (h2/2m*)~2)(co~/~ a) is the energy unit) and the length 
of the cell a. As we vary U-c/Eo while keeping a fixed, the expectation values of the 
kinetic and potential energies change very abruptly from one value to another. When the 
calculation is repeated for other fixed values of a we obtain Fig. la  and Fig. lb for (H0) 
and (Y-~nt) respectively. These expectation values show rich structures in the parameter 
space spanned by a = 5,.-- ,12.4 and F-c/Eo = 0,-- .  ,80 [15]. The two energies (St/0) and 
(St~nt) jump in opposite directions and therefore the net change in total energy does not 
clearly show the sudden changes in the M = 0 state. However, for a much longer system 
(at a fixed linear density) we expect sharper transitions between the different phases. 

As the jump occurs in the parameter space spanned by T-c/Eo and a, it indicates a 
change in the M = 0 state. Yoshioka identified the filling factors v = ~, v = �89 and v = �89 
FQHE states in a system of six electrons interacting via a truncated Coulomb potential 
and calculating the overlap with the Laughlin-like wave functions [ 12]. These states are 
also realized in our system with real long-range Coulomb potential. The state at v = �89 

can also be characterized by calculating the overlap between the Coulomb-�89 state and 

Haldane's pseudopotential-�89 state [13] (see below). We have checked this overlap in our 
present system and found it to vary between the values 0.83 and 0.89 at a = 9.5. 

Motivated by indications of the existence of QHE at v = �89 in a narrow channel as 

mentioned in the introduction, we are interested in going beyond the v = �89 state which 
seems to be indifferent to the presence of a lateral confinement. In fact, in our quest for a 
QHE at the half-filled Landau level we are particularly interested to know what happens 
in between the well established FQHE states. For example, what are the states realized in 
between the FQHE states v = 2 and v = �89 In this region there are clear jumps in both 
(-q'{0) and (Y-~nt}. To get further insight on the M = 0 states realized in the wire, we have 
investigated the problem of how the electron density profile of the translationally invariant 
state (M = 0) is modified when we change T-c/Eo for a fixed value ofa .  

2.3 Electron Density 

We have calculated electron density at F numerically from [15] 

i , j =  1 
(2.12) 
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Figure 2 
(a) Calculated electon 
densities in the lateral di- 
rection for a = 8 and the 
M = 0 states. (b) The re- 
suits at a = 9.5. The ef- 
fective filling factors are 
also indicated. 

In the x-direction the charge density is constant while in the lateral y-direction it is modi-  
fied because of the finite width of the system. Interestingly, as Ec/Eo increases the width 
of the charge density profile also changes abruptly from one value to another (Fig. 2). 

The effective filling factors, calculated via v = 2n~,2n (where n is the number of elec- 
trons per unit  area and the width of the wire is the full width at half maximum) are 

2 1  ~___2 found to be 0.98,0.71, . . .  ,0.51 and 0.42 which are very close to v = 1,~,g and v 
in Fig. l(a) (a = 8) and 0.99 and 0.68 . . . .  ,0.66 in Fig. l(b) (a = 9.5) which suggests that 
these states are v = 1 and v = 2, respectively. The state which has the effective filling 

factor 0.38 . . . .  ,0.37 is identified as a v = �89 state also by calculating the Coulomb-�89 state 
and Haldane's  pseudopotential state [13], as discussed above. 

2.4 Phase Diagram 

A phase diagram for the 1D-QHE states is then obtained (Fig. 3) by systematically seeking 
those points in the parameter space spanned by a and T-c/Eo where the ground state has 
zero total momentum. We then plot the energy gap between this ground state and the first 
excited state. In Fig. 3 the area of a filled dot is directly proportional to that gap. Clearly, 
the phase diagram consists of separate regions of several QHE states. Interestingly, there 
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Phase diagram for the FQHE 
states derived at the ef- 
fective filling factors v = 
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Figure 4 
Energy spec- 
tra calculated at 
(a, Tc/Eo) and v: (a) 
(6.8,24),v = ~, (b) 

(7.6,36),V = �89 (c) 
(9.2,40),v = ~ and 

(d) (12.2,42),v -- 31-. 

is also a distinct region for the even-denominator state v = �89 [15]. The phase diagram is 

dominated by two QHE states, viz., v = 1 and v = t which are also the predominant QH 
states observed experimentally in a 2DEG. 

2.5 C o l l e c t i ve  M o d e s  

2 1 2 and v = t These states Figure 4 depicts the energy spectra for the states v = 7' g '  5 
are chosen from the phase diagram (Fig. 3) at the points where the gap appears to be the 
largest. The ubiquitous incompressible gaps in the spectra makes the analogy with those 
in the corresponding two-dimensional systems quite obvious. The novel result here again 
is, of  course, the signature of  incompressibility in the energy spectrum for the lowest 
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half-filled Landau level, which is a hallmark of  the fractional quantum Hall state at that 
filling factor [15]. The size of  the gap at v = �89 is comparable to that at ] and should be 
observable in experiments. There are also experimental indications [11] that the gap size 
at v = �89 generally depends on the width of  the constriction. 

In order to explore the areas of the phase diagram where we do not have an incompress- 
ible state (between any two stable QH strips in Fig. 3), we looked at the energy spectra of  
various QH states when a is varied. In Fig. 5, we present such results at v = �89 Evidently, 
the gap structure changes dramatically from one value of a to another and shows indica- 
tions of  soft modes at certain values o f  a. It therefore indicates that the symmetry changes 
between the ground states in different regions of  the phase diagram. The precise nature 
of  the states with M # 0 is, as yet, unclear. Similar indications of  soft modes were also 
observed at other filling factors shown in the phase diagram. 

3 Electron Spin Polarizations 

So far, we have not included the role of  spin into the problem. In this section we discuss 
the results for the electron spin polarization in a narrow quantum Hall system [16]. Here 
we want to describe all possible polarizations Sz from 0 to Ne/2. In addition, the noninter- 
acting ground state, as discussed above, must have M = 0. It should also be noted that the 
filling factor v = 1, i.e., one electron per occupied single-particle momentum state should 
be realized as the ground state for polarized electrons. Similarly, the filling factor v = 2, 
i.e., two electrons per occupied state should be realized as the ground state for unpolarized 
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Figure  6 
Phase diagram for electrons 
in a impurity-free narrow 
channel quantum Hall system 
with spin degree of freedom 
included. 

electrons. As a result, the number of electrons Ne must be even. Since we have to apply 
antiperiodic boundary condition, we should set Ne = 4n where n is an integer. This means 
that we have to deal with a four electron system because the next natural choice Ne = 8 is 
beyond our computational resources. If we exclude the Zeeman energy, there are no spin 
dependent interactions in the problem and we can set Sz = 0 and get simultaneously the 
spectrum for S = O, I ,..- ,Ne/2. 

In Fig. 6, we present the results for the phase diagram, calculated for a system of four 
electrons with Sz = 0 (Zeeman energy not included) and for o~/mc = 0.23, which is 
appropriate for B = 10 Tesla and hm0 = 4 meV. As is evident in the figure, several quantum 
Hall states are stable with large energy gaps in the parameter range considered in this 
work. In this rather small system the v = �89 state, though supposed to exist, cannot be 

resolved in the phase diagram. The v = �89 states are expected to lie between v = ~ and 

v = ~ in Fig. 6. In general, the energy gaps are larger for spinless elecn'ons (Fig. 3) 
because in that case there are no low-lying spin excitations available. 

The temperature dependence of spin polarization for various filling factors found in the 
phase diagram is calculated by a method we developed earlier [ 18]. The spin polarization 
(Sz(T)) is calculated from 

(Sz(T)) = 1 ~ e_ej/kr (j[Szlj ) 

where Z = ~",j e-PeJ is the canonical partition function and the summation is over all states 
including all possible polarizations. Here aj is the energy of the state [j) with Zeeman 
coupling included. A direct measurement of (Sz(T)} is possible through the NMR Knight- 
shift measurements and also via optical spectroscopic measurements [ 17,19]. These ex- 
periments provide unique probes of spin polarizations in the system. 

1 ~ 2 2  1 Our results for (Sz(T)} vs T at v = -,~,~,5,~ and �89 are shown in Fig. 7. In order to 

obtain the v = �89 results we have employed a six-electron system. In these calculations the 
magnetic field was kept fixed at 10 tesla and the g-factor is varied (0.02 - 0.52). At v = 1, 
we find the results to be similar to those for the 2DES [18] and the system is fully spin 
polarized even for very low values of the Zeeman energy. Qualitatively similar behavior 
is also seen at v = �89 In the same way, v = 2 is a spin-unpolarized state even at the highest 

value of the Zeeman energy considered and v = 2 and v = ] are spin-unpolarized states 
at low Zeeman energies with a non-monotonic temperature dependence as predicted for a 
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2DEG [18]. Such a non-monotonical behavior is observed in experiments on a 2DES [ 19]. 
Clearly, the correspondence with the results of spin polarization in a two dimensional 
system gives us confidence that our classification of the QH states in a narrow channel 
system is essentially correct. At v = �89 we find a spin partially-polarized state. 

4 L a u g h l i n - L i k e  S t a t e  i n  a N a r r o w  C h a n n e l  

As we mentioned earlier, Yoshioka [12] considered a truncated Coulomb potential, i.e., 
v(x,y) = 0 for Ixl > a/2, instead of the long-range Coulomb potential. He calculated the 
overlap between the �89 ground state (spin polarized) and that for a model pseudopotential 

for which Laughlin state is the ground state [13]. The ~-FQH state was then obtained via 

the electron-hole symmetry: In the �89 FQH state, Ne electrons occupy the lowest 3Ne - 2 

states. This is the ~ FQH state where 2(Ne - 1) holes occupy the lowest 3Ne - 2) states. 
The results [Fig. (8)] indicate that for a suitable choice of parameters, the Laughlin-like 
FQHE state for a fiat external potential is a good approximation for the ground state even 
in the presence of the confinement potential. The Laughlin state in a narrow channel is 
different from the Luttinger liquid state [20] because in the former case a discontinuity 
exists at the Fermi points. One indeed finds a jump in the momentum distribution func- 
tion from the occupied state to the unoccupied state. This is because the Laughlin state in 
the present system has a sharp boundary for the occupation of the single-electron state. 
In the 1/m FQHE state with Ne electrons, only the lowest (Ne - 1)m+ 1 states are occu- 
pied. However, in an infinitely long system the momentum distribution may not have a 
discontinuity, and the system may behave like a Luttinger liquid. 
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The Laughlin state in a narrow channel has been also analyzed by the variational Monte 
Carlo method [21 ]. For a choice of the periodic potential 

1 

[(-~ ~ ) 2 + y 2 ]  -~ 
v(r) = L sin x 

which reduces to the usual Coulomb potential 3./]r] in the limit x/a --+ 0, a Laughlin-like 
wave function was constructed to be 

~m(Zl,...,ZNc)= H[sin~(zj--Zk)]mI-Iexpl  Y~ ~ 

where z = x + iy /ll is the electron position,,u = ~o/L = ~1 + ( o~o/ o~c)2, ~o = V/--~-/ eB and 
m is an odd integer. In the case of/.t = 1, i.e., ho.~ << eZ/(es << hcoc, a phase diagram 
at v = 1/m was obtained for a 45-electron system. Further, a finite-size scaling of the 
low-lying excitation energies of the system indicated that the correlation function at long 
distances can be characterized by a non-universal exponent which is in sharp contrast to 
the standard Laughlin state. 

5 Concluding Remarks 

In this article, we have discussed the electronic properties of incompressible states that are 
expected to be present in a narrow channel electron system. In between the incompressible 
states there are states in the phase diagram where the excitation spectra go soft. This 
indicates a phase transition in going from one QH state to another. The precise nature of 
the states in the compressible region is, as yet, unclear. The temperature dependence of 
electron spin polarization for a narrow quantum Hall system shows behavior analogous 
to that of  a 2DES at major filling factors. At the lowest half-filled quantum Hall state for 
which no two-dimensional analog exists, a stable spin partially-polarized ground state is 
expected. Optically pumped NMR experiments as well as optical spectroscopy should be 
the most appropriate experiments to explore the electronic properties described here. 
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