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Two-dimensional electrons in graphene are known to behave as massless fermions with
Dirac-Weyl type linear dispersion near the Dirac crossing points. We have investigated

the collective excitations of this system in the presence or absence of an external magnetic

field. Unlike in the conventional two-dimensional electron system, the v = X fractional

quantum Hall state in graphene was found to be most stable in the n = 1 Landau level.
In the zero field case, but in the presence of the spin-orbit interaction, an undamped
plasmon mode was found to exist in the gap of the single-particle continuum.
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1. Introduction

In recent experimental work, it has been possible to extract an atomically thin,
two-dimensional (2D) sheet of graphite — graphene, by micromechanical cleavage?.
A two-dimensional electron system in graphene exhibits many remarkable proper-
ties. In the band structure calculations where electrons are treated as hopping on
a hexagonal lattice?, one finds a unique linear (relativistic type) energy dispersion
near the corners of the first Brillouin zone where the conduction and valence bands
meet. As a consequence, the low-energy excitations follow the Dirac-Weyl equa-
tions for massless relativistic particles®. In an external magnetic field, the spectrum
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develops into Landau levels, each of which approximately fourfold degenerate®®.
Recent discovery of the quantum Hall effect in graphene®7-® has resulted in intense
activities® to unravel the electronic properties of graphene that are distinctly differ-
ent from the conventional (or, as popularly called the ‘non-relativistic’) 2D electron
systems in semiconductor structures. In this paper, we report on our investigation
of the collective excitations of the 2D electron gas in graphene in the presence or
absence of an external magnetic field.

Graphene has a honeycomb lattice structure of sp? carbon atoms, with two
atoms, A and B per unit cell (i.e., a two-dimensional triangular Bravais lattice with
a basis of two atoms). Each atom is tied with its three nearest neighbors via strong o
bonds that are in the same plane with angles of 120°. The 7 orbit (2p,)} of each atom
is perpendicular to the plane and overlaps with the n orbitals of the neighboring
atoms that results in the delocalized m and 7* bands. There is only one electron
in each 7 orbit and the Fermi energy is located between the m and 7* bands. The
separation distance between the nearest neighbor atoms is a.. = 0.14 nm while the
lattice constant is a = v/3ac. = 0.246 nm. The dynamics of electrons in graphene
is described by a nearest-neighbor tight-binding model? that describes the hopping
of electrons between the 2p, carbon orbitals. The first Brillouin zone is hexagonal
and at two of its inequivalent corners (the K and K’ points) the conduction and
valence bands meet. Graphene is often described as a two valley (K and K’) zero-
gap semiconductor. The two valleys correspond to two chiralities of the Weyl-Dirac
fermions'®. Near these two points (the so-called Dirac points), the electrons have a
relativistic-like dispersion relation, €5 = +hwv|k| and obey the Dirac-Weyl equations
for massless fermions. At the vanishing gate voltage, the system is half-filled and
the Fermi level lies at the Dirac points.

2. Collective modes

In the following sections, we describe results of our work on the collective excitations
of electrons in graphene. First, we discuss the case of the collective modes in the
presence of a strong perpendicular magnetic field. In particular, we discuss the
properties of the fractional quantum Hall states that reflect the nature of electron
correlations in the system in the presence of a strong magnetic field. We found
that the linear dispersion of electrons discussed above, leads to a noticeable change
in the behavior than what is expected in a conventional two-dimensional electron
system. In the last section, we discuss the zero-field case using the random-phase
approximation and explore the properties of plasmons in such a system.

2.1. In a magnetic field

An external magnetic field has a significant influence on the energy spectrum of the
2D electron system in graphene. Details of the single-electron case has heen widely
reported in the literature®-®.
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2.1.1. Landau levels

In the continuum limit the electron wave function in graphene is a 8-component
spinor, ¥, g o, Where s = £1/2 is the spin index, ¥ = K, K’ is the valley index,
and o = A, B is the sublattice index. Without the spin-orbit interaction!’:1?:13
the spin degrees of freedom becomes uncoupled from the spatial motion and the
Hamiltonian of an electron can be described by two 4 X 4 matrices for each
component of the electron spin. If we introduce the four-component spinor as
(Uor,a, Vo B, Vs k.4, Vs ik, 5) then in the presence of a magnetic field perpen-
dicular to the graphene plane the Hamiltonian matrix has the form

0 Ty — 1Ty 0 0

N Ty + 47y 0 0 0
H=v 0 0 0 m—im, (1)

0 0 Ty + 17y 0

where m=p+eA/c, p is the two-dimensional momentum, A is the vector potential,
and v is the velocity of electrons in graphene. It is easy to see from the Hamiltonian
matrix (1) that the valley index in conserved. The conservation of the valley index
is easily violated in the graphene systems with a short-range scattering impurity
potential or in the many-body systems with inter-electron interactions. In both
cases the scattering of the electron either by an impurity or by another electron
introduces the umklapp process and a change of the electron valley index.

Just as for the non-relativistic system the application of a perpendicular mag-
netic field to the graphene layer results in the Landau quantization. Due to the
relativistic nature of electrons in graphene the energy spectrum of the Landau
levels has a unique form, namely, the energy of the nth Landau level is E,, =
sgn{n)/2ehv?|n|B. This is different from the non-relativistic electrons, where the
Landau level spectrum is of the harmonic oscillator type, i.e. equidistant, E,, « n.

In the ideal graphene system the eigenfunctions of the single-electron Hamilto-
nian (1) are specified by the Landau index, n = 0,4+1,42,... and an intra-Landau
index m, which depends on the gauge. Each Landau level is fourfold degenerate due
to the spin and valley degrees of freedom. The corresponding wave functions for an
electron in the valleys K and K’ are described by the vectors

sgn(n)il™ 11 1

P I @)
0
0

Vo — Chn 0 (3)

il
sgn(n)il™ " gy 1
where C,, = 1 for n = 0 and C,, = 1/ V2 for n # 0. The two non-zero terms in
Vg p (UK n) correspond to occupation of the sublattice A (the upper term) and
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the sublattice B (the lower term). Here ¢, is the Landau wave function for a particle
with the non-relativistic parabolic dispersion relation in the n-th Landau level. From
Egs. (2)—(3) it is clear that a specific feature of the relativistic dispersion law is the
“mixture” of the non-relativistic Landau levels. This mixture is present only for
n # 0. For n = 0 the electron in the valley K or K’ occupies only the sublattice
A or B, respectively. For higher Landau levels the electron in each valley occupies
both sublattices, A and B. The wave functions in the sublattices A and B are the
wave functions of the non-relativistic electrons with different Landau level indices,
i.e. the relativistic wave function is the mixture of non-relativistic wave functions
of different Landau levels. As we shall see helow, this property of the relativistic
electrons strongly modifies the inter-electron interaction within a single relativistic
Landau level.

2.1.2. Inter-electron interaction

In what follows, we shall consider only the partially occupied Landau levels with
fractional filling factors. In this case the ground state of the system and the exci-
tation spectrum are fully determined by the inter-electron interactions, which are
completely described by the Haldane pseudopotentials'® V;,. Haldane pseudopo-
tentials are the energies of two electrons with relative angular momentum m. The
pseudopotentials for the n-th Landau level can be presented as'*

2

Vi = /000 %QV@) [Fa(@)]” Lin(g®)e ™, (4)

where L,,(z) are the Laguerre polynomials, V(q) = 27e?/(xlq) is the Coulomb
interaction in the momentum space, x is the dielectric constant, and F,(q) is the
form factor corresponding to the n-th Landau level. The main difference between
the relativistic and the non-relativistic electrons is in the expression for the form
factor, F,,(q). For relativistic electrons the form factor is given by the equations®:16

fe) = 1o (L) 6

Frzolg) = % [Ln (%) + Ln—1 ((JQ—QH : (6)

while for the non-relativistic particles the form factors in Eq. (4) are

Fo(q) = Ln (C]2/2) .

Comparing these non-relativistic form factors [Eq. (2.1.2)] with Eqs. (5)-(6), we
see that the inter-electron interactions for the relativistic and the non-relativistic
electrons are the same for n = 0 and different for n > 0.

In Fig. 1 the pseudopotentials calculated from Eq. (4) for the relativistic and
the non-relativistic cases are shown. For n = 0 the non-relativistic and the rela-
tivistic pseudopotentials are the same. The main feature of the pseudopotentials in
the zeroth Landau level, VTS)), is their monotonic decrease with increasing relative
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n=0 ({relativistic)

n=1 (relativistic)

n=1 (non-relativistic)

0 1 2 3 4 5 6
Angular momentum, m

Fig. 1. Pseudopotentials calculated from Eq. (4) are shown as a function of the relative angular
momentum for relativistic and non-relativistic 2D electrons for the first two Landau levels. The
energy is measured in units of ¢c.

angular momentum, m. Comparing VT&O) to the non-relativistic Vé}) we can clearly
see that (i) in higher Landau levels the pseudopotentials become a non-monotonic
function of m and (ii) the interaction strength is suppressed at m = 0 and 1, i.e.
Vé}) < VTS)), and enhanced at m > 1, i.e. Vrﬁf) > VTS)). ;From this behavior we can
make the predictions about the stability and excitation gaps of the FQHE. For ex-
ample, for the v = 1/3-FQHE the main parameter which determines the formation
the incompressible liquid is the ratio of the pseudopotentials at m =3 and m =1,
i.e., V3/V1. The smaller the ratio the larger the excitation gaps, and consequently
the more stable are the FQHE states. Comparing the pseudopotentials of the non-
relativistic electrons at n = 1 and n = 0 we can conclude that the FQHE gaps in
the first Landau level, n = 1 should be smaller then the corresponding gaps in the
zeroth Landau level, n = 0.

The behavior of the pseudopotentials for the relativistic electrons in the higher
Landau levels is similar to that of the relativistic ones. The exception is the proper-
ties of the pseudopotential in the first Landau level, n = 1. We notice in Fig. 1 that
the pseudopotentials in the first Landau level (n = 1} is larger than the correspond-
ing pseudopotentials in the zeroth Landau level, n = 0, for all values of the relative
angular momentum, i.e. Vrsll) > Véf). The pseudopotential in the n = 1 Landau
level is also a monotonic function of m. This is different from the non-relativistic
case. Another important property of the pseudopotential of the relativistic system
is that the ratio V3/V; is the smallest in the first Landau level, n = 1. In Fig. 2 we
present the results for the pseudopotentials of the relativistic system in the lowest
Landau levels. From this figure we can also see that the ratio V3/V7 is the smallest
for n = 1. Based on this property of VT&") we can conclude that the largest gap of
the 1/3-FQHE state should be expected in the first Landau level, n = 1. Therefore
the FQHE in the relativistic system should be easier to observe in the first Lan-
dau level, but not in the zeroth Landau level as in the case of the non-relativistic
electrons.
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1 2 3 4 5 6
Angular momentum, m

Fig. 2. Pseudopotentials are shown as a function of the relative angular momentum for relativistic
electrons in the first three lowest Landau levels. The energy is measured in units of €¢¢.

Due to the presence of both the spin and the valley degeneracies the graphene
system becomes more complicated than the standard non-relativistic electron sys-
tem, where only the spin degree of freedom is present. In a magnetic field the spin
degeneracy can be lifted due to the Zeeman energy, leaving the Landau levels of the
graphene system doubly degenerate due to the valley index. Mathematically, the
system then becomes equivalent to a double layer non-relativistic system, where
the valley index is the layer index. Usually, in the double-layer system there is an
asymmetry in the interaction Hamiltonian. This means that the interaction strength
between the electrons in the same layers is different from that in different layers.
This is due to a finite separation between the layers. Comparing this property of a
double layer system to the graphene system we can say that the graphene system
is a double-layer system with zero separation between the layers. So the system is
completely SU(2)-pseudospin symmetric, where the pseudospin is associated with
the valley index. But this is not entirely true. There is an asymmetry in the graphene
system as well. One of the types of asymmetry is related to the lattice structure of
graphene — the interaction between the electrons in the same sublattice is stronger
than the interaction between the electrons in different sublattices!”.

To estimate the corrections due to the asymmetry related to the lattice struc-
ture of graphene we assume that the electrons are localized at the discrete points
corresponding to the lattice structure of the graphene. Then the interaction matrix
element, Vi, 4 4,,4,, Petween the single-electrons states, 1;, can be expressed in the
following form

Vivguizdgs = D O Ui (e1)¥, (02)V (21 — 1)y, (12) s, (r1) (M)

ry ra

where the index 7 in the wavefunction 1; indicates collectively the Landau level, val-
ley, sublattice, and intra-Landau level indices. The sums in (7) run over the discrete
positions of the electrons corresponding to one of the sublattices of graphene. In
the continuum limit the sums should be replaced by the integral. Since two sublat-
tices of graphene are shifted by the vector ro = a(0,1/v/3), in the continuum limit
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the expression for the interaction matrix element between the states belonging to
different sublattices should contain not the V(rq —ra) but V(rq —ra — rp). This in-
troduces the difference in the interaction strength between the electrons in the same
sublattice and in different sublattices. In terms of the pseudopotentials this means
that if the pseudopotential is calculated between the states of different sublattices
then V'(g) in the expression (4) should contain an additional factor exp(iq - rp) and
the integral over ¢ should be replaced by the 2D integral over q.

In the zeroth Landau level, n = 0, the electrons in the valley K occupy sub-
lattice A only, while the electrons in the valley K’ occupy sublattice B. Then the
pseudopotentials corresponding to the interaction between the electrons belonging
to the same valley are given by the expression (4} without any modifications. The
expression for the pseudopotentials corresponding to the interaction between the
electrons in the different valleys should contain an additional factor and can be
written as

0 dq iq- —g?
VI((,}(',m :/RV(q)ezqm”Lm(qz)e g

_ o (To\? [d’dg 2y~
~V0m— (2) [ L2V @ Ll ®)

Since rp = a/ V/3 the asymmetric correction is proportional to a small parameter
(a/1)2.

In the higher Landau levels the electrons in the valleys K and K’ occupy both
sublattices A and B. This results in the form factor of (L, +L,_1)? in Eq. (4). The
coefficients L,, and L,,_; belong to different sublattices. This can be schematically
presented in the following form: (i) for the intravalley interaction, we have

7 (A La(A) 4 L1 (B)Lo 1 (B) + 2L (A) Lo 1 (B) (9)
and (ii) for the intervalley interaction,
S LalALn(B) + L 1(B)Ln-a(4) + 2Ln(A) L 1(4)] (10)

Then following the same procedure as for the n = 0 Landau level we obtain the
expressions for the pseudopotentials in the higher Landau levels as

dq _ 2 1 o
Vikim = Vi = / SV (@Lm()e [Fn@) + 3 n Loy (T 1)} ,

472
(11)
and
Vit m = / %V(q)Lm(qQ)e_qz [Fn(q)eiq-fo/l + %LnLn_l (1- eiq*o/l)} - (12)
Tt is convenient to rewrite the expressions (11) and (12) as
Vikrm = Vicdkm — (f;mq)Lm(q?)e—f [Ln = L] (1= /) (13)
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Similar to the zeroth Landau level the asymmetry correction in Eq. (13) is propor-
tional to a small parameter (a/l)2.

Since the Coulomb interaction between the electrons in graphene does not con-
serve the valley index there is an other mechanism for violation of the SU(2) valley
symmetry of the graphene system. This mechanism is related to the inter-valley
scattering. In the lowest order in the small parameter a/! the main scattering pro-
cess is the backscattering'®. During this process the electron from the K valley is
scattered into the K’ valley, while the electron from the K’ valley is scattered into
the K valley. The interaction matrix elements corresponding to this process are de-
termined by the pseudopotentials (4) where the Coulomb interaction in the integral
should be replaced by V(q + [AK). Here AK = K — K’ = (27/a)(—1/3,1/V/3).
Therefore the pseudopotentials describing the backscattering process are given by
the expression

2

n d _
V=~ [ (@ IAK) (o) Ll (1)
The leading order term in ngr)n can be found by simply replacing V(q + [AK) by
V(IAK)  {(a/l).

2.1.3. FQHE in graphene

With the pseudopotentials for Dirac electrons at hand, we now evaluate numeri-
cally the energy spectra of the many-electron states at the fractional fillings of the
Landau level. The calculations have been done in the spherical geometry'* with
the pseudopotentials given by Eq. (4). In the spherical geometry the radius of the
sphere R is related to 25 of magnetic fluxes through the sphere in units of the flux
quanta as R = +/Sl. Here 2S is an integer number. The single-electron states are
characterized by the angular momentum S, and its z component, S,. Therefore, at
a given magnetic field, i.e for a given flux 25, the number of available states in a
sphere is (25 4+ 1). Then for a given number of electrons N the parameter S deter-
mines the filling factor of the Landau level. Due to the spherical symmetry of the
problem, the many-particle states are described by the total angular momentum L
and its z component, while the energy depends only on L. The energy spectra of a
many-particle system is found by the standard procedure of calculating numerically
the lowest eigenvalues and eigenvectors of the interaction Hamiltonian matrix®®.
It was shown in the previous section that based on the analysis of the Haldane
pseudopotentials we can conclude that the FQHE states in graphene should have
the largest gaps in the n = 1 Landau level. Here we check this statement for v =
1/m incompressible states. In the spherical geometry, such states are realized at
S = (m/2)(N — 1). The 1/m state in the higher n-th Landau level is defined as a
state corresponding to the 1/m filling factor of the n-th Landau level, while all the
lower energy Landau levels are completely occupied. If the electron system is fully
spin and valley polarized then we should expect that the ground state to be the



Collective Excitations of Dirac Electrons in Graphene 1173

0.2-* - % - % %
X @
«® 04] * o 2 X %
- $ x
o
) (a)
'
= 00-_! 2 1 A 2 2 A 1 1 A 1
é 0.2 ~ o~
2 s 222 *
“ooal P ]
(b)
*
0.0" i 1 1 i i 1 1 1

0 1 2 3 4 5 6 7 8 9 10
Angular momentum, L

Fig. 3. (a) The energy spectra of an eight-electron v = 1/3-FQHE system shown for different
Landau levels: n = 0 (stars) and n = 1 (filled circles). The flux quanta is 25 = 21. (b) Energy
spectra of the six-electron v = 1/5-FQHE system is shown for different Landau levels: n = 0
(stars) and n =1 (filled circles). The flux quanta here is 25 = 25.

Laughlin state!®2° which is separated from the excited states by a finite gap.

In Fig. 3(a) the calculated energy spectra are shown for the 1/3-FQHE state
and for different Landau levels. Since the relativistic pseudopotentials, Véf), for
n = 0 Landau level is similar to that of non-relativistic case, the 1/3 state and
the corresponding energy gap will be the same in both cases. The deviation from
the non-relativistic system occurs at the higher Landau levels. From Fig. 3(a) we
can clearly see that the energy gap of the 1/3-state at the n = 1 Landau level is
enhanced when compared to that of the n = 0 Landau level. At higher Landau
levels, i.e., for n > 1, the excitation gaps are suppressed, which means that at the
n = 1 Landau level the electron system in graphene has the strongest interaction
with the largest incompressible gap 2'. This is different from the non-relativistic
case, where the energy gap monotonically decreases with increasing Landau level
index?°. At other filling factors of the type v = 1/m we should also expect the same
increase of the energy gaps at the n = 1 Landau levels. The effect is however not as
pronounced as for v = % since at smaller filling factors the pseudopotentials with a
larger relative angular momentum, m, becomes important, for which the difference
between the pseudopotentials at » = 0 and n = 1 Landau levels is small [see Fig. 2].
This behavior is illustrated in Fig. 3(b), where the results for the v = 1/5 state are
shown. We can see that the difference between the excitation spectra at n = 0 and
n = 1 Landau levels is much smaller for this filling factor.

The results shown in Fig. 3 correspond to the fully spin and valley polarized
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Fig. 4. The energy spectra of a six-electron valley-unpolarized v = 1/3-FQHE system shown for
different Landau levels: n = 0 (stars) and n = 1 (dots). The flux quanta is 25 = 15. The spin-wave
excitations are illustrated by solid (n = 1) and dashed (n = 0) lines.

systems. This polarization is achieved at a high magnetic field due to the Zeeman
splitting and the valley asymmetry. It is well known that even without the Zeeman
energy the ground state of the non-relativistic system at v = 1/m is fully spin-
polarized?%:22 with the spin equal to S = N/2, where N is the number of particles.
The situation is the same in graphene: the ground state of the v = 1/m liquid is
fully spin and valley polarized. The results shown Fig. 3 describe the polarized exci-
tations in such a system. Another type of neutral excitations of the incompressible
liquid is the spin or pseudo-spin (valley) excitations. To explore these excitations
we present the results of our calculations of the energy spectra for the v = 1/3
‘unpolarized’ system. Here we assume that the system is fully spin-polarized but
valley-unpolarized. To characterize the states in such a system we consider the val-
ley index as a pseudospin, 7. Results of these calculations are shown in Fig. 4 for the
zeroth and for the first Landau level. The ground state is at zero angular momen-
tum and has a pseudospin equal to 7 = N/2, i.e. the pseudospin-polarized ground
state. One type of excitations in a such system is the spin-waves. They are marked
by the solid (n = 1 Landau level} and dashed (n = 0 Landau level) lines in Fig. 4.
Another type of excitations corresponds to the energy branch formed by the lowest
states at each angular momentum. The specific feature of these states is that the
angular momentum of the state is related to the pseudospin value by the expression
(N/2) — 7 = L. The physical meaning of these states is the Bose condensation of
L noninteracting pseudospin waves2. Clearly, in all the cases the energy scale at
n = 1 is larger than at n = 0, which again illustrates the stronger interaction effects
at n = 1. However, this is not the general rule for the n = 1 Landau level since we
have seen from Fig. 2 that the pseudopotential at the zero relative momentum is
stronger at the zeroth Landau level. This pseudopotential becomes important only
for the unpolarized states when two electrons occupy the same spatial point, i.e.
they have zero relative angular momentum. For those states the interaction effects
2

can be stronger at the zeroth Landau level, as is the case of the v = 5 incompress-
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Fig. 5. Diagrammatic illustration of the RPA dressed Coulomb interaction.

ible state?!. The excitation gap of the unpolarized v = % state at the n = 0 Landau
level is larger than the excitation gap at the n = 1 Landau level?!.

In the above calculations we have also included the valley asymmetry terms
discussed in the previous section [see Eqs. (8)-(14)]. These corrections result into a
very small shift of the energy levels up to magnetic field of 50 Tesla. Indeed, these
terms are of the order of a/l. The magnetic length at B = 50 T is about 3.6 nm,
while the lattice constant of graphene is a = 0.246 nm. The parameter a/[ is then
really small (~0.07).

Finally, from the results presented above we conclude that the 1/m-FQHE state
in graphene is most stable at the n = 1 Landau level. The inter-electron interaction
effects are therefore more pronounced at the n = 1 Landau level?!. This tendency
is just the opposite to that of the non-relativistic system, where the excitation gap
decreases monotonically with increasing Landau level index. The enhancement of
the interaction effects at the higher Landau level index however depends on the
filling factor.

2.2. Zero magnetic field

In the pseudospin space, the zero-magnetic-field Hamiltonian of a spin-up electron
with a wavevector around the K point is''1%13 H = up - 0 + Ago0, with o =
(02,04,0;) the Pauli matrices and p the momentum operator. Here Ay, is the
strength of the spin-orbit interaction (SOI). The eigenstates of the Schrodinger

" 1+ sin{ag + An/2)
2k r )
equation H¥ = EV are readily obtained as ¥ ar) = (—ew’“ cos(ag + A/2)

with energy Ep = A/AZ + A2v2k2 for A = +1 denoting the conduction band
and A = —1 the valance band. Here tan ¢y = ky/ky, tanay = Mwk/As,, and k =
k2 A+ kL

Using the techniques developed for the multicomponent systems , It is
straightforward to show that the RPA Coulomb interaction in the Fourier space
U(g,w) obeys the equation

24,25

U(q, w) ] +voﬂ0(q,w)U(q,w) (15)
with the electron-hole propagator
E E}
Y g g (B B ”
feurt +Ek+q—Ek+25
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Fig. 6. Plasmon spectrum (thick curves) of an electron gas in an intrinsic graphene (Er = 0) at
temperatures T = 1.42 K with Ag, = 0.08 meV. Intra- (dark shaded) and inter- (light shaded)
band single-particle continuums are also shown. w; and wgy are the lower and upper borders
separating the white (EHC gap) and shaded areas respectively.

as illustrated by the Feymann diagram in Fig. 5. Here vy = e?/(2¢o€;q) is the
two-dimensional Coulomb interaction (in Fourier space) with the high-frequency
dielectric constant?® ¢; = 1 and g,i")"(q) is the interaction vertex.

The factor four in Eq. (16) comes from the degenerate two spins and two val-
leys at K and K’; the vertex factor reads |g,’:”\l(q)|2 = [1+ AN coS Qptq COS O, +
AN sin oy g sin ag(k + gcos8)/|k + q|]/2 with 8 being the angle between k and q.
Since the chiral property of the system prohibits the intra-band backward scatter-
ing at g = 2k and the inter-band vertical transition at ¢ = 0 under the Coulomb
interaction in the system, we have |gp" *(0)]2 = |gp*(2k)|> = 0. The collective
excitation spectrum is obtained by finding the zeros of the real part of the dielectric
function é(g, w) = 1 — vo(q)Io(g,w).

In the presence of the SOI, an energy gap opens between the conduction and
valence bands and the semimetal electronic system in graphene is converted into
a narrow gap semiconductor system. At the same time, a gap is opened between
its intraband single-particle continuum w < w; = Avg and its interband single-
particle continuum w > wg = 24/A2, + h2v2¢? /4. However, the system differs from
a normal narrow gap semiconductor due to its peculiar chiral property. In this paper,
we have chosen the magnitude of the SOI strength to be around 0.08 — 0.1 meV in
graphene™27. The result can be easily applied to Dirac gases with different A, by
scaling the energy and wavevector in units of Ay, and kg, = Ago/(Av) respectively.

At zero temperature or for 7' « Ay, the intraband transition is negligible
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Fig. 7. Temperature dependence of the real part of the dielectric function at the edges of the
intra- and intersubband single-particle continuum wy, (dotted curve) and wgy (solid curve) at
q=0.05x 10% cm—1.

and €, > 0. There is no plasmon mode in the system. With an increase of the
temperature, holes appear in the valence band and electrons in the conduction
band. The intraband transitions are enhanced and contribute to the electron-hole
propagator of Eq. (16) and a dip in €, at the intra-band EHC edge wy. This dip in
€, results in plasmon modes above wy,. For Ay, = 0 where wy = wy,, the intraband
(interband) single-particle continuum occupies the lower (upper) part of the w — ¢
space below wy (above wy) and the plasmon mode are Landau damped. In the
presence of the SOI, i.e. for Ay, # 0, a gap of width wy — wy, is opened between
the intra- and interband single-particle continuum and an undamped plasmon can
exist in this gap as shown in Fig. 6. This plasmon mode may perhaps be observed
in experiments.

The appearance of the undamped plasmon mode in the presence of the SOI is a
result of the interplay between the intra- and the inter-band correlations which can
be adjusted by varying the temperature of the system in experiments. To show the
temperature range in which an undamped plasmon mode exists, in Fig. 7 we plot
e-{wr) (dotted curve) and €, {wg) (solid curve) as functions of the temperature T
at ¢ = 0.05 x 10% cm™!. For Ay, = 0.08 meV, an increase of the temperature from
T = 0 leads to an increase of the ratio of the intra- to the inter-band correlation
while €, in the EHC gap (wr < w < wyr) decreases and crosses zero. There is no
undamped plasmon mode when the inter-band correlation dominates at 7' < 1.1 K
and when the intra-band correlation dominates at 7' > 3.3 K. In the temperature
regime 1.1 K < T < 3.3 Kor T =~ 2A,, when the intra- and inter-band correlations



1178 V. Apalkov, X.-F. Wang & T. Chakraborty

match, however, e,(wr) < 0 while e.(wpr) > 0 and one undamped plasmon mode
exists.

In summary: calculating the dynamic dielectric function taking into account the
intrinsic spin-orbit interaction in graphene, we have studied the collective excitations
in graphene. The Dirac electronic system in graphene is converted into a narrow
gap semiconductor with chiral property by the spin-orbit interaction. As a result, an
undamped collective excitation was found to exist in the spectral gap of the single-
particle continuum and is perhaps observable in the experiments. More detailed
results can be found elsewhere!?. There have been a steady flow of reports in the
literature on the electronic properties of graphene. Interestingly, our SOI-dependent
dielectric function has recently been employed to explore the possibility of Wigner
crystallization in graphene?.
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