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Abstract. With rapid advances in fabrication of nano-scale devices, quantum rings
of nanometer dimensions that are disorder free and contain only a few (interacting)
electrons have gained increasing attention. Accordingly, the emphasis of theoretical
research has also shifted from the problems involving the persistent current which
is indirectly related to the energy levels, to a direct probe of the low-lying energy
spectrum of a single quantum ring. Transport and optical spectroscopies have re-
vealed many interesting aspects of the energy spectra that are in good agreement
with the theoretical picture presented here.

1 Introduction

A metallic ring of mesoscopic dimension in an external magnetic field is known
to exhibit a wide variety of interesting physical phenomena. One spectacular
effect that has fascinated researchers over a few decades is that the ring can
carry an equilibrium current (the so-called persistent current) [1,2] which is
periodic in the Aharonov-Bohm (AB) flux Φ [3,4] with a period Φ0 = hc/e,
the flux quantum. This effect is a direct consequence of the properties of
the eigenfunctions of isolated rings, which cause the periodicity of all phys-
ical quantities. The reason for this behavior is well known and is briefly as
follows: In a ring which encloses a magnetic flux Φ, the vector potential
can be eliminated from the Schrödinger equation by introducing a gauge
transformation. The result is that the boundary condition is modified as
ψn(x+L) = e2πiΦ/Φ0ψn(x), where L is the ring circumference 1. The situa-
tion is then analogous to the one-dimensional Bloch problem with Bloch wave
vector kn = (2π/L)Φ/Φ0. The energy levels En and other related physical
quantities are therefore periodic in Φ0. For a time-independent flux Φ, the
equilibrium current (at T = 0) associated with state n is

In = −evn

L
= −c∂En

∂Φ
, (1)

where vn = ∂En/h̄∂kn = (Lc/e)∂En/∂Φ is the velocity of state n. An impor-
tant condition for In to be nonzero is that the wave functions of the charge
1 The magnetic flux Φ is assumed to thread the ring axially but the electron motion
is uninfluenced by the magnetic field. Then the Φ0 periodicity of the electron wave
function is strictly AB type.
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carriers should stay coherent along the circumference L of the ring. The ring
geometry and the thermodynamic current have also played a central role in
the gauge-invariance interpretation of the integer quantum Hall effect and
the current carrying edge states [5]. The phenomenon is resticted only to
mesoscopic rings, i.e., rings whose size is so small that the orbital motion of
electrons in the ring remains quantum phase coherent throughout.

Strictly one-dimensional rings – Büttiker et al. [2] were the first to propose the
possibility of observing a persistent current in diffusive normal metal rings.
They considered a one-dimensional ring enclosing a magnetic flux Φ, and
noted the analogy between the boundary condition and the one-dimensional
Bloch problem discussed above. Let us first consider the impurity-free single-
electron Hamiltonian in a magnetic field. The Schrödinger equation is then
simply

p̂2

2m∗ ψ(x) = Eψ(x)

with usual periodic boundary conditions. The solutions are, of course, plane
waves with wave vector k = p/h̄, and due to periodic boundary conditions
kn = 2πn/L, where n is an integer. If we apply a magnetic field B perpen-
dicular to the ring then p̂ → p̂+ eA/c and the vector potential is

A = 1
2Br0 = BL/4π

where r0 is the ring radius. Magnetic flux Φ through the ring is then Φ =
BL2/4π. The wave vector is then modified accordingly

kn =
2π
L
n+

e

h̄
A =

2π
L

(
n+

e

h̄c

BL2

8π2

)
=

2π
L

(
n+

Φ
Φ0

)
.

The energy levels are then radily obtained from

En(B) =
h̄2k2

n

2m∗ =
h̄2

2m∗r20

(
n+

Φ
Φ0

)2

. (2)

that are parabolas as a function of Φ. The equilibrium current (which is not
a transport current) carried by the n-th level is then (Eq. 1)

In = − 2πeh̄
m∗L2

(
n+

Φ
Φ0

)
. (3)

The total persistent current is I =
∑

n In, where the summation is over N
lowest occupied levels 2. For weak impurity potentials, the degeneracies at the
level crossings are lifted (Fig. 1). The magnetic moment for each occupied
level is

M = − dE
dB

= − eh̄

2m∗

(
n+

Φ
Φ0

)
. (4)

2 We consider the case of T = 0 and unless otherwise specified, only spinless
particles.
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Fig. 1. Energy levels of a one-dimensional
electron gas (non-interacting) on a ring as a
function of the magnetic flux. The dashed lines
correspond to the disorder-free case and the
solid lines are for the weak impurity case

As we see from Fig. 1, because of the alternating signs of ∂E/∂Φ for each
consecutive levels, the total moment is of the order of last moment around EF.
The total persistent current is therefore,

I(Φ) = −I0
{

2Φ/Φ0 for N odd and − 1
2 ≤ Φ/Φ0 <

1
2

[2Φ/Φ0 − 1] for N even and 0 ≤ Φ/Φ0 < 1 , (5)

where I0 = evF/L and vF = πh̄N/m∗L is the Fermi velocity. It is periodic in
Φ/Φ0 with period 1.

Early experiments were carried out on relatively large (µm-size) metallic
rings containing a large number of electrons and impurities [6]. The observed
results have not yet been explained to everyone’s satisfaction [7]. A semi-
conductor ring in a GaAlAs/GaAs heterojunction [8] (also of µm size but
in the ballistic regime) displayed the persistent current to be periodic with
a period of Φ0 and the amplitude of 0.8 ± 0.4evF/L, in agreement with the
theoretical predictions. The electron-electron interaction did not change the
value of persistent current. These experiments inspired a large number of
researchers to report a large number of theoretical studies involving various
averaging procedures, dependence on the chemical potential, temperature,
different realizations of disorder, and often conflicting conclusions about the
role of electron-electron interactions. We will not go into those aspects of the
work on a mesoscopic ring any further.

2 Electronic Structure of a Parabolic Quantum Ring

In an attempt to clearly understand the role of electron-electron interactions
in a quantum ring (QR) without getting encumbered by a variety of other
issues mentioned above, we have constructed a model of a QR [9] that is
disorder free, contains only a few interacting electrons and most importantly
can be solved via the exact diagonalization method to obtain the energy levels
very accurately. One advantage of this model is that, with the energy levels
thus calculated, other physical quantities in addition to the persistent current,
such as optical absorption, role of electron spin etc. can also be studied very
accurately [10,11]. Interestingly, over the years, the model has received a
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large following. The model is also most relevant for recent experiments on
nano-rings [12,13,14,15,16,17,18,19].

2.1 Theoretical Model

The Hamiltonian for an electron in a ring with parabolic confinement and
subjected to a perpendicular magnetic field is

H =
1

2m∗
(
p− e

c
A

)2

+
1
2
m∗ω2

0 (r − r0)
2 (6)

where the vector potential is A = 1
2 (−By,Bx, 0) (symmetric gauge). The

Schrödinger equation (in polar coordinates) is then written as

− h̄2

2m∗

{
∂2ψ
∂r2

+
1
r

∂ψ
∂r

+
1
r2

∂2ψ
∂θ

}
− ieBh̄

2m∗c
∂ψ
∂θ

+
[
e2B2r2

8m∗c2
+

1
2
m∗ω2

0 (r − r0)
2 − E

]
ψ = 0. (7)

Introducing the ansatz

ψ =
1√
2π

f(r)e−ilθ ,

and the quantities, N = BeA/hc = Φ/Φ0, α = ω0m
∗A/h, x = r/r0, E =

2m∗πAE/h2, where A = πr20 is the area of the ring, the radial part of the
Schrödinger equation is

f ′′ +
1
x
f ′ +

[
4E + 2N − 4α2 − (N 2 + 4α2

)
x2 + 8α2x− l2

x2

]
f = 0, (8)

where l is the usual orbital angular momentum of the single-particle level.
Parameter α is inversely proportional to the width of the ring. As shown

in Fig. 2, large α means a narrow path for the electrons to traverse and

α=100

=20α α

α

=5

=50

Fig. 2. Confinement potential α (r − r0)
2 for

various values of α
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hence the electron motion is close to that of a strictly one-dimensional ring.
For small α, the electron motion is almost two-dimensional. These two limits
can indeed be achieved in our model [9].

For a δ-function confinement (x = 1), the radial equation (Eq. 8) becomes[
4E + 2N l− 4α2 − (N 2 + 4α2) + 8α2 − l2

]
f = 0 (9)

with the solution, E = 1
4 (l −N )2, derived above for a strictly one-dimensional

ring (Eq. 2). In the other limit, i.e., when the magnetic field is large compared
to the confinement α, the radial equation reduces to

f ′′ +
1
x
f ′ +

[
4E + 2N l −N 2x2 − l2

x2

]
f = 0

with the solution [9], E =
(
n+ 1

2

)N , corresponding to the Fock-Darwin levels
[20]. The single-electron energy levels are obtained from numerical solutions
of the radial equation (Eq. 8) and are shown in Fig. 3. For α = 20 (Fig. 3(b)),
the lower set of energy levels are still similar to those of the ideally narrow
ring and are given by a set of translated parabolas (as in Fig. 3(a)). As α
decreases, i.e., the ring becomes wider, the sawtooth behavior of the narrow
ring is gradually replaced by the formation of Fock-Darwin levels as in the
quantum dots.

In a quantum ring, or in any cylindrically symmetric system, the wave
functions are of the form

ψλ = Rnl(r) eilθ , n = 0, 1, 2, . . . , l = 0,±1,±2, . . . , (10)

and the interaction matrix elements are evaluated from [9]

Vλ1λ2λ3λ4 = δl1+l2,l3+l42π
∫ ∞

0

dqqV(q)

×
∫ ∞

0

dr1r1J|l1−l4|(qr1)Rn1l1(r1)Rn4l4(r1)

×
∫ ∞

0

dr2r2J|l2−l3|(qr2)Rn2l2(r2)Rn3l3(r2) (11)

Fig. 3. Energy levels of a single electron ver-
sus the magnetic field for (a) ideally narrow
ring, and (b)–(d) parabolic confinement model
with various values of the confinement poten-
tial strength. The second Fock-Darwin level is
plotted as dotted lines
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where λ represents the quantum number pair {n, l}, Ji is the Bessel function
of order i. All our numerical results correspond to the case of Coulomb in-
teraction in a plane, V(q) = 2πκ/q, where κ = e2/4πε0ε. We have considered
the case of m∗ = 0.07m, ε = 13, and the ring radius, r0 = 10 nm.

Energies of a QR containing four interacting and non-interacting electrons
[9] are shown in Fig. 4. It is clear that for the spinless electrons, the only effect
of the inter-relectron interaction is an upward shift of the total energy. This
is due to the fact that in a narrow ring all the close-lying states are in the
lowest Landau band and cannot be coupled by the interaction because of the
conservation of the angular momentum. The situation is however different
once the spin degree of freedom is included, as described in Sect. 3.

2.2 Persistent Current

The magnetic moment (proportional to the persistent current) (Eq. 4) is
calculated in our model from its thermodynamic expression

M = −
∑
m

∂Em

∂B
e−Em/kT

/∑
m

e−Em/kT , (12)

where ∂Em/∂B are evaluated as the expectation values of the magnetization
operator in the interacting states |m〉. In our ring geometry, the magnetization
operator is M = 1/2m∗ [

e/cLz +
(
e2Br2

)
/2c2

]
. Our calculations revealed

that the interaction has no effect on magnetization which remains periodic
with period Φ0 [9].

Fig. 4. Energy spectrum of a QR containing four non-interacting and interacting
spinless electrons and for two different widths of the ring
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We also studied the persistent current of a QR in the presence of a Gaus-
sian impurity and/or with Coulomb interaction included [21]. The impurity
interaction of our choice was,

V imp(r) = V0e−(r−R)2/d2
, (13)

where V0 is the potential strength and d is the width. The impurity matrix
element in our model is then

Tλ,λ′ = 2πV0eimθ0

∫
Rλ(r)Rλ′ (r)e−(R2+r2)/d2

Im

(
2rR
d2

)
rdr, (14)

wherem = l′−l, (R, θ0) is the impurity position and Im is the modified Bessel
function. We found that the effect of impurity is simply to lift the degeneracies
in the energy spectrum and reduce the persistent current (Fig. 5), but it does
not change the phase of the oscillations as a function of the magnetic flux.
Even for the strongest impurity, the inter-electron interaction had no effect
on the persistent current (except to shift the spectrum to higher energies).

Our result verified the conjecture of Leggett [22]. Based on variational
arguments and two important proiperties of the many-particle wave function
in a mesoscopic ring, viz., the antisymmetry and the single valuedness, he
proposed that, for arbitary electron-electron interactions and an arbitary
external potential, the maxima and minima of the energy curves for even and
odd numbers of electrons would be the same as for non-interacting systems.

Fig. 5. Single-electron energy spec-
trum and magnetization (unit of en-
ergy is 2h̄2/m∗r2

0) versus Φ/Φ0 for
(a) α = 20, V0 = 1, d = 0.2; (b)
α = 20, V0 = 4, d = 0.5; (c) α =
5, V0 = 0.5, d = 0.2; and (d) α =
5, V0 = 1, d = 0.5 [21]
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3 Optical Absorption Spectra

After watching a not so spectacular performance of the persistent current,
and from our past experience on the important effect of the inter-electron
interaction on a few-electron quantum dot [20], we chose to turn our atten-
tion on optical spectroscopy of QRs [10], well before any such experiments
on nano-rings were reported. We found that optical spectroscopy is indeed a
direct route to explore impurity and interaction effects on a quantum ring.
In our work, intensities of the optical absorption are evaluated within the
electric-dipole approximation. For parabolic quantum dots (obtained by set-
ting r0 = 0 in Eq. 6), the radial part of the wave function (Eq. 10) is given
explicitly as Rnl = C exp

[−r2/(2a2)
]
r|l|L|l|

n (r2/a2), where C is the normal-
ization constant, a =

√
h̄/(m∗Ω),Ω =

√
ω2

0 + ω2
c/4, L

k
n(x) is the associated

Laguerre polynomial, and ωc is the cyclotron frequency. In our QR model
(r0 �= 0) the radial part Rnl has to be determined numerically. We define the
single-particle matrix elements as

dλ,λ′ = 〈λ′|reiθ|λ〉 = 2πδl+1,l′

∫ ∞

0

r2Rλ′(r)Rλ(r)dr.

The dipole operators are then
{
X = 1

2

∑
λλ′ [dλ′λ + dλλ′ ] a†λ′aλ,

Y = 1
2i

∑
λλ′ [dλ′λ − dλλ′ ] a†λ′aλ.

(15)

The probability of absorption from the ground state |0〉 to an excited state
|f〉 will then be proportional to

I = |〈f |r|0〉|2 = |〈f |X |0〉|2 + |〈f |Y |0〉|2.
In the calculated absorption spectra presented below, the areas of the filled
circles are proportional to I.

3.1 Quantum Dots with a Repulsive Scattering Center

Far-infrared (FIR) spectroscopy on µm-size QR arrays that were created in
GaAs/AlGaAs heterojunctions was first reported by Dahl et al. [23]. The
rings were of two different sizes: The outer diameter being ≈ 50 µm diameter
in both the cases, but the inner diameters were 12 µm (“broad rings”) and
30 µm (“narrow rings”). These rings were also described by these authors
as disks with a repulsive scatterer at the center of the disk. The observed
resonance frequencies as a function of the applied magnetic field are shown
in Fig. 6. Around zero magnetic field the resonances are similar to what one
expects for a circular disk. At larger B two modes with negative magnetic
field dispersion were found that were interpreted as edge magnetoplasmons
at the inner and outer boundary.
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Fig. 6. Frequencies of magnetoplasma resonances for an array of (a) “broad” and
(b) “narrow” rings [23]

Our theoretical results for absorption energies and intensities [10] of a
quantum dot containing an impurity (modelled by a Gaussian potential) and
one to three electrons are shown in Fig. 7 as a function of the magnetic
field. We have included spin but ignored the Zeeman energy. The two upper
modes of the one-electron spectrum behave almost similar to the experimental
results of Dahl et al. [23]. However, the two lower modes behave differently (in
the one-electron case) from those experimental results. The lower modes, i.e.,
the edge magnetoplasmon modes, reveal a periodic structure similar to the

Fig. 7. Absorption energies and intensities of
a quantum dot (r0 = 0), h̄ω0 = 4 meV, in-
cluding a Gaussian repulsive scatterer (Eq. 13)
with V0 = 32 meV, d = 5 nm, as a function
of the applied magnetic field. The dot contains
one to three electrons. The areas of the filled
circles are proportional to the calculated in-
tensity [10]
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case of a parabolic ring discussed below. That is true only for the one-electron
system.

When the number of electrons in the system is increased the periodic
structure of the edge modes (the two lowest modes) starts to disappear due
to the electron-electron interaction. Since the spin degree of freedom is also
included in our calculations, the difference between the one- and two-electron
results in Fig. 7 is entirely due to the Coulomb force. The lowest mode (which
is also the strongest) behaves (even for only three electrons) much the same
way as does the lowest mode in the experiment (where the system consists
of the order of one million electrons).

3.2 A Parabolic Quantum Ring

The results reported below correspond to that of a narrow parabolic ring
with α = 20 and r0 = 10 nm. In a pure one-electron ring the dipole-allowed
absorption from the ground state can happen with equal probability to the
first two excited states and all other transitions are forbidden. An impurity
in the ring will mix the angular-momentum eigenstates of the pure system
into new states between which dipole transitions are allowed. For an impurity
of moderate strength (Fig. 8(a)), an appreciable part of the transition prob-
ability still goes to the first two excited states while for a strong impurity,
absorptions taking the electron to the lowest excited state are more favorable
(Fig. 8(b)). One important result here is that in a system with broken rota-
tional symmetry, transition probability depends strongly on the polarization
of the incident light. For example, if instead of the unpolarized light consid-
ered here, we were to consider the case of light polarized along the diameter
passing through the impurity [24], the absorption would prefer the second
excited state. The other interesting feature observed in Fig. 8 is the periodic

Fig. 8. Absorption energies of a single electron
in a parabolic QR versus Φ/Φ0 for α = 20 and
(a) V0 = 1.0, d = 0.2 and (b) V0 = 4.0, d = 0.5
[10]
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behavior of absorption energies as a function of the applied field that follows
closely the behavior of the persistent current. Blocking of this current by a
strong impurity is reflected as the flat curves of absorption energies versus
the field.

In order to study the effect of impurity potential and electron correlations,
we have considered a ring with four spinless electrons. Compared to the
case of impurity-free single-electron results, here the dipole transitions to the
first excited state are forbidden (|∆L| > 1). However, impurities will again
permit transitions to the forbidden states. In general, effect of an impurity on
the absorption spectrum as a function of the external magnetic field can be
qualitatively explained by the single-particle properties. For example, when
we compare Figs. 9(a) and (b) we notice that lifting of the degeneracy in the
energy spectra of non-interacting electrons is reflected by a smoother behavior
as a function of the applied field. The sole effect of the Coulomb interaction
on the energy spectrum is to shift it upwards and to increase the gap between
the ground state and excited states (see Sect. 1). As a result, the Coulomb
interaction moves the absorption to higher frequencies (Fig. 9 (c) and (d)).
The effect of electron-electron interaction is evident in the intensity: for the
non-interacting system (Fig. 9 (a) and (b)), intensity of each absorption mode
does not depend on the magnetic field, but for the interacting system (Fig. 9
(c) and (d)) there is a strong variation of intensity as a function of the field.

(c)

(d)

Fig. 9. Dipole-allowed absorption energies for four non-interacting [(a) and (b)]
and interacting [(c) and (d)] electrons in a QR versus Φ/Φ0. The parameters are
the same as in Fig. 8

4 Role of Electron Spin

Until now, we have considered only spinless particles in our theoretical model
of a parabolic QR. However, at low fields, electron spins are expected to play
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Fig. 10. Ground state energy versus
Φ/Φ0 for up to ten non-interacting
electrons. The energies are scaled to
illustrate how the periodicity depends
upon the number of electrons on the
ring [11]

an important role. In Fig. 10, we show the ground state energies calculated
for up to ten non-interacting electrons on a ring [11]. Clearly, the major
consequence of the spin degree of freedom is period and amplitude halving
of the energy with increasing number of the flux quanta. It is also strongly
particle number dependent. This result for a non-interacting system was re-
ported earlier [25] and can be accounted for by simply counting the number
of spins, following the Pauli principle, and noting that the up and down
spins contribute identically to the energy. The particle number (modulo 4)
dependence can also be trivially explained in this way.

The Coulomb interaction in our model was found to have a profound
effect on the energy spectra when the spin degree of freedom is included
[11]. The calculated low-lying energy states for a two non-interacting (a)
and interacting (b) electron system are shown in Fig. 11. As the flux is in-
creased, the angular momentum quantum number (L) of the ground state of
a non-interacting system is increased by two, i.e., the ground state changes
as 0,2,4,... The period is as usual, one flux quantum. The ground state of the
non-interacting system is always a spin-singlet. The first excited state is spin
degenerate. As the Coulomb interaction is turned on, the singlet-triplet de-
generacy is lifted. This is due to the fact that, as the interaction is turned on,
states with highest possible symmetry in the spin part of the wave function
are favored because that way one gains the exchange energy. As a result, the
triplet state comes down in energy with respect to others and therefore the
period (as well as the amplitude) of the ground state oscillations is halved.
Similar results are also evident with three electrons (Sz = 1

2 ) (Fig. 11(c) non-
interacting and (d) interacting electron systems), where the ground state
oscillates with a period Φ0/3. We found similar behavior for QRs containing
up to four electrons [11]. In the four electron system, we noticed that with-
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Fig. 11. Few low-lying en-
ergy states for a ring contain-
ing two (a) non-interacting
and (b) interacting electrons.
Three electron results are
given in (c) and (d) for
non-interacting and interact-
ing systems respectively

out the Zeeman energy included the spin configuration Sz = 0 has the lowest
energy and a Φ0/2 periodicity is observed. However, if the Zeeman energy is
taken into account the Sz = 1 configuration becomes lower in energy and the
Φ0/4 periodicity is recovered.

The final message that emerges from these studies is that: the Coulomb
interaction (in fact, any type of repulsive interaction) favors the spin-triplet
ground states for reasons explained above. In the absence of any interaction,
the ground states are spin singlets and as a function of Φ/Φ0 are parabolas
with minimum at about the integer values (exactly at integer values for an
ideal ring). When a repulsive interaction is turned on, singlet states rise in
energy more than the triplet state and for strong enough repulsion, a decrease
in period of oscillations is observed.

Can one observe the fractional oscillations of the ground state energy in
optical spectroscopy? We present in Fig. 12 our theoretical results for the
optical absorption in a QR containing two electrons and also an impurity of
moderate strength [10] (V i

0 = 1.0, di = 0.2). The strong effect of the Coulomb
interaction on the electrons with spin is quite obvious. The system of non-
interacting electrons but a impurity-free system (Sz = 0) is shown in (a),
while the interacting (impurity-free) case is shown in (b). A system contain-
ing an impurity of moderate strength is shown for the non-interacting (c)
and interacting (d) electrons. The absorption spectra clearly reflect the be-
havior of the energy levels and the impurity does not destroy the fractional
periodicity of the electronic states.
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Fig. 12. Absorption spectra
of a QR containing two (a),
(c) non-interacting, or (b),
(d) interacting electron. In
(c), (d), additionally, the sys-
tem also has an impurity of
moderate strength. The size
of the filled circles is propor-
tional to the calculated ab-
sorption intensities

5 Recent Works on Nano-Rings

Quantum rings of nanoscopic dimensions are usually created as self-organized
[12,13,14,15] or fabricated on AlGaAs/GaAs heterojunctions containing a
two-dimensional electron gas [16,17,18]. Self-organized QRs in InAs/GaAs
systems were created by growing InAs quantum dots on GaAs and a process
involving a growth interruption when In migrates at the edge of the dot. This
creates nanostructures that resemble a volcano crater with the center hole
of 20 nm diameter and the outer diameter of 60-120 nm [12]. Only one or
two electrons are admitted in these clean nano rings and FIR spectroscopy
was performed to investigate the ground state and low-lying excitations in
a magnetic field that is oriented perpendicular to the plane of the rings.
The low-lying excitations were found to be unique to QRs first explored
theoretically by us [9,10,11]. Similarly, the observed ground state transition
from angular momentum l = 0 to l = −1, when one flux quantum threads the
ring, is also well described by our parabolic ring model. Warburton et al. [13]
reported a successive population of these self-assembled structures by up to
five electrons. They investigated the exciton luminescence of charged rings.
Recombination-induced emission by the systems from a neutral exciton to
a quintuply charged exciton was reported. In magnetotransport experiments
in Coulomb blockade regime reported in Refs. [16,17], QRs contain a few
hundred electrons. The deduced energy spectra was however well described
by the single-electron picture. Keyser et al. [18] recently reported transport
spectroscopy on a small ring containing less than ten electrons. The deduced
energy spectrum was found to be strongly influenced by the electron-electron
interaction. They also observed a reduction of the AB period that is in line
with our theoretical results of Sect. 3.
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Following our original work on parabolic quantum rings, many theoretical
works on such systems have been reported [26,27,28,29,30,31]. Chaplik [26]
investigated a parabolic QR having a small finite width. He noted that the
magnetic field dependent component of the energy does not depend on the
inter-electron interaction. He also investigated the behavior of charged and
neutral magnetic excitons in a QR. In Ref. [28], a single QR containing up to
eight electrons was investigated using path integral Monte Carlo techniques.
Addition energies, spin correlations, etc. were evaluated for different values of
ring radii, particle number and the temperature. There are many other issues
related to the QR that were investigated theoretically in recent years. With
the advent of nanoscopic quantum rings research on parabolic QRs has taken
a new dimension. Like all other nanostructures investigated in recent years,
QRs have proven to be a very useful device to investigate many fundamental
physical phenomena and perhaps in a near future will also be found to be
important for practical applications.
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