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Physics of the Artificial Atoms: Quantum Dots in a
Magnetic Field

Rapid advances in submicron technology have led to the fabrication of quasi-zero-
dimensional electron systems which allow us to study the physics of a few-electron
system under quantum confinement and in a magnetic field. The purpose of this
review is to discuss the experimental and theoretical information currently available
in the literature on this system. We also highlight current trends in the field and
point out some of the questions which need to be answered.

I. INTRODUCTION

Quantum dots (quasi-zero-dimensional electron systems) are one
of the most interesting systems in semiconductor nanostructures
and have received considerable attention recently.'* With today’s
rapid advances in microfabrication technology, it has been possible
to confine laterally the two-dimensional electron system (2DES)
into dots of diameters below 100 nm. Since the mean free path of
electrons at low temperatures is larger than this width, transport
and optical properties of the electron systems in the dot should
exhibit quasi-zero-dimensional behavior. Each dot typically con-
tains between 1 and 200 electrons. These quantum confined few-
electron systems are often referred to as artificial atoms where the
potential of the nucleus is replaced by an artificially created po-
tential.

Besides being an interesting physical system where new physical
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phenomena are expected to be explored, a quantum dot is also
interesting from a technological point of view. As the author of
Ref. 2 pointed out, the interest arises on both the primary (new
device concepts) and the secondary (impact on existing devices)
levels. The tools for nanostructure fabrication are the staples of the
semiconductor industry and thus the connection is direct.

The scope of this Comment is to review the current scientific
literature on the fascinating field of zero-dimensional systems in a
magnetic field. I shall focus mostly on magnetocapacitance mea-
surements and optical experiments on quantum dots and their
theoretical interpretation, but transport measurements and the as-
sociated theoretical work will also be briefly discussed.

1I. EXPERIMENTAL WORK

A. Capacitance Studies

The density of states of the discrete energy levels in quantum dots
as a function of the gate voltage and an applied magnetic field
perpendicular to the heterojunction interface was measured by
Hansen et al.? via capacitance spectroscopy. In these experiments
the samples are modulation-doped GaAs/AlGaAs heterostructure
capacitors, grown on conducting n* substrates which serve as elec-
trodes. Electrons are confined at the GaAs/AlGaAs interface. The
lateral confinement results from the band bending beneath the
etched regions that separate adjacent dots.

Figure 1 shows the gate voltage derivative of the capacitance as
a function of the gate voltage at different magnetic fields. The
peaks at positive gate voltages show complicated behavior even at
very low magnetic fields (B < 0.2 T). However, as the field is
increased to about B = 1 T one can clearly distinguish the peak
shifts and splitting of many of the peaks. At higher fields, some
of the peaks increase in size with other, weaker peaks moving
between them. The stronger peaks are the precursors to Landau
levels which the smaller peaks join as the field increases and in-
crease their degeneracy.” The peak positions are plotted as a func-
tion of the magnetic field in Fig. 1b. The stronger peaks that
become Landau levels at high magnetic fields are plotted as solid
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dots while the weak peaks are shown by open dots. The oscillatory
structure in the capacitance as shown in Fig. 1a can be attributed
to the discrete energy levels of a quantum dot indicating that the
quantization has been achieved in all directions. The splitting of
the peaks is believed to occur due to the interplay between com-
peting spatial and magnetic quantization.

Another interesting result in capacitance spectroscopy is the
observation by Hansen er al.* of fractionally quantized states, fa-
miliar from the fractional quantum Hall effectin a two-dimensional
electron system.’ For dots containing about 30 electrons in a very
high magnetic field, the derivative of the capacitance vs. the gate
voltage shows downward cusps at 1/3 and 2/3 filling factors (Fig.
2a). The temperature dependence of the minima (Fig. 2b) at these
two filling factors is also consistent with that of the fractional
quantum Hall states.

(@) (o)
T=0.7K B=30T

19T

dC/dV (Arb. Units)

1

i | | 1 | 1
03 -04 01 03 05 07 -03 -0 01 03 05 07

Vg (Volts) Vg (Volts)

FIGURE 2 (a) Derivative of the capacitance vs. the gate voltage for a sample with
3000 A dots. (b) Temperature dependence of the fractional states at B = 30 T
(Ref. 4).
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B. Optical Studies

The first magneto-optical experiments on quantum dots were per-
formed by Merkt et al.' using a metal-oxide-semiconductor (MOS)
structure with the alloy NiCr evaporated onto the InSb substrate
as a Schottky barrier. The dot array was prepared by holographic
lithography, details of which can be found in Refs. 1 and 6. Figure
3a shows a schematic picture of the lateral band structure across
the dots created in this arrangement. The Fermi energy Eg is
pinned at the NiCr/InSb interface above the valence band edge.
Under the small dot areas where there is no metal on the InSb
surface, mobile inversion electrons are induced by a gate voltage
V. There is virtually no tunneling between the adjacent dots since
the barrier height between the dots is of the order of the band gap
energy (E, = 236 meV) and the distance is of the order of the
period (a = 250 nm) of the dot array. The conduction band edge
near a minimum is approximately that of a harmonic oscillator well
of characteristic frequency .

The average number n, of electrons in a dot was estimated from
the cyclotron resonances in strong magnetic fields and the spec-
troscopy of the dots was carried out with linearly polarized far-
infrared (FIR) laser light. Figure 3b shows the most interesting
results obtained by these authors. The measured resonant fre-
quency is found to be independent of electron number (inset).
These resonances are, in fact, related to single-particle transition
energies in a bare confinement potential (see Section IIIA). A
possible explanation is available in Section IIID.

Two examples of the dot structures created by Heitmann et al.”®
are shown in Fig. 4. They were prepared from modulation-doped
AlGaAs/GaAs heterostructures. For the deep-mesa-etched quan-
tum dots in Fig. 4a an array of photoresist dots (with a period of
a = 1000 nm both in x- and y-directions) was created by a holo-
graphic double exposure. Employing anisotropic plasma etching,
rectangular 200 nm deep grooves were etched all the way through
the 10 nm thick GaAs cap layer, the 53 nm thick Si-doped AlGaAs
layer, and the 23 nm thick undoped AlGaAs spacer layer into the
active GaAs. This gives quadratic dots with rounded corners and
geometrical dimensions of about 600 X 600 nm.? Figure 4b depicts
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the split-gate configuration where the channel carriers are depleted
via a gate voltage and a varying distance between a NiCr-gate,
leaving isolated quantum dots. Variation of the gate distance is
achieved via a modulated photoresist layer. A Si &-doped layer
serves as a backcontact to vary the number of electrons in the dot.
This 8-layer has a low concentration and impedance such that it
is semitransparent for FIR radiation.

The FIR spectra, for a sample with an average of 210 electrons
per dot, are shown in Fig. 5a. The transmission 7(B) of unpolar-
ized FIR radiation through the sample was measured at fixed mag-
netic fields B, perpendicular to the surface of the sample. The
spectra were normalized to a spectrum T(B,) with a flat response.
The active sample area was 3 X 3 mm? containing 107 dots. At B
= () one resonance is observed at wy; = 32 cm~!. With increasing
B the resonance splits into two resonances: o,  decreases in fre-
quency, while the other, w, , , increases. The dispersion is similar
to that observed by Merkt et al. For B = 4 T, a second resonance
w,, was resolved. Figures Sb and 5c show the resonance position
for the dots with different electron number. An interesting obser-
vation is the resonant anticrossing at ® = 1.4w,.

This group has also prepared quantum dot structures in InGaAs
by deep mesa etching.” Massive dots containing 600 electrons were
created and found to have an energy spacing of 1 meV. The FIR
response for this system showed, in addition to the usual modes,
weak additional modes and anticrossing behavior.

More recently, Heitmann ef al.'® prepared field-effect confined
quantum dot arrays with a well defined number of electrons in
each dot, N = 1, 2, 3 and 4. The FIR transmission experiment on
such dot-arrays (Fig. 4b) revealed an interesting stepwise increase
of the integrated absorption strength as a function of the gate
voltage. This indicates the incremental charging of each of the 10
dots of the array with 1, 2, 3, etc. electrons. This is a remarkable
experimental achievement which should enable us in the future to
compare the theoretical work on the few-electron system directly
with the experiments.

Finally, Lorke et al.'' reported on the electrostatic generation
of quantum dots where the coupling strength between dots can be
tuned by an applied gate voltage. FIR transmission spectra showed
that for strongly coupled dots, new spectral features develop: an
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additional mode appears at frequencies lower than w_ and the w,
mode branches into two modes at higher magnetic fields.

C. Transport Studies

Excellent reviews exist on transport properties in semiconductor
nanostructures.'2!3 In the following, I shall discuss briefly trans-
port measurements by three groups. The Dutch group'* prepared
the dot by creating a disk in a 2DES. This is done by fabricating
two pairs A and B (Fig. 6) of metallic gates. A negative voltage
of —0.2 V on both gate pairs depletes the electron gas underneath
the gates and a quantum dot of diameter 1.5 pm is formed in the
2DES. The narrow channels between the gate pairs are pinched
off at this gate voltage. The disk is connected to the wide 2DES
regions by two 300 nm wide quantum point contacts (QPC).

In studying zero-dimensional states, this group employed the
fact that edge channels are formed when a high magnetic field is
applied perpendicular to the 2DES" and that electron transport
in edge channels is known to be one-dimensional. In high magnetic
fields OPCs can thus be used as selective transmitters of edge
channels. The zero-dimensional state is obtained by confining a
one-dimensional edge channel in a quantum dot between two par-
tially transmitting barriers (Fig. 6). Discrete zero-dimensional states
are formed by the constructive interference of electron waves mov-
ing along the edge channels. Resonant transmission through the
zero-dimensional states was indicated by pronounced oscillations
in the conductance with maxima occurring whenever the energy
of a zero-dimensional state coincided with the Fermi energy.

2DES

(b)

FIGURE 6 Schematic layout of the quantum dot. The edge channels in a high
magnetic field are also shown. (a) Adiabatic transport for unequal QPCs A and
B. (b) Formation of a one-dimensional loop when an edge channel is only partially
transmitted by both QPCs (Ref. 14).
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Magnetotransport measurements through quantum dot systems
have also been performed by the NRC group.'® They observed
resonant tunneling through the single-electron states of the quan-
tum dot from one edge of the sample to the other. Low and high
field magnetotransport measurements through two quantum dots
coupled in series were also reported by these authors.

Recently, some very interesting transport measurements in
quantum dots were reported by McEuen et al.'” (the MIT group).
Their system is shown in Fig. 7a. As above, the electrostatic gates
are used to confine and adjust the density of the 2DES. A negative
voltage applied to a lithographically patterned split upper gate
defines the dot while a positive bias applied to a lower gate adjusts
the electron density. The conductance G as a function of gate
voltage V, shows a periodic series of sharp peaks shown in the
inset of Fig. 8. The basic periodicity of the peaks can be explained
by the standard Coulomb-blockade model of single-electron tun-
neling through a quantum dot'-'7-1%: At low temperatures and
infinitesimal applied bias the probability of the dot containing a
particular integer charge is close to unity for most values of gate
voltage. This is because adding another electron costs a large charg-

(b)
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FIGURE 7 Schematic layout of the quantum dot arrangement of McEuen et al.
(Ref. 17) showing the path of the edge states associated with the lowest two Fock—
Darwin levels (FDL). (b) Energy levels of a parabolic quantum dot in a magnetic
field. The thick line indicates the energy of the single-particle state that is 78-th
lowest in energy. In each period of the sawtooth a single electron is transferred
from the second FDL (rising line) to the first FDL (descending line).

45



131.0

10 130.5
=
o —
5) -
= E
107" 130.0 _
8 S
E g

-2 [s
510 129.5 —;g
g e
A g

10 129.0

107 1 * ' ' ' 128.5

15 20 25 30 35 40 45

B (T)

FIGURE 8 Height and position of a conductance peak as a function of the magnetic
field. Inset: Conductance vs. Vyat B = 3 T (Ref. 17).

ing energy U (the electrostatic energy associated with the incre-
mental charging of the dot by single electrons). As the charge does
not fluctuate, transport is suppressed and the conductance is es-
sentially zero. At the gate voltage corresponding to the conduct-
ance peaks, however, the energy cost of adding one electron is
zero, i.e., the peaks occur when

F(N + 1) — F(N) = Eg

where F(N) is the free energy of the dot and Eg is the Fermi
energy. The probabilities of having N or N + 1 electrons on the
dot are then both finite and transport proceeds via the fluctuation
of the charge on the dot between N and N + 1 electrons.

The main result of Fig. 8 is, of course, that with increasing B
the height and position of a particular peak behaves in a striking
fashion. In the region between 2.5 and 4 T the peak height is
periodically suppressed by as much as an order of magnitude. The
peak positions show oscillations commensurate with these dips. In
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this magnetic field regime two Fock—Darwin levels (FDL) (defined
in Section IIIA) are occupied in the dots as shown in Fig. 7b.
Theoretically, from the above equation it follows that the condition
for the oscillation of the conductance peak is directly related to
the behavior *-!8 of the N-th single-particle energy level €,. The
thick line in Fig. 7b shows the behavior of €,. As the magnetic
field is increased, the N-th electron alternately occupies a state in
the first FDL and a state in the second FDL. Accordingly, the
measured shift of the peak position with B can be related to the
shift in €,. Assuming that the Coulomb energy is constant in the
magnetic field range studied, a single-electron energy spectrum
was mapped out from the measured peak position (Fig. 9) and was
found to be remarkably similar to that obtained theoretically (see
Section IIIA). There are, of course, notable deviations from the

\%
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Peak Position (m

Energy Levels (meV)

2.9 3.0 3.1 3.2 3.3 3.4
B (T)

FIGURE 9 (a) Peak position vs. the magnetic field for a series of consecutive
peaks. (b) Single-clectron energy level spectrum as obtained from (a) (Ref. 17).
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theoretical single-electron energy levels such as the discontinuity
in the spectrum near 0.2 meV. The spectrum is also not very well
reproduced in the higher end of the magnetic field range.

It is quite surprising that a transport measurement on a fairly
complicated quantum dot structure can reproduce the energy levels
of an ideal parabolic quantum dot. Theories need to be developed
to understand the deviations in the inferred spectrum from the
theoretically derived spectrum, as well as the validity of the as-
sumptions employed such as the constant-Coulomb-energy model.
One interesting point to note is that occupation of the second FDL
is quite crucial in interpreting the above results. In the lowest FDL
there is no sawtooth behavior because no level crossings occur,
and for more than two FDL the simple oscillations will be replaced
by more complicated behavior. As we shall see in Section IVC,
similar sawtooth behavior may be obtained in a quantum ring when
only the lowest FDL is occupied.

[II. THEORETICAL WORK

In order to understand the experimental results discussed above,
the first step is to understand the nature of the confining potential
and the electronic properties of a single electron in a confining
potential in the presence of a magnetic field. The first theoretical
work in that direction was by Kumar et al.' They considered a
model of a single quantum dot from the array of dots used in the
experiments of Hansen et al.? The shape of the dot was considered
to be rectangular. These authors then solved the Schrodinger and
Poisson equations self-consistently within the Hartree approxi-
mation, i.e., exchange and correlation effects were neglected. They
found that the confining potential has nearly circular symmetry
despite the rectangular geometry of the dot system. For seven
electrons per dot they also found that the evolution of the energy
levels with increasing magnetic field is similar to that found for a
parabolic potential.

A. Single-Electron Results

The problem of a single ideally two-dimensional electron, in a
circular dot, confined by a parabolic potential 3m*wjr? (m* is the
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clectron effective mass) in the presence of an external magnetic
field was solved more than half a century ago by Fock? (and later
by Darwin®'). It is interesting to note that the same problem (but
for zero confinement potential) was studied two years after Fock’s
work by Landau,* leading to the term Landau levels.

The single-electron energies

1
Eu=02n + || + 1)aQ — Elfimc (1)
depend on the two quantum numbers n = 0,1,2, ... ahd l =
0, +1, +2,. ... Here w, = eB/m*c is the cyclotron frequency,

and ) = (iw? + 03)"2 In the limit, w, — 0, we have € = N +
1/2) hw, where the Fock—Darwin level (FDL) index is N = n +
2 (|{| — I). These energies are plotted in Fig. 10 as a function of
the magnetic field. Without the confining potential the energies
of the positive / states would be independent of /, but in its presence

oe e (2,0)
10.-3) {-—(1,'-1) —> Qhwc
50 (3.-6) (0.-2) 2
40 — (1.2)
— (1,1
> Z o '3'h“’c
QEJ 30 - ‘s (©.-1) 2
= R 01
5SS .
W 20 ’:_:‘::‘:’:s’\‘:.‘ % (0'8(’0 7)
o &7 - B
’)‘"""‘ — z— {0,8)
X“oo ———=_—1(05) —>12- hw,
g, (0.4)
10 —_/\\(02 0.3)
0.1)
0 0.0}
| | | |
0 4 8 12 16 20

B(T)

FIGURE 10 Single-electron energy levels in a parabolic dot as a function of the
magnetic field. The levels are indicated by their quantum numbers (n, /). The
confinement energy is fiw, = 4 meV.
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they increase with /. For very large B (0w, >> w,) and for n = 0,
[ =0, we get ¢ = 3 fiw,, while forn = 1,1 =0,¢ = 5 ho,., etc.
States with / < 0 have much higher energies than those for [ > 0
(Fig. 10). The single-particle wave function is ¢, = rll
exp(—zl())L”(r2/2a2)exp(2 r?/4a?), where the effective magnetic
lengthisa = (ﬁ/2m*Q)1’ — 1 is the angular momentum quantum
number and L,(y) is the Laguerre polynomial of degree n. As
discussed in Section IIC, transport measurements on quantum dots
by the MIT group have been able to map these energy levels from
the oscillations of the conductance as a function of the magnetic
field.

Optical Transitions: Selection Rules

The transition probability (n, [) = (n’, I') is proportional to the
square of the interaction energy.> For the interaction between the
applied electric field E and the electric dipole moments of the
electrons, the transition amplitude is

;;II = (d)nllre 'eld)nl)

with the associated oscillator strength

2m
e T 'l n'l'|2
nl - w:rl ‘Anl ’

h
where ”/ = (€, — é,,)/% is the transition frequency. Using the
single-electron wave function in a parabolic confinement, an in-

tegral over 0 gives Al = [’ — [ = *1 for the allowed transitions.
The final result is

2ﬁ 1/2
A;’:I’I' = 811',:181'Jtl ( * ) vVn + |l| ¥ ]

1/2
. 2h
- 6n'.n+18I'.ltl(l 6IO) ( w) \Vn + 1,
0

which leads to An = 0, 1. The corresponding energies are

AE., = %ﬁ [0f + 40d]'? = —l-ﬁwc = h() +

> ho, (2)

N =
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where the + (—) sign corresponds to left (right) circular polari-
zation. Note that with increasing magnetic field, AE, approaches
the cyclotron energy fiw., while AE _ decreases with the magnetic
field. The magneto-optical experiments discussed in Section IIB

have in fact observed these two modes of dispersion [see Figs. 3(b)
and 5(b)—(c)].

B. Effects of Electron—Electron Interactions

All the experimental results on quantum dots discussed in Section
II seem to show predominantly single-electron behavior. As the
dots contain more than one electron in most of the cases, the
question of the effect of electron—electron interaction still remains
to be studied. In the absence of a magnetic field, Bryant®* has
shown that the electron—electron interaction has a significant in-
fluence on the energy spectrum of quantum microstructures.

A detailed theoretical study of the effect of electron—electron
interaction in quantum dots subjected to a perpendicular magnetic
field was made by Maksym and Chakraborty.? The states of the
interacting electrons in a parabolic quantum dot were calculated
by numerically diagonalizing the many-electron Hamiltonian

qp +
JC - 2 %nl cnls Cnls

nls

¥ +
+ 2 'Sﬁnlln.nzlz,rnh.mh leu' Crabas’ le3s' le-u (3)

Hl...n43
h...ls
ss’

where A is the Coulomb matrix element

1
A = —2-fdrlerd)rTlll(rl)d):‘:zlz(rZ)V(rl - r2)¢"3’3(r2)¢"4“(r1)’

where the Coulomb interaction is used for V(r, — r,).

In order to construct the basic states, the number of electrons
n,, total angular momentum J = 3/ and the sum of Fock—Darwin
level indices N\,, = 2N are first fixed. For example, for four
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electrons, J = 6 and total Fock—Darwin level index N,,, = 0 or
N« = 1. the basis consists of twelve states

¥ ot .of .af
Ay 1B 02 103,158 g 14 | O) ’

where quantum numbers (n,, [,)(n,, L)(ns, 5)(n,, 1;) have values
for the lowest Fock—Darwin level (N, = 0):

0,0) (0,1) (0,2) (0,3)

and for the second Fock—Darwin level (N, = 1):

0,00 (0,1) (02) (13)  (0,-1) (0,0) (0.1) (0,6)
0,00 (0,1) (03) (12)  (0,-1) (0,0) (0.2) (0,5
000 (0) (04) (L)  (0,-1) (0,00 (0.3) (0.4)
0,00 (0,1) (0,5 (1,00  (0,—1) (0,1) (0,2) (0,4)
00 (02 (03 (L)  O1) (02 (03) (1,0)
0,00 (0.2) (0.4) (1,0

The eigenstates of the system are the eigenstates of the total
angular momentum J, which is conserved by the electron—electron
interaction. The energy levels of the three- and four-electron sys-
tem obtained numerically are shown in Fig. 11. For parameters
appropriate to GaAs, the energies are plotted after subtracting A{)
per electron. Clearly there are always two sets of broadened levels
separated by a gap. In the limit of zero confinement potential these
would be the lowest two Landau levels. The general trend is that
energies increase with J because the single-electron energies in-
crease with /.

The main difference between the high-field and low-field be-
havior is in the ground-state angular momentum. It i1s to be noted
that the single-electron contribution increases linearly with J. In
contrast, the interaction term decreases because electrons with
higher angular momenta move in orbitals of larger radii, thereby
decreasing the Coulomb energy. The net result is that the total
energy as a function of J has a minimum. At low fields, this min-
imum occurs at the lowest available J, i.e., the smallest angular
momentum compatible with placing the three or four electrons in
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FIGURE 11 Energy levels as a function of J for three and four electrons in a
parabolic quantum dot (Ref. 25).

N = 0 states. At high fields, the minimum appears at a higher J
value. The ground state of electrons in a magnetic field therefore
occurs only at certain magic values® of the total angular momen-
tum J. At these magic J values there are basis states in which
electrons are kept very effectively. The ground state always occurs
at one of these J values and the competition between interaction
and confinement determines the optimum J.

The energy spectra of a two-electron system in a parabolic quan-
tum dot were calculated by Merkt et al. ,>® and agree with the results
discussed above.

C. Generalized Kohn’s Theorem

The behavior of energy levels as a function of the magnetic field
described above was not observed in FIR (or transport) spectros-
copy. To understand this we have to consider the perturbation due
to the electromagnetic radiation.” Typical wavelengths are 50 pm
while typical dot sizes are 100 nm so the dipole approximation
holds to a high degree of accuracy. This means that the perturbing
Hamiltonian can be written in the form ' = /<, Ey-r;exp( —iwt),
where E, is the electric field and n, is the electron number. This
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can be expressed in terms of the center-of-mass coordinates (c.m.)
R = 3r/n, and the total charge Q = n.e, i.e., #' = QE,-R
exp( —iwt). In the case of a parabolic confinement potential the
many-electron Hamiltonian separates into terms which are func-
tions of c.m. and relative coordinates. The c.m. Hamiltonian has
exactly the same energy eigenvalues as those of a single confined
electron because w,. in the expression for €, depends only on the
charge-to-mass ratio. As a result FIR absorption experiments ob-
serve only features at the single-electron energies when the con-
finement potential is parabolic.?> Similar observations were also
made by Bakshi et al.?” A general derivation of this result is orig-
inally due to Brey, Johnson and Halperin?® who proved that a
parabolic quantum well absorbs FIR radiation at the bare har-
monic-oscillator frequency independent of the electron—electron
interaction and the number of electrons in the quantum well. To

see this clearly, let us consider a Hamiltonian at zero magnetic
field:

N

1N 1
2 (pi + pi, +pR) + 2 omreiz + U (4)

= 2m* = =12

where p; and r; are the momentum and position operators of the
i-th particle, w, is the bare harmonic-oscillator frequency of the
parabolic well, and U = 2,_; u(r; — r;) is the interaction between
electrons. Defining the raising and lowering operators

-+

N
¢ = 21 (m*woz; ¥ ip; ),
=

we get
[, ¢*] = *hwyé™.
This means that if s, is an eigenstate of ¥ with energy F,,

%ét\pn = (iﬁwO + En) éillln'
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If we define ¢,,., = ¢, then §, ., is an exact eigenstate of the
Hamiltonian (4) with energy E,., = E, * hw,.

In the presence of an electric field applied in the z direction,
the interaction term to be added to the Hamiltonian is

N e—iwr
' = Y Ee 'z, = E —;
i=1 2m (1)()

E* + &)

This perturbation connects {5, with the states s, ; only. The der-
ivation was also extended to the case of a magnetic field by Brey
et al. The result is, in fact, a generalization of Kohn’s theorem?®
originally derived for the two-dimensional electron systems.

Dempsey et al.** studied the collective excitations in an array of
parabolically confined quantum dots. Using instantaneous inter-
actions and a harmonic approximation for the interdot interaction,
they found that the Hamiltonian separates into a term that depends
on the coupled c.m. motions of different dots and a term that
depends on the relative coordinates within each dot. As expected,
the light couples only to the c.m. modes. They also studied retar-
dation effects which seem to reduce the dispersion of the c.m.
modes in the optical region.

Although interesting, the above studies fail to provide any hint
about how to observe the effect of the electron—electron inter-
action when the confinement potential is parabolic. One possible
way is to engineer the dot such that the c.m. and the relative
motions are coupled. The other is to study measurable thermo-
dynamic properties such as the heat capacity.*!

Heat Capacity

The electronic heat capacity C, was calculated by Maksym and
Chakraborty® from the temperature derivative of the mean en-
ergy. For simplicity, Landau level mixing is neglected. This does
not, however, leave out any essential physics. The results for a
three-electron system are shown in Fig. 12 for two different tem-
peratures. For interacting electrons (solid lines) C, is seen to be
very different from that of noninteracting electrons (dotted lines).
In the former case, C, oscillates as a function of magnetic field B
and has minima that are associated with crossovers from one ground
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state J to another. The ground-state J is indicated by the dashed
lines in Fig. 12. The origin of the oscillations is best understood
by considering the curves for T = 1 K. At this low temperature
the dominant contribution to C, comes from two competing ground
states. This causes the doublet structure around the crossovers and
can be understood in terms of the magnetic field dependence of
the gap between the corresponding ground states. Far away from
a crossover, the gap is large, so C, is small. Similarly, it is small
exactly at a crossover because the gap in that case is zero. On
either side of the crossover, the gap is nonzero but not too large.
As a consequence C, is nonzero because neither the probability
of thermal excitation nor the associated heat absorption are van-
ishingly small.

Beyond Parabolic Confinement

Chakraborty, Halonen and Pietildinen® considered a pair of quan-
tum dots which are coupled only via the Coulomb interaction (tun-
neling of electrons between the dots was not allowed). This breaks
the circular symmetry of a single dot and the dipole transition
energies calculated for three- and four-electron dots as a function
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FIGURE 12 Electronic heat capacity C, at two different temperatures and the
ground-state J as a function of magnetic field for three electrons in a GaAs quantum
dot (Ref. 25).

56



of B indeed showed anticrossing behavior somewhat similar to that
observed experimentally by Demel e al.> One other interesting
feature of the results was that, at B = 0, the degeneracy of the
mode is lifted. This is due to breaking of the circular symmetry by
the inter-dot Coulomb interaction. In fact, in a recent microwave
response experiment on elliptic two-dimensional electron disks*
the degeneracy of the resonance positions at B = ( was found to
have been lifted.

Gudmundsson and Gerhardts** considered a correction to the
parabolic confinement potential by using V..; = ar’* + br* + cr®
and various values for the constants a, b and c. In their numerical
calculation, the ground state of the interacting electrons (10 = n,
= 30) in a dot was calculated in the Hartree approximation and
the FIR response was treated in the random-phase approximation.
A qualitative understanding of the experimental results by Demel
et al.,’> especially the appearance of the higher mode in the dis-
persion, was achieved in that work.

Pfannkuche and Gerhardts* studied the magneto-optical re-
sponse to FIR radiation of quantum dots with two electrons (quan-
tum-dot helium). They considered deviations from the parabolic
confinement of the form: U(r) = ; m*w3(ar* + bx?y?) where w,,
a, and b are constants. They found the splitting of the w, mode
and the mode coupling reflected in the anticrossing behavior of
this mode.

D. Step Structures in the Magnetization

One other probe that is sensitive to the electron—electron inter-
action is the magnetization which can in principle be measured,
e.g., Stormer et al.*® have measured the magnetization of a 2DES.
Theoretically it can be obtained by differentiating the energy ei-
genvalues with respect to the magnetic field. More precisely, the
numerically generated eigenvalues (including spin) are used to
compute the free energy which is then differentiated to get the
magnetization.?’

The results of such a calculation are shown in Fig. 13. The top
panel of each figure gives the magnetization as a function of B,
calculated both with and without interaction for (a) three electrons
and (b) four electrons. The remaining panels show the ground
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FIGURE 13 Magnetization M (meV/Tesla at T = 0.1 K of a parabolic quantum
dot containing (a) three electrons (N = 1), the ground state angular momentum
J and the ground state spin S. The dash-dot line corresponds to the non-interacting
case. A comparison of the results for the N' = 2 case (dotted line) is given in the
inset and (b) four electrons per dot (Ref. 37).

state total angular momentum quantum number (J) and the ground
state spin (5). All results are for GaAs quantum dots with fiw, =
4 meV. The calculations were done with the maximum value of N
taken to be 1; that is, one electron was allowed to have N' > 0 and
the other electrons had N = 0. This truncation is surprisingly
accurate, even at low magnetic fields. The absolute value of the
magnetization is insensitive to the upper value of the N sum and
the only effect of increasing it is that the positions of the steps
change. This is illustrated in the inset of Fig. 13a where the results
of allowing the upper limit of the N sum to rise to 2 are shown.
Physically, the steps correspond to changes of the ground state J
or both J and §, as can be seen by comparing the three panels of
the figure.

The magnetization for non-interacting electrons has no step be-
cause the lowest two single-electron levels are unaffected by level
crossings as the field is increased. Hence systems of up to four
non-interacting electrons in the lowest spin state stay in the same
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angular momentum state throughout the field range so the mag-
netization curve is smooth. All the steps in this case are a conse-
quence of the interaction. For five or more non-interacting elec-
trons the magnetization would be affected by negative / levels
crossing positive / levels. However, the position of these crossings
would be drastically affected by the interaction. In addition, there
are relatively few of them when the electron number is small (for
five electrons in the lowest spin state there is only one) and they
tend to occur at low field. In contrast the steps due to the inter-
action occur at a regular sequence of J values throughout the field
range.

Consider the simple case of a spin polarized system with elec-
trons restricted to occupying N = 0 states. In this case the expres-
sion for the total energy simplifies considerably because the in-
teraction energy can be diagonalized independently of the
confinement energy. In addition the confinement energy in this
case is only a function of J so the total energy of each state takes
the form

1 2
= (1 + DEQ — S Jho, + z—a N(J) + g*nBS.,

where the first two terms constitute the confinement energy, the
third is the interaction energy (e is the background dielectric con-
stant) and the fourth is the Zeeman energy where \(J) is a di-
mensionless eigenvalue that depends only on J and g* is the ef-
fective g-factor. For GaAs, g* is small so the Zeeman term only
affects the magnetization at the 1% level and the physics is de-
termined by the first three terms. Differentiating them yields two
contributions to magnetization:

2 e

he e
M=o [(J o )29 J] " 2e Vim (20)3/2

MJ).

These two terms behave very differently in the low and high field
limits. When B = 0 the confinement term is fieJ/2m*, and as B
increases it smoothly decreases and approaches —#en,/2m* as B
— . In contrast the interaction term approaches 0 both when B
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— 0 and when B — . For the parameters used here this term
contributes at the 1% level when B < 2.5 T and ~15% when B
= 10 T. It is most significant when 2.5 < B < 10 T. The field
dependence of the magnetization at fixed J is essentially deter-
mined by the first term, and if / was independent of B the mag-
netization of the interacting system would be qualitatively similar
to that of the non-interacting system. The major effect of the
interaction is that the ground state J changes with magnetic field.
Every time this happens the magnetization curve shifts to a different
track and this causes the steps shown in Fig. 13. The effects of spin
are important at fields B < 10 T; the system is spin polarized at
higher fields. One effect of spin is that it causes extra steps in the
magnetization. Each spin state has its own sequence of special J
values, and each of those J values correspond to a possible ground
state at that spin. As yet, no experimental attempts to measure
either the heat capacity or the magnetization have been reported.

IV. FURTHER TOPICS

In this section, some interesting systems which are related to the
studies of quantum dots are briefly discussed. The experimental
work and the theoretical understanding of these systems are far
less complete than those for the quantum dots. The aim of this
section is to highlight their importance.

A. Excitons in a Parabolic Dot

A system of electrons and holes moving in two dimensions with
their transverse motion quantized in the lowest Landau level and
subjected to a strong perpendicular magnetic field is known to
exhibit many interesting properties.*®*~** In the ideal case where
the electron and hole wave functions are considered to be identical,
Lerner and Lozovik?® (and later Rice et al.*®) found that the exact
ground state is a Bose condensate of noninteracting magnetic ex-
citons. Another interesting result found by Rice et al. was that
there is no plasma oscillation in this system—a consequence of
the confinement to the lowest Landau level. The collective exci-
tation is simply given by the single-exciton dispersion relation which
is a result of the ideal Bose character of the ground state.
Theoretical work by Bryant on excitons* and biexcitons* in
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quantum boxes (in the absence of a magnetic field) demonstrated
the competing effects of quantum confinement and Coulomb-in-
duced electron—hole correlations. Excitons and biexcitons have
also been studied recently in semiconductor microcrystallites by
Koch et al.*>-*¢ It should be pointed out that the measurement of
the exciton binding energy in the presence of a magnetic field has
been reported in quantum wells*’ and quantum wires.*® A brief
review of the experimental work on excitons in quantum wires and
dots can be found in Ref. 49.

Halonen, Chakraborty and Pietlidinen®” have reported theoret-
ical work on the properties of an exciton in a parabolic quantum
dot in an external magnetic field using an effective mass Hamil-
tonian. They studied the ground state and low-lying excitation
energies, electron—hole separation and the intensity for optical
absorption. They predicted that from magneto-optical measure-
ments one should be able to get the binding energy of the exciton
and the strength of the confining potential. The problem certainly
deserves more attention from both experimental and theoretical
points of view.

B. Antidots

Antidots are reversed structures with respect to dots, i.e., where
holes are punched into a 2DES at a regular interval. Ensslin and
Petroff>! and Weiss et al.*? performed transport measurements on
such systems and Kern et al.> studied them via FIR spectroscopy.
The antidot samples of Kern et al. were prepared by deep-mesa-
etching starting from the 2DES in a modulation-doped Ga,In,_, As/
Al In, _ As single quantum well. A photoresist grid mask was
prepared by holographic double exposure, and arrays of holes with
typical diameters 100-300 nm were etched 100 nm deep into the
buffer. The period in both lateral directions was a = 300 — 400
nm. A scanning micrograph of the antidot structure by Kern et al.
is shown in Fig. 14a.

In the presence of a magnetic field, Kern ef al. observed several
resonances in the transmission spectra. The dispersion is shown in
Fig. 14b for two antidot samples. The excitation spectrum has
primarily two modes. The high-frequency mode, o, , first de-
creases in frequency and then increases with the magnetic field.
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At high B, it approaches the cyclotron frequency w, of the 2DES.
The low-frequency mode, w _, follows w. and then bends down.
The deviation from the quantum dot dispersion (dot-dashed line)
is clearly visible in the low magnetic field region.

Detailed theoretical calculations of the antidot behavior are not
yet available.

C. Quantum Rings

In recent work, van Houten et al.>* suggested that when the elec-
trons in a disk are in the lowest Landau level and when the charging
energy is comparable to the cyclotron energy, the magnetocon-
ductance oscillations are suppressed (Coulomb blockage of the
Aharonov—Bohm (AB) effect). The blockage is lifted and the AB
effect is recovered if one considers a quantum ring instead. In
semiconductor nanostructures, quantum rings can be created from
a two-dimensional electron system with an additional gate within
the gates shaping the disk (quantum dot) (see Section 1IC). Ap-
plication of a negative voltage to this additional gate would deplete
the central region of the disk, thereby forming a ring. In the lowest
Landau level the basic difference between the two systems is the
behavior of the electrochemical potential (or the energy cost as-
sociated with the addition of a single electron to the disk or the
ring) as a function of the magnetic field which determines the
conductance oscillations. The situation is different when the second
Landau level is occupied, in which case the electrochemical po-
tential for a dot has the same sawtooth behavior as that for a ring
and the Coulomb blockage of the AB effect, as discussed above,
is lifted>*—a situation exploited in the experiment of McEuen et
gl

The ring geometry is also very useful to study various other
phenomena, e.g., periodic oscillation of thermodynamic quantities
like the magnetization in weak> and strong magnetic fields,>® as
a function of the magnetic flux and observation of the persistent
currents®’>® (which is related to the periodic nature of the free
energy), etc. Also, in the quantum Hall regime, Halperin'> em-
ployed it to demonstrate the importance of the edge states in quan-
tizing the Hall conductivity.
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The Hamiltonian for an electron confined in a parabolic ring
and subject to a magnetic field is given by*

2
1 e 1
H = e (p - EA> 5 Em*w(z,(r — ry)?

where the vector potential is A = 2(~ By, Bx, 0) (symmetric gauge).
Introducing the quantities!8->4

N_g_ggé _ om*A
T ®dy, ke YT T h

where A is the area of the ring, A = wrj and ®, = hc/e is the

flux quantum, the radial part of the Schrodinger equation is written
as

1
ft=f + [4x + 2Nl — 402

2

— (N? + 40®)x? + 8a’x — i—] f=0. (5

2

Here we have introduced the dimensionless quantities, x = r/r,
and A\ = (2m*wA/h?)E. As a check, let us consider the case of
d-function confinement, i.e., set x = 1. Equation (5) then has the
solution N = (N, — /). This case was originally studied by Biittiker
et al.>” and is shown in Fig. 15(a).

In Fig. 15(b)—(d), we have also plotted the single-electron en-
ergy levels for the parabolic ring for various values of a («a is
inversely proportional to the width of the ring). The results are
obtained by numerically solving Eq. (5). As a decreases, i.e., the
ring becomes wider, the sawtooth behavior of the narrow ring is
gradually replaced by the formation of the Landau levels.

Unlike the case of the quantum dot, magnetization and suscep-
tibilities show periodic oscillations even in the absence of electron—
electron interactions. These oscillations are gradually damped at
high fields for wider rings, reflecting the behavior of the energy
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levels discussed above. The influence of the Coulomb interaction
on these quantities is an important problem and is currently under
investigation.®

V. CONCLUDING REMARKS

Since the first experiments on quantum dots in a magnetic field in
1989, the field has witnessed very rapid growth. At present, the-
oretical work is no match for the volume of raw data available
from the experiments and the data are still coming in! Of course,
the theoretical results are no less interesting. In fact, the aim of
this Comment is partly to make theorists aware of the experimental
results that need to be understood. The results on antidots (electron
pinball) and transport measurements on quantum dots are the
present challenges for theorists while the theoretical results for the
magnetization, excitons in quantum dots and for quantum rings
should invite some experimental activity. The physics of artificial
atoms will be an open book for a long time to come.
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