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The electronic properties of a quantum dot in magnetic fields are dis-
cussed. We describe the effect of electron-electron interaction on the en-
ergy spectrum of a single dot and a Coulomb-coupled dot-pair. For a two-
dimensional hydrogenic exciton in a parabolic dot, the excitation energies
at low fields divide into two sets: one set behaving like center-of-mass ex-
citations with no apparent magnetic field dependence while the other is an
excitation due to relative motion. We estimate that at low confinement
energy (< 10 meV) and low magnetic fields (< 10 T), Coulomb interaction
dominates the behavior of the exciton.

I. INTRODUCTION

Recent experimental work on quasi-zero-dimensional electron systems
at a semiconductor interface (quantum dots) has generated considerable in-
terest on the physics of few-electron systems in low dimensions(!~%). Of
particular interest is the study of the electronic properties of quantum dots
in a magnetic field. In this paper, we present a brief discussion of our cur-
rent understanding of electron dots in a magnetic field and some puzzling
features of a two-dimensional hydrogenic exciton in a parabolic dot sub-
jected to a perpendicular magnetic field. In both systems, we find that the
energy spectrum reflects the important role played by the electron-electron
interaction.
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II. ELECTRONS IN A QUANTUM DOT

Far infra-red (FIR) spectroscopic measurements on quantum dot struc-
tures in InSb by Merkt et al.(}) showed that the measured resonant fre-
quency is independent of electron number within the experimental error.
These resonances are related to single-particle transition energies in a bare
confinement potential. Demel et al.(?) recently created quantum dot arrays
in AlGaAs/GaAs heterostructures. The FIR resonance absorption struc-
tures they observed show similar dispersion with magnetic field but a reso-
nant anticrossing in the energy levels was also resolved.

In the absence of a magnetic field, Bryant(3®) has shown that the electron-
electron interaction has a significant influence on the energy spectrum of a
quantum dot. In a magnetic field, the nature of the many-electron states
is a challenging problem. One consequence is that different ground states
are expected to occur at different magnetic fields(¥). From self-consistent
numerical solutions of the Poisson and Schrodinger equations for a quan-
tum dot in the Hartree approximation, Kumar et al.(5) showed that the
confining potential has nearly circular symmetry and therefore angular mo-
mentum is approximately a good quantum number. Also with increasing
magnetic field, the evolution of energy levels was found to be similar to that
for a parabolic potential. We have shown earlier(¥) that for a parabolic con-
finement of the electrons, FIR spectroscopy is sensitive only to the center
of mass motion (CM) of the electrons which has exactly the single-electron
excitation energy of a bare confinement potential. This is in line with the
experimental observation by Merkt et al.(1).

The ground state and low-lying excited states of a quantum dot with
three electrons vs the total angular momentum L is shown in Fig. 1. The
allowed dipole transitions are also indicated, which are the transitions to the
CM energy levels (dashed lines) as explained above. In that figure we also
present the case of a pair of dots which are (a) uncoupled and (b) coupled
by inter-dot Coulomb interaction. In the last case, the circular symmetry is
broken and the angular momentum is no longer a good quantum number.
This is one possible way to study the effect of many-electron interaction on
optical excitations. We consider the Hamiltonian for the Coulomb-coupled
dot-pair in a parabolic confinement to be of the form H = Ho + Hee, where
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Figure 1: Energy spectrum for a single dot and the dot-pair
(a) without and (b) with inter-dot coulomb coupling.

Here the sums over i and j run over the number of electrons in a single dot,
m* is the effective mass,  is the strength of the confining potential, € 1s
the background dielectric constant and R, is the position of the center of
the a-th dot. No attempt is made to include any single-particle interaction
between the dots, i.e., the electrons feel the other dot only through the
Coulomb interaction Hee.

We show in Fig. 1(b) how the Coulomb interaction between the two dots
couples the excitations with L = 2 (CM) and L =5 (CM) of an individual
dot. The lower mode of the dipole transition is caused by the transition
to L = 4 (CM) level which has no other level to couple to. The coupling
of the CM and relative motions causes interesting structures in the dipole
transition energies as a function of magnetic field (Fig. 2). As explained
above, the lower mode of the transition energies for the electron-dot pair
is always close to the single-particle mode. On the other hand, the upper
mode is seen to exhibit interesting anticrossing behavior due to the couphng
described above.

To conclude this part, we have compared the energy spectrum of a sin-
gle quantum dot and a Coulomb-coupled dot-pair. In the latter case, the
circular symmetry is broken and as a result the radiation couples to the
internal motion of the electrons. The effect of many-electron interaction
then manifests itself in the anticrossing behavior of the transition energes
akin to that observed by Demel et al(?). We have demonstrated above how
the different energy levels couple (at a given magnetic field) to cause the
anticrossing behavior in the dipole transition energy as a function of the
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Figure 2: Dipole transition energies and intensities of a
three-electron per dot pair. Dot separation 100 nm, con-
finement energy hQ = 2.5 meV . Solid lines are one-particle
transition energies. Diameters of the circles are propor-
tional to the intensity of the transition.

magnetic field.

III. AN EXCITON IN A QUANTUM DOT

We now consider an ideal two-dimensional hydrogenic exciton in a quan-
tum dot. For simplicity, we consider the confinement potentials for both the
electrons and holes to be parabolic which might be difficult to achieve ex-
perimentally. Other forms of confinement potentials for the excitons in a
quantum dot have been studied previously by some authors®. The Hamil-
tonian in the present case is written as
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Let us now introduce the CM and relative coordinates in the usual manner,
R = & (mcr. + mary), * =T —T;, where, M = me+my, p= memy /M,
and v = (mp — m.)/M. Considering the symmetric gauge, A = :B xr,
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Figure 3: Low-lying excitation energies for the (a) light-
hole (my, = m, = 0.067m,) exciton and (b) heavy-hole
(mp = 0.377myg) exciton. The confinement energy is hfle =

TlQh = 2.5 meV .

the Hamiltonian is then rewritten as, H = Hem + Hrel + Hx, where
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Here M. is 2 Hamiltonian for a two-dimensional harmonic oscillator with

energy spectrum

Eem = (an:m =+ wcml + 1) hQem

1
1 2
Qcm = [*ﬂ—j (mﬂﬂg + mhﬂi)] A

The other two terms Hrel and Hy are the Hamiltonian for the relative motion

and the cross term respectively.
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The problem of calculating the ground state and excited state propertie
of a two-dimensional hydrogenic exciton which is in a parabolic confinemen
potential and in a static perpendicular magnetic field can be solved accu
rately using the method of numerical diagonalization of the Hamiltonian
The basis functions are constructed such that they are eigenfunction o
Ho = Hem + Hrel- As the Coulomb interaction conserves the total angula
momentum L, we can separate the calculation for different L. It 1s importan
that the method of selecting the basis states includes the specified numbe
of all the lowest eigenstates of Ho which are connected to each other by th
Coulomb interaction. Calculated excitation energies with various confine
ment energies and magnetic fields exhibit the behavior of a two-dimensiona
harmonic oscillator (Fig. 3). This is surprising, given the fact that in the
presence of a parabolic confinement and the magnetic field the Hamiltonia
does not separate into CM and relative terms. The explanation is tha

the cross term H, is a small correction to Hy, at least for low confinemen
energy and low magnetic fields.
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Figure 4: Ground state energy of the heavy-hole exciton vs
(a) the confinement potential energy (center of mass energy

hS} is subtracted) at B = 0T and (b) the magnetic field (no
confinement).

It should be noted that M, is the Hamiltonian of a two-dimensional
charged particle in a magnetic field and in a parabolic and Coulomb po-
tentials. The Schrodinger equation for the radial part of this Hamiltonian
can be solved numerically. The results for the ground state energy of (a) an
exciton in a parabolic confinement and (b) a free exciton in a magnetic field
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are presented in Fig. 4. It should be mentioned that there is no essential
difference between the two cases because if one separates the Hamiltonian
into CM and relative terms, the latter term is the same in both cases so
that the parabolic confinement can be scaled into the magnetic field. We
could infer from this figure that when the confinement energy is smaller
than about 10 meV and the magnetic field is smaller than 10 tesla the
ground state energy is close to that at zero confinement and at zero mag-
netic field. Therefore, the dominating term in the present system is the
Coulomb interaction which is in line with the results of Fig. 3.
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