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Abstract

The elementary charged excitations at [/3 Landau level filling have been
studied for various spin polarizations for finite electron systems in a periodic
rectangular geometry. In the absence of Zeeman energy, the spin-reversed
excitations, studied for three to six electron systems show significant reduc-
tion of the energy gap, compared to the fully spin-polarized quasiparticle-
quasihole gap, studied for upto seven electron systems. In the presence of
Zeeman energy, the lowest energy excitations involve spin-reversed quasi-
particles and spin-pelarized quasiholes for low magnetic fields, With increas-
ing magnetic fields, a crossover point is reached (in the region B < 107T),
beyond which a fully spin polarized quasiparticle—quasihole state will be
energetically favored. The Zeeman energy due to spin—flip explains qualita-
tively the linear magnetic field dependence of the activation energies

observed experimentally.

1. Introduction

The fractional quantum Hall effect (FQHE) in the two-
dimensional electron system, observed in modulation-doped
GaAs—(AlGa)As, at low tempertures and high magnetic
fields [1], has generated intense theoretical activities in recent
years. Current understanding of the effect requires that the
electron gas condenses into an incompressible quantum fluid,
and dilation or contraction of the “incompressible” state
creates fractionally charged quasiholes and quasiparticles
[2—9]. (The incompressibiity of the fluid is characterized by a
positive discontinuity of the chemical potential at the stable
states.) Recent measurements [10] on the exponentially small
dissipation of the diagonal resistivity in the FQHE regime
have established a single activation energy for the Landau
level fillings of v = 1/3, 2/3, 4/3 and 5/3. It is also interesting
to note that the magnetic field dependence of the activation
energy observed in those experiments appears to be different
from the current theoretical predictions. In all the theoretical
calculations [4~9], the excitation energy gap scales with the
natural unit of energy, e’/el,, with ¢ being the background
dielectric constant and I, = (Ac/eB)'” is the magnetic length.
Instead of the expected behaviour of B'” dependence, the
experimental data indicates[10] that the activation energy has
a finite magnetic field threshold, above which it shows an
almost linear increase with the magnetic field upto B ~ 12T.
In our earlier works [11] we have studied the spin polarization
of the ground state at various rational fillings. A natural
extension of those calculations would be the spin-reversed
excitations. Indeed, we would like to raise the possibility that
the almost linear increase of the observed activation energies
could perhaps be asociated with the Zeeman energy due to
the spin-reversed quasiparticles [12].

The energy gap, £, = £, + &, which corresponds to the
energy required to create a quasiparticle (,) and a quasihole
{€,) well separated from each other, has been estimated by
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several authors [4—9]. The hypernetted-chain estimate [5, 9] is
not so reliable as the Monte Carlo result [6] for large but finite
systems (upto 72 electrons), E, >~ 0.099 £ 0.009 (energies
are quoted in units of ¢/gl,, unless otherwise specified). The
result from the collective excitation spectrum in analogy with
the Feynman type excitations in liquid “He, obtained by
Girvin, MacDonald and Platzman [7], is E, ~ 0.106. Also,
the estimate by Haldane and Rezayi [8], who computed the
exact spectrum for small number of electrons (three to seven
clectrons) on a sphere and extrapolated the result to the
thermodynamic limit, is E, ~ 0.105 + 0.005. From all these
estimates, it is clear that the correct theoretical result for the
energy gap in the case of spin-polarized guasiparticles and
quasiholes is ~0.1. In the following we will demonstrate
that, there exists other mechanism like spin reversal, where
the energy cost is much lower than the above mentioned
excitations.

2. The energy gap
2.1. Periodic rectangular geometry

The finite electron system in a periodic rectangular geometry
has been discussed earlier [3, 11] in the literature. Therefore,
we will present here only a brief description of the formalism
used in the present work. We assume that N, number of
electrons interact, via Coulomb interaction, in a rectangular
cell of sides @ and 5. We impose the periodic boundary
conditions, so that the electrons also interact with their
periodic images, and the cell contains an integral number A,
of magnetic flux quanta. In the Landau gauge, the single-
particle eigenfunctions for a rectangular cell are,

&
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Here the integer j, 1 < j < N, specifies the state, and
X, = 2zl3j/b is the center coordinate of the cyclotron
motion, which is conserved by the electron—electron inter-

action. The Coulomb interaction is written in the form,

@)

1
O =
4

where ¢ = (2nsfa, 2mt/b) with 5 and ¢ as integers, Consider-
ing only the lowest Landau level, the Hamiltonian is,
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where ; (af) is the annihilation (creation) operator for the jth
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state. The single-electron part is a known constant [3], while
the two-electron part is given by,

3 [dry g100820 V0~ 1) 8,008,
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Here the Kronecker delta § with prime means that the equa-
tion is defined modulo &, and the summation over g excludes
q. = ¢, = 0. The basis states are chosen to be the anti-
symmetrized products of single-particle eigenfunctions,
eq. (1), denoted as |/, j, . . . jx ), with the quantum number
J = Z%, j (mod N,) being the total momentum along the
axis fixed by the Landau gauge. The filling fraction is given
byv = N,/N,, and the number of electrons is usually fixed by
one’s ability to diagonalize the huge Hamiltonian matrix. (In
the present work, the biggest matrix we encountered had
dimension 11 628.) The generalization of the present method
to include the spin-reversal is rather straightforward [11]. The
energy spectrum for the Hamiltonian is classified in terms of
the total spin § and its z-component S,. For a given S, the
spectrum is identical for different values of S,. In the present
work, we will concern ourselves with only two cases, (a)
S=38 =N,/2 and(b) S =8, = Nj2 — L

2.2, A cusp that is

As stated earlier, we wish to describe an incompressible elec-
tron fluid at the stable states, e.g., at v = 1/3. This means
that, at 1/3 Landau level filling fraction, we expect to find
discontinuities in the chemical potential, which would mani-
fest itself as a cusp-like behavior in the energy vs. density
curve at that filling fraction. The chemical potential is defined
as, '

Ik,
po= EO+va-s ()
where Ey(v} is the ground state energy per particle at v. For
v = 1/3, the energy gap is then given by [12, 13],

E = {(u, —p) (6)
with,
iy =~ Ey(v) + v[E, — Ef(v. — V).

Here v, = NJ/(N, F 1), E; = Ey{v,) and the factor 1/3 is
because of the fractional electron charge of the quasiparticles
and quasiholes [9]. It is to be noted that the quasiparticle and
quasihole excitations are obtained by changing the magnetic
flux quantum from the stable filling fractions, keeping the
total number of electrons, N,, fixed. The spin-reversed quasi-
particle and quasihole excitation energy gaps are obtained by
calculating £, in a system where the spin of one of the
electrons is reversed relative to all the others. The ground
state energy at v = 1/3 [denoted by E;(v) in egs. (5) and (6)]
is, however, calculated for the spin-polarized case.

2.3. Finite-thickness correction

In our discussions so far, we have ignored the finite spread
of the electron wavefunction perpendicular to the two-

dimensional plane. It is well-known [14-16] that inclusion of
the finite thickness correction effectively softens the short-
range divergence of the bare Coulomb interaction, when the
interelectron spacing is comparable with the inversion layer
width. Consequently, many important encrgies in the FQHE
are drastically reduced. While the reduction of the ground
state energy still keeps the incompressible quantum fluid state
energetically favorable over the crystalline state [15], the
reduction of the collective excitation gap provides a better
comparison with the experiment. The most common form for
the charge distribution normal to the plane is by the Fang—
Howard [14] variational wave function, '

g(z) = 362" exp (—h2) (7
where the effects of only the lowest subband is considered.
The variational parameter is given by, ‘

b = [33nm*e’n/2eh?)'? (%)

where m* = 0.067m, is the effective mass, n is the electron
density fixed by the Landau level filling v. The depletion layer
electron density is negligible as compared to the electron
density [14—16] and is not included in eq. (3).

The effective electron—electron interaction is then written
as [16],

Vi) = %jdzl Idzz g(z)g(z)[r* + (=2, — P (9)

Using the result,

q dr &’
[z — z)* + 1"

)
= exp [—qlzi — 7] (10)
and g(z) from egs. (7) and (8), eq. (9) can be rewritten as,
V) = BB ( ) j dq Jy(gP) j dz, dz, 232}
x g g Mg T

which after some algebra, leads to

V) = (;) [ da Fa) To(ar) an

[t =20

For large r, ¥(r) has the usual 1/r behavior, and for small #,
the In r behavior is obtained.

with

i

Fq)

3. Numerical results and discussions

The major bottleneck of the numerical diagonalization
method, such as the one used here, is the dimension of the
Hamiltonian matrix, which grows very rapidly with the elec-
tron number N,. In the case of one spin reversal considered
in the present work, the situation is even worse, since the
electrons with different spin can now occupy states with same
j. The matrix dimension in that case, is increased approxi-
mately by a factor ~(N, + 1) as compared to that for the
spin-polarized case. A straightforward diagonalization of the
matrix is thus not possible for N, > 4 with one spin reversed.
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Fig. I. The energy gap E, (in units of e"",’é:u) for different spin polarization
of the quasiparticle (q.p.) and quasihole (q.h.) excitations for three to seven
electron systems, in the absence of Zeeman energy. The Monte Carlo result
(MC) is from Ref. [6] for the spin-polarized q.p. and q.h. (®). The other three
cases are: spin-polarized q.p. + spin-reversed q.h. {(4); spin-reversed q.p. +
spin-polarized g.h. (W); and spin-polarized q.p. + q.h. (). The experimental
data is from Ref. [10]. The ground stale energy at v = 1/3 from Refs [3] and
[6] are given as inset for comparison.

The computational method used in the present work is
described briefly in the appendix.

In Fig. 1, we have plotted the energy gap for three to seven
electron systems for various spin polarization of the quasi-
particles and quasiholes. The four-electron spin-polarized
result was first obtained by Yoshioka [13]. However, as
shown in the figure, £, depends on the system size somewhat,
and the extrapolation of our results for the spin-polarized
{three to seven) electron system (plotted as @) approximately
leads to £, ~ 0.10. The result is thus in agreement with the
-earlier estimates, described in the introduction. The reliability
of our approach is best seen in the case of the ground-sate
energy at v = 1/3 [3] plotted as inset in Fig, 1, for three to

seven electron systems. The resulis are very close to the.

accurate Monte Carlo results of Ref. 6 with the Laughlin
wave function.

In Fig, 1, we have also plotted the energy gap for different
spin polarizations of the quasiparticles and gquasiholes.
The four cases we have studied are: (a) spin-polarized quasi-
particle—quasihole gap, (b) spin-pelarized quasiparticle and
spin-reversed quasihole gap (a), (¢) spin-reversed quasi-
particle and spin-polarized quasihole (®) and (d) spin-
reversed quasiparticle and quasihole (O). It is clear in Fig. 1,
that the lowest energy excitations (in the absence of Zeeman
energy) at v = 1/3 involve spin-reversal. The origin of this
could perhaps be traced to the earlier findings [11] that, for
any state other than l/m with m odd integer, which is spin-
polarized, the clectron-electron interaction decreases the
tendency to spin polarization, resulting in lower eneries for
the spin-reversed cases. The spin reversal is found to cost
much less energy for £, (reduction of a flux quanta) than that
for E_ (addition of a flux quanta). Therefore, in the absence
of Zeeman energy, the lowest energy excitations correspond
to the case where £, and E_ are evaluated for spin-reversed
systems.

The Zeeman energy {(per particle) contribution to the
energy gap for various cases are, (a) zero for fully spin polar-
ized quasiparticle—quasihole case, (b) (I + 1/3N,)e. for the
spint-reversed quasihole-spin polarized quasiparticle case, {(c)
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Fig. 2. Energy gap E, (ir units of ¢%fel}) as a function of the dimensionless
parameter § = (5],)”" for four (@ and ©), five (A and a) and six () electron
systems. The filled points are for spin-polarized q.p. -+ q.h. case, while the
empty points correspond to the spin-reversed q.p. + spin-polarized q.h.
case. The five and six electron results in the former case are not distinguisk-
able in the present figure.

(1 — 1/3N,)e, for the spin-reversed quasiparticle-spin polar-
ized quasihole case and (d) 2¢, for the spin-reversed quasi-
particle—-quasihole case. Here e, = gup B, with ug = ehf2m,c
the Bohr magneton and the Landé g-factor, g =~ 0.529 for
GaAs. As we shall sec later, in the presence of Zeeman
energy, only case (¢) for low magnetic fields and (a) for high
magnetic fields are energetically favorable.

In Fig. 2, we have plotted the energy gap E, as a function
of the dimensionless parameter § = (bf,}~' for four- to six-
electron systems at v = 1/3. In the case of spin-polarized
quasiparticles and quasiholes (filled points), five and six elec-
tron system results are indistinguishable in the figure. The
interesting point, however, is that there is a substantial reduc-
tion of the gap in the range of § = 0.5-1.0, compared to the
ideal case of § = 0. Infact, the ratio of E,{(ff = 1}/E.(f = 0)
is 0.53, 0.52 and 0.54 for four (@), five (4) and six-electron
(=) systemn respectively. In the case of spin-reversed quasi-
particle and spin-polarized quasihole (empty points), the
reduction is slightly less: 0.55, 0.56 and 0.57 for four (0), five
(a) and six-electron (O) systems respectively.

At v = 1/3, the magnetic field dependence of the finite-
thickness parameter f§ is given as, § = 0.525B" and the
Zeeman energy (in units of K} as &, = 0.3558 with B given
in Tesla. From these realtions, we can easily obtain the
magnetic field dependence of the encrgy gap, E,. The results
for five-electron system is shown in Fig. 3. The six-electron
result is not distinguishable in the figure. The experimental
data, obtained from six different samples, by Boebinger ef al.
[10] is also presented for comparison. For low magnetic fields,
the lowest energy excitations rises linearly as a result of the
spin-reversed quasiparticles, which include the dominant con-
tribution from the Zeeman energy. The slope of this curve is
very similar to the linear type part of the experimental results.
As the magnetic field is increased further, the B'? dependence
{modified by the magnetic field dependence of f) is then
obtained due 1o the spin-polarized quasiparticles and quasi-
holes. This part of the theoretical curve is also qualitatively
similar to the experimental results. The point we wish 10
make in this work is that, for low magnetic fields, the spin-
reversal presumably plays an important role in the elemen-
tary excitations in the FQHE. The observation of a finit€
magnetic field threshold has been explained qualitatively as
due to disorder {10].
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8(T)
Fig. 3. Energy gap £, (in units of K) as a function of magnetic field B (given
in Tesla) for five-electron system. The filled and empty points have the same
meanings as in Fig. 2.

The present work is open to some improvements. Most
important of them could be that at low magnetic fields, where
the spin-reversed quasiparticles seem to be important, mixing
of higher Landau levels should be considered This correction
is at most 10% for four-electron {spin-polarized) system [13],
in the region of magnetic fields of interest. Though difficult,
larger system results would also be interesting. Suitable
approximations are needed for such calculations.
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Appendix

As the dimension of the Hamiltonian matrix is quite large
— more than 11000, for the spin-reversed systems — which
in turn requires that the arithmetic be done in double pre-
cision, the straightforward diagonalization of the matrix is
impossible. Furthermore, in the present work, we are dealing
with the number of electrons and flux quanta such that they
have no common divisor greater than unity. Therefore the
symmetries based on the magnetic translation group [17}
cannot be used to reduce the size of the matrix. It should
however be noted that the two-body operator of the Hamil-
tonian, eq. (4), can connect only those states which differ by
at most two indices labelling the occupied single-particle
states. The majority of the matrix elements is therefore zero.
Moreover, the coefficients of the two-body operator in fact,
depends only on the difference between the indices and hence
there are only a few (roughly the number of flux quanta
squared) different matrix elements. When we store the matrix

in the computer by rows keeping only non-zero elements and
represent these as offsets to the array containing the different
elements together with the corresponding column indices,
only four bytes of storage per non-zero element is required.
The matrix being symmetric only the upper or lower triangle
need to be stored.

The lowest eigenvalue and the corresponding eigenvector
can be obtained by minimizing the Rayleigh quotient

xT Hx
x'x

Ax) =

where x represents the column vector of the coefficients in the
superposition of the basis states. The next lowest eigenvalue
can then be found in a similar manner by working in the
subspace orthogonal to this eigenvector. Repeating the
procedure we can extract the required number of the lowest
eigenvalues together with the cigenvectors. For the minimiz-
ation of the Rayleigh guotient we choose the conjugate -
gradient method in which the quotient is approximated by a
quadratic function and the minimum in each iteration step is
searched in the plane spanned by the gradient and the search
direction of the previous iteration step. It is in fact possible to
iterate all the required eigenvalues simulataneously using,
e.g., the method developed by Déhler [18]. This treatment of
eigenvalues is quite convenient since the Hamiltonian matrix
is needed only for multiplication of vectors which can be
easily performed even though the mairix is represented in a
rather complicated fashion.
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