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states as compared to those in conventional (non-relativistic) semiconductor systems. In bilayer
graphene the interaction strength can be controlled by a bias voltage and by the orientation of the
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The relativistic-like behavior of electrons in graphene significantly influences the interaction properties
of these electrons in a quantizing magnetic field, resulting in more stable fractional quantum Hall effect

magnetic field. The finite bias voltage between the graphene monolayers can in fact, enhance the
interaction strength in a given Landau level. As a function of the bias voltage, a graphene bilayer system
shows transitions from a state with weak electron–electron interactions to a state with strong
interactions. Interestingly, the in-plane component of a tilted magnetic field can also alter the interaction
strength in bilayer graphene. We also discuss the nature of the Pfaffian state in bilayer graphene and
demonstrate that the stability of this state can be greatly enhanced by applying an in-plane
magnetic field.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene is a monolayer of carbon atoms, which has a two-
dimensional (2D) honeycomb crystal structure. The unique feature
of graphene is that the single-electron low-energy dispersion has
the relativistic massless form commonly attributed to the Dirac
fermions, and the corresponding electron wave functions have a
chiral nature [1–4]. The electronic band structure, first derived by
Wallace in 1947 [5] has two valleys at two inequivalent corners,
K ¼ ð2π=aÞð13 ; 1ffiffi

3
p Þ and K′¼ ð2π=aÞð23 ;0Þ, of the Brillouin zone, where

a¼0.246 nm is the lattice constant. The low-energy dispersion at
the valleys ξ¼ 1 (K-valley) and ξ¼ −1 (K′-valley) is determined by
the following relativistic massless Hamiltonian [1–4,6,7]:

Hξ ¼ ξvF
0 p−
pþ 0

 !
; ð1Þ

where p− ¼ px−ipy, pþ ¼ px þ ipy, and p! is the two-dimensional
momentum of an electron. Here vF≈106 m=s is the Fermi velocity,
which is related to the hopping integral between the nearest
neighbor sites. The honeycomb lattice of graphene consists of two
sublattices A and B and the two component wave functions
corresponding to the Hamiltonian (1) can be expressed as
ðψA;ψBÞT for valley K and ðψB;ψAÞT for valley K′, where ψA and ψB

are wave functions of sublattices A and B, respectively.
ll rights reserved.

+1 12044747622.
hakraborty).
The two components of the wave function correspond to the
quantum mechanical amplitudes of finding the ‘Dirac fermion’ on
one of the two sublattices. This sublattice degree of freedom is
often referred to as pseudospin of Dirac fermions in graphene. It is
directed along the direction of motion of the Dirac fermion in the
conduction band, and opposite to the motion in the valence band.
In other words, particles in graphene have opposite chirality in the
K and K′ valleys. The electron and hole wave functions are
eigenfunctions of the helicity (chirality) operator [3]. Physically, a
certain direction of the pseudospin in the graphene plane corre-
sponds to a rotation of the relative phases of the two components
of the spinor eigenstates along that direction of motion of the
Dirac fermion. The sublattice pseudospin chirality of Dirac fer-
mions does not allow perfect backscattering (between states of
opposite momentum and opposite pseudospin) that has important
consequences on the physical characteristics of graphene [3,8].

The single-electron states obtained from the Hamiltonian (1)
have a linear relativistic dispersion relation of the form

εðpÞ ¼ 7vFp; ð2Þ
where the signs ‘+’ and ‘−’ correspond to the conduction and
valence bands, respectively. Each energy level (2) is four-fold
degenerate due to two-fold spin and two-fold valley degeneracies.
2. Dirac fermions in magnetic fields

In a magnetic field applied perpendicular to the graphene
plane, the relativistic energy dispersion relation (2) brings in very
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Fig. 1. (Color online) The Landau levels as a function of the perpendicular magnetic
field for a graphene monolayer. Numbers next to the lines are the Landau level
indices. The Landau levels with positive energies (positive index n) and negative
energies (negative index n) correspond to the conduction and valence bands,
respectively. The fractional quantum Hall effect (FQHE) [18] that is discussed below,
can be observed only in the Landau levels shown by the red and blue lines (n¼ 71
and 0). The strongest electron–electron interactions and correspondingly the more
stable FQHE states are realized in the Landau levels shown by red lines.
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specific form of Landau levels of electrons in graphene [9,10], and
as a consequence the 2D system displays unconventional quantum
Hall effects. The Landau levels of electrons in graphene can be
found from the Hamiltonian (1) by replacing the electron momen-
tum p! with the generalized momentum π!¼ p!þ e A

!
=c. Here A

!

is the vector potential. Then the Hamiltonian of an electron in a
magnetic field perpendicular to the graphene monolayer in valley
ξ takes the form

Hξ ¼ ξvF
0 π−

πþ 0

 !
: ð3Þ

The eigenfunctions of the Hamiltonian (3) can be expressed in
terms of the conventional Landau level wave functions, ϕn;m, for a
particle obeying the parabolic dispersion relation with the Landau
level index n and intra-Landau index m, which depends on the
choice of the gauge. For example, in the Landau gauge (Ax¼0 and
Ay ¼ Bx) the index m is the y-component of the momentum, while

in the symmetric gauge ( A
!¼ 1

2 B
!� r!) the index m is the z-

component of electron angular momentum. For these wave func-
tions, ϕn;m, the operators πþ and π− are the raising and lowering
operators, respectively.

The Landau eigenfunctions of the Hamiltonian (3) are then
written in the form

ΨK
n;m ¼

ψA

ψB

 !
¼ Cn

sgnðnÞijnj−1ϕjnj−1;m

ijnjϕjnj;m

0
@

1
A; ð4Þ

for valley K (ξ¼ 1) and

ΨK′
n;m ¼

ψB

ψA

 !
¼ Cn

sgnðnÞijnj−1ϕjnj−1;m

ijnjϕjnj;m

0
@

1
A; ð5Þ

for valley K′ (ξ¼−1). Here Cn ¼ 1 for n¼0 and Cn ¼ 1=
ffiffiffi
2

p
for n≠0

and

sgnðnÞ ¼
0 ðn¼ 0Þ
1 ðn40Þ
−1 ðno0Þ:

8><
>: ; ð6Þ

where positive and negative values of n correspond to the
conduction and valence bands, respectively. The corresponding
Landau level energy spectrum takes the form

εn ¼ ℏωB sgnðnÞ
ffiffiffiffiffiffi
jnj

p
; ð7Þ

where ωB ¼
ffiffiffi
2

p
vF=ℓ0 and ℓ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
is the magnetic length.

The specific feature of the Landau levels in graphene is their
square-root dependence on both the magnetic field B and the
Landau level index n. This behavior is different from that in
conventional (non-relativistic) semiconductor 2D system with the
parabolic dispersion relation, for which the energy spectrum has a
linear dependence on both the magnetic field and the Landau level
index, εn ¼ ℏωBðnþ 1=2Þ. In Fig. 1 the Landau levels in graphene are
shown as a function of the perpendicular magnetic field, where
the positive and negative Landau level indices (n) correspond to
the conduction and valence bands, respectively. The Dirac nature
of the electron dynamics in graphene and the unique behavior of
Landau levels in a graphene monolayer were experimentally
confirmed by observation of the quantum Hall plateaus at filling
factors ν¼ 4ðnþ 1

2Þ [11,12].
The interaction properties of electrons within a single Landau level,

i.e., disregarding the mixture of Landau levels due to electron–electron
interactions, are entirely determined by the pseudopotentials V ðnÞ

m
proposed by Haldane [13,14] which are defined as the energy of two
electrons with relative angular momentumm. They are determined by
the structure of the wave functions of the corresponding Landau level
for the n-th Landau level can be evaluated from the following
expression [15]:

V ðnÞ
m ¼

Z ∞

0

dq
2π

qVðqÞ½FnðqÞ�2Lmðq2Þe−q2 ; ð8Þ

where Lm(x) are the Laguerre polynomials, VðqÞ ¼ 2πe2=ðκℓ0qÞ is the
Coulomb interaction in the momentum space, κ is the dielectric
constant, and Fn(q) is the form factor of the n-th Landau level. In what
follows, all pseudopotentials are given in units of the Coulomb energy,
εC ¼ e2=κℓ0. Eq. (8) is valid for all types of electron systems (non-
relativistic, monolayer and bilayer graphene, etc.) with well defined 2D
Landau levels. The difference between these systems is in the
expression of the form factors, Fn(q). In a non-relativistic system, for
which the Landau level wave functions are ϕn;m, the form factors are
obtained from FnðqÞ ¼ Lnðq2=2Þ. In the case of graphene, the n-th
Landau level wave functions are given by Eqs. (4) and (5), which result
in the following expressions [16,17] for the corresponding form
factors:

F0ðqÞ ¼ L0
q2

2

� �
ð9Þ

FnðqÞ ¼ 1
2

Ln
q2

2

� �
þ Ln−1

q2

2

� �� �
n > 0: ð10Þ

With these form factors the pseudopotentials for graphene are then
evaluated from Eq. (8).

One of the unique manifestations of electron–electron interac-
tions within a single Landau level is the formation of incompres-
sible fractional quantum Hall effect (FQHE) states [18], which is
characterized by a finite excitation gap, determined by the
electron–electron interactions. These states are realized at the
fractional filling of a given Landau level, e.g., at filling factors
ν¼ 1=m, where m is an odd integer. The properties of the FQHE
states are completely determined by the corresponding pseudo-
potentials V ðnÞ

m . The stability of the incompressible FQHE state, i.e.,
the magnitude of the FQHE gap depends on how fast the
pseudopotentials decay with increasing relative angular momen-
tum. For spin and valley polarized electron systems this decay is
determined by the ratios V ðnÞ

1 =V ðnÞ
3 and V ðnÞ

3 =V ðnÞ
5 . A more stable
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FQHE is expected for Landau levels when the ratios of the
pseudopotentials is large.

In Table 1 the values of the ratios are shown for graphene and
for non-relativistic systems for two lowest Landau levels with n¼0
and 1 (only in these Landau levels the FQHE can be observed). For
the non-relativistic system the most stable FQHE is observed for
the n¼0 Landau level, which is supported by the data in Table 1,
where V ðnÞ

1 =V ðnÞ
3 for the non-relativistic system is the largest in the

n¼0 Landau level. A different situation occurs for the graphene
system. Here for the n¼0 Landau level, the wave functions are
identical to the non-relativistic n¼0 Landau level wave functions
[Eqs. (4) and (5)]. Therefore, the properties of the FQHE for the
n¼0 Landau levels of a non-relativistic system and graphene are
the same if expressed in units of εC . The wave functions of the n¼1
Landau level of graphene is the mixture of the n¼0 and n¼1 non-
relativistic wave functions, which result in an enhancement of the
electron–electron interaction strength for the n¼1 graphene
Landau level [16,17]. In this Landau level, the ratio V ðnÞ

1 =V ðnÞ
3 has

the largest value (Table 1), which suggests that the gaps of the
FQHE states should have the largest value in graphene for the n¼1
Landau level.

In theoretical studies the FQHE is often analyzed by numerical
diagonalization of the Hamiltonian matrix for finite-size electron
systems in either the planar (torus) or the spherical geometry [18].
In the case of the spherical geometry [13,14,19] the magnetic field
is introduced in terms of the integer number 2S of magnetic fluxes
through the sphere in units of the flux quantum, where the radius
of the sphere R is defined as R¼

ffiffiffi
S

p
ℓ0. The number of available

states in a sphere, which corresponds to the states of a single
Landau level in planar geometry, is ð2S þ 1Þ. For a given number of
electrons Ne the parameter S determines the filling factor of the
Landau level. For example, for the filling factor ν¼ 1=m it is
S¼ ðm=2ÞðNe−1Þ. In the case of the many-electron system the
lowest eigenvalues of the interaction Hamiltonian matrix deter-
mine the nature of the FQHE state and the corresponding neutral
excitation gap [20]. The numerical results obtained for a finite size
system show that the FQHE excitation gap in graphene is the
largest for the n¼1 Landau level [16,21–23]. As an example, for
Ne¼8 electrons the excitation gap is 0:083εC for the n¼0 Landau
level and 0:094εC for the n¼1 Landau level. This behavior is
Table 1
Characteristics of the pseudopotentials for graphene and for conventional electron
systems.

Landau level V ðnÞ
1 =V ðnÞ

3 V ðnÞ
3 =V ðnÞ

5

n¼0 (graphene) 1.60 1.26
n¼0 (non-relativistic)
n¼1 (graphene) 1.68 1.33
n¼1 (non-relativistic) 1.32 1.36

Fig. 2. Schematic illustration of two different types of stacking of bilayer graphene, cons
Each graphene layer consists of two inequivalent sites A and B. The intra-layer and inte
consistent with the properties of the pseudopotentials shown in
Table 1.

In Fig. 1 the Landau levels in graphene corresponding to indices
n¼1 and −1 and having the strongest electron–electron interac-
tions, which result in a more stable FQHE, are shown by red lines.
The electron–electron interaction in the Landau level with index
n¼0, shown by a blue line, is identical to the interaction in the
n¼0 Landau level of the non-relativistic system. Experimental
observation of FQHE in a suspended graphene [24–27] and
robustness of the FQHE plateaus, which were observed even at a
weak magnetic field ∼2 T, illustrate the enhancement of the
electron–electron interactions in graphene as compared to that
for a conventional, non-relativistic semiconductor systems.
3. Interacting fermions in bilayer graphene

Additional control of the interaction properties of ‘relativistic’
(Dirac-like) particles in graphene is also possible in a system of
bilayer graphene [28–32] which consists of two coupled graphene
layers. Bilayer graphene has been intensely investigated because of
its intriguing properties. The effective low-energy Hamiltonian in
this case is similar to the Dirac-like nature of that in monolayer
graphene, but with a quadratic (instead of linear) off-diagonal
term [33,3]. The low-energy dispersion is also quadratic. The
massive Dirac fermions in bilayer graphene also possess the
pseudospin degree of freedom and are chiral [33,3]. In a perpen-
dicular magnetic field the Landau levels in a bilayer graphene
follow the sequence, εn∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnjðjnj−1Þ

p
for n≥1 with a doubly

degenerate ε0 ¼ 0 for n¼0 [29,34]. An important characteristic of
bilayer graphene is that it is a semiconductor with a tunable
bandgap between the valence and conduction bands [35]. This
property modifies the Landau level spectrum and influences the
role of long-range Coulomb interactions [36]. In a magnetic field,
the electronic properties of the graphene bilayer can be controlled
by (i) the inter-layer bias voltage applied to two graphene mono-
layers, (ii) the intra-layer asymmetry potential due to the contact
of one of the layers with a substrate, (iii) by applying an in-plane
magnetic field, and (iv) by introducing mechanical deformation of
bilayer graphene [37]. Below we consider only the effects of a bias
potential and an in-plane magnetic field.
4. Biased bilayer graphene

Bilayer graphene comprises two coupled graphene monolayers
[29]. Depending on the orientation of the monolayers, there are
two main stackings of a graphene bilayer: (i) the AA stacking and
(ii) the Bernal (AB) stacking, which are shown schematically in
Fig. 2. There is also the intermediate type of stacking of two
monolayers corresponding to the rotated bilayer graphene, in
isting of two coupled monolayers of graphene: (a) AA stacking; (b) Bernal stacking.
r-layer hopping integrals are shown by γ0 and γ1, respectively.
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which monolayers are rotated relative to each other by an
arbitrary angle [38–41]. These systems show rich low-energy
physics due to the modulated nature of the interlayer coupling.

For the AA stacking [Fig. 2(a)] in a perpendicular magnetic field,
the interlayer coupling occurs between the Landau levels of the
two layers with the same Landau level indices. This coupling
changes the energies of the Landau levels of the monolayers, but
does not affect the wave functions of the layers. Therefore, the
pseudopotentials, which characterize the electron–electron inter-
action properties, are completely identical to the corresponding
pseudoptentials of a monolayer graphene. In this case the FQHE in
the Landau levels of bilayer graphene with AA stacking has the
same properties, e.g., the same FQHE gaps, as in the corresponding
graphene monolayers.

In the case of Bernal (AB) stacking (Fig. 2(b)), the interlayer
coupling strongly modifies the properties of the Landau levels in
the system. The Hamiltonian of the graphene bilayer with AB
stacking for valley ξ¼ 71 can be written as [30]

HðABÞ
ξ ¼ ξ

U
2 vFπ− 0 0

vFπþ U
2 ξγ1 0

0 ξγ1 − U
2 vFπ−

0 0 vFπþ − U
2

0
BBBBB@

1
CCCCCA; ð11Þ

where U is the inter-layer bias voltage and γ1≈400 meV is the
interlayer hopping integral. The corresponding wave function is
described by a four-component spinor ðψA1

;ψB1
;ψB2

;ψA2
ÞT for

valley K and ðψB2 ;ψA2
;ψA1

;ψB1 ÞT for valley K′. Here the sub-
indices A1, B1, and A2, B2 correspond to lower and upper layers
respectively. The wave function corresponding to the Hamiltonian
(11) has the form

Ψ ðbiÞ
n;m ¼

ξC1ϕn−1;m

C2ϕn;m

C3ϕn;m

ξC4ϕnþ1;m

0
BBBB@

1
CCCCA; ð12Þ

where C1, C2, C3, and C4 are constants. Therefore, the wave
functions in bilayer graphene with Bernal stacking is a mixture
of the non-relativistic Landau wave functions with indices n−1, n,
and nþ 1.

In the expression for the wave function (12) of bilayer gra-
phene, the Landau index n can take the following values:
n¼−1;0;1;…. Here we assume that if the index of the Landau
wave function is negative then the function is identically zero, i.e.,
ϕ−2;m≡0 and ϕ−1;m≡0. In this case, for n¼−1 the wave function
(12) is just Ψ ðbiÞ

−1;m ¼ ð0;0;0;ϕ0;mÞ, i.e., the coefficients C1, C2, C3 are
equal to zero. There is only one energy level corresponding to
n¼−1. For n¼0, the wave function (12) has a zero coefficient C1,
which results in three energy levels corresponding to n¼0. For
other value of n, i.e., for n40, there are four eigenvalues of the
Hamiltonian (11), corresponding to four Landau levels in a bilayer
for a given valley ξ¼ 71. The eigenvalue equation determining
these Landau levels have the form [35]

½ðεþ ξuÞ2−2n�½ðε−ξuÞ2−2ðnþ 1Þ� ¼ ~γ21½ε2−u2�; ð13Þ
where ε is the energy of the Landau level in units of εB
(εB ¼ ℏvF=ℓ0Þ; u¼U=ð2εBÞ, and ~γ1 ¼ γ1=εB. It is convenient to intro-
duce the following labeling scheme for the Landau levels deter-
mined by Eq. (13). The four Landau levels correspond to two
valence levels which have negative energies, and two conduction
levels, which have positive energies. Then the four Landau levels
of bilayer graphene for a given value of n and a given valley ξ can
be labeled as nðξÞ

i , where i¼−2;−1;1;2 is the label of the Landau
level in the ascending order. Here negative and positive values
of i correspond to the valence and conduction levels, respectively.
The Landau levels of different valleys are related through the
following equation: εðnðξÞ

i Þ ¼−εðnð−ξÞ
−i Þ. Although for n¼0 there are

only three Landau levels and for n¼−1 there is only one Landau
level, it is convenient to include the n¼−1 Landau level into the
set of n¼0 Landau levels and label them as 0ðξÞ

i , where
i¼−2;−1;1;2.

At the zero bias voltage, the Landau levels become two-fold
valley and two-fold spin degenerate and are given by the expres-
sion

ε¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1þ ~γ21

2
7

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ ~γ21Þ2 þ 8n~γ21

qs
: ð14Þ

Since the FQHE is expected only in the Landau levels with low
values of the index, n, we consider below the sets of Landau levels
of bilayer graphene with n¼0 and n¼1 only. The wave functions
of these Landau levels are mixtures of the conventional, non-
relativistic Landau functions with indices 0, 1, and 2.

Once the wave functions (12) of the bilayer Landau levels are
obtained, the form factor in the pseudopotentials (8) can be
obtained from

FnðqÞ ¼ jC1j2Ln−1ðq2=2Þ þ ðjC2j2 þ jC3j2ÞLnðq2=2Þ þ jC4j2Lnþ1ðq2=2Þ:
ð15Þ

With the known form factors, the pseudopotentials, which deter-
mine the interaction strength and the FQHE in a given Landau
level, can be calculated.

There are two special Landau levels of bilayer graphene. For
n¼−1 there are two solutions (one for the valley K and one for K′)
of Eq. (13) with energies ε¼ −ξu. The corresponding wave function

Ψ ðbiÞ
0ðþÞ
1 ;m

¼ Ψ ðbiÞ
0ð−Þ
−1 ;m

¼

0
0
0

ϕ0;m

0
BBBB@

1
CCCCA; ð16Þ

is determined only by the n¼0 non-relativistic Landau level wave
function. Therefore the FQHE and the interaction properties of
these Landau levels are exactly the same as those for the 0-th
conventional (non-relativistic) Landau level.

For n¼0 and for small values of u there is another solution of
Eq. (13) with almost zero energy, ε≈0. The wave function of this
Landau level has the form

Ψ ðbiÞ
0ðþÞ
−1 ;m

¼ Ψ ðbiÞ
0ð−Þ
1 ;m

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~γ21 þ 2

q
0ffiffiffi

2
p

ϕ0;m

0
~γ1ϕ1;m

0
BBBB@

1
CCCCA

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ21 þ 2ϵ2B

q
0ffiffiffi

2
p

ϵBϕ0;m

0
γ1ϕ1;m

0
BBBB@

1
CCCCA: ð17Þ

For a small magnetic field, εB5γ1, the wave function becomes
ðψ1;m;0;0;0ÞT and the Landau level becomes identical to the n¼1
non-relativistic Landau level. In a large magnetic field εBbγ1, the
Landau level wave function becomes ð0;0;ψ0;m;0ÞT and the bilayer
Landau level has the same properties as for the n¼0 non-
relativistic Landau level. The corresponding form factor of the
Landau level (17) is given by

F0−1 ðqÞ ¼
γ21

γ21 þ 2ε2B

" #
L1ðq2=2Þ þ

2ε2B
γ21 þ 2ε2B

" #
L0ðq2=2Þ: ð18Þ

With increasing magnetic field, i.e., with increasing εB, the bilayer
Landau level 0−1 becomes identical to (i) the n¼1 non-relativistic
Landau level with the form factor of L1ðq2=2Þ for small B, εB5γ1;
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(ii) the n¼1 Landau level of the monolayer graphene with the
form factor of 1

2 ½L0ðq2=2Þ þ L1ðq2=2Þ� for εB ¼ γ1=
ffiffiffi
2

p
; and, (iii) the

n¼0 non-relativistic Landau level with the form factor of L0ðq2=2Þ
for large B, εBbγ1. For typical values of the interlayer coupling,
γ1 ¼ 400 meV, the condition εB ¼ γ1=

ffiffiffi
2

p
is achieved for a large

magnetic field B¼120 T. In this case only the first regime can be
experimentally realized. Below we show that an in-plane magnetic
field can suppress the interlayer coupling, which opens the
possibility of experimental observation of transitions between
the different regimes (i)–(iii).

For all the Landau levels [except the levels described by Eq.
(16)] in bilayer graphene the electron–electron interaction
strength and the stability, i.e., the excitation gaps of the FQHE
states depend on the magnetic field B, the bias voltage U, and the
Landau level index. Therefore the interaction properties of a
bilayer graphene can be controlled by the external parameters
[42], which is a different situation than in a monolayer graphene,
where the interaction properties depend only on the Landau
level index.

The stable FQHE states in a bilayer graphene are expected for
the n¼0 and n¼1 Landau level sets, which are the mixtures of the
n¼0, n¼1, and n¼2 non-relativistic Landau level wave functions.
This mixture depends on the values of the parameters of the
system. To characterize the stability of the FQHE we evaluate
numerically the FQHE excitation gaps for a finite size system in a
spherical geometry. We present below the results for the ν¼ 1

3
FQHE state. A similar behavior is expected for other main fractions
of the FQHE, i.e., ν¼ 1

5,
2
5,

2
3, etc.

In Fig. 3 we show the dependence of the Landau levels on the bias
voltage U for a fixed magnetic field and for different valleys. The
results are presented only for the Landau levels with indices n¼0
and 1, i.e., only for the Landau level where the FQHE can be observed.
The corresponding ν¼ 1

3 FQHE gaps are shown in Fig. 3(b, d). Both for
the K and K′ valleys there is a special Landau level, OðþÞ

1 (for the K
Fig. 3. (Color online) The Landau levels of the bilayer graphene [panels (a) and (c)] show
1
3− FQHE in corresponding Landau levels. The results are obtained in spherical geometry
next to the lines are the labels of the Landau levels. The same type of lines [in panels (a) a
(b) correspond to the valley K′, while panels (c) and (d) correspond to the valley K. The s
panels (b) and (d) indicate the gap of the 1

3− FQHE in the n¼1 Landau level of a mono
valley) and Oð−Þ
−1 (for the K′ valley), that is described by the wave

function of the type as in Eq. (16). In these Landau levels the FQHE
gap does not depend on the bias voltage and is exactly equal to the
FQHE gap of a conventional (non-relativistic) semiconductor systems
for the n¼0 Landau level. In all other levels the FQHE gap depends
on the bias voltage, which clearly illustrates the sensitivity of the
interaction properties on the external parameters, i.e., the bias
voltage. Although the interaction strength within a single Landau
level can be controlled by the bias voltage, the results illustrated in
Fig. 3 show that the FQHE gaps in bilayer graphene are usually less
than the largest FQHE gap in a monolayer graphene. This FQHE gap
in a monolayer graphene is realized in the n¼1 Landau level and is
shown by red arrows in Fig. 3.

For a smaller interlayer hopping integral, the Landau levels in
bilayer graphene show anticrossings as a function of the bias voltage
[42]. These anticrossings result in a strong mixture of different
Landau levels, which can greatly modify the properties of the Landau
level wave functions and change the interaction strength within a
single Landau level. This behavior is illustrated in Fig. 4, where the
dependence of the Landau levels on the bias voltage is shown for
γ1 ¼ 30 meV. The anticrossings of the Landau levels result in transi-
tions from an incompressible state (FQHE) to a compressible state
(no FQHE) within a single Landau level (see the Landau level 1ðþÞ

2 in
Fig. 4(a)). There is also a double transition, marked by the dashed line
(i), at the Landau level 1ðþÞ

1 . At this Landau level, the electron system
with fractional filling shows transitions from an incompressible state
(FQHE) at small bias voltage U to a compressible state (no FQHE) at
intermediate values of U and then to an incompressible state (FQHE)
at large U. No such transition has ever occurred in conventional
semiconductor systems.

Although for experimentally realized bilayer systems the inter-
layer hopping integral is relatively large, γ1≈400 meV, the interlayer
coupling can be controlled and suppressed by an applied in-plane
magnetic field. This situation is discussed in the next section.
n as a function of the bias voltage, U. Panels (b) and (d): the Coulomb gaps of the
for a finite-size system with eight electrons and 2S¼ 21 flux quanta. The numbers
nd (b) and panels (c) and (d)] corresponds to the same Landau levels. Panels (a) and
ystem is characterized by γ1 ¼ 400 meV and a magnetic field B¼15 T. The arrows in
layer graphene.



Fig. 4. (Color online) A few lowest Landau levels of the conduction band as a function of the bias potential, U, for inter-layer coupling of γ1 ¼ 30 meV and a magnetic field of
15 T. The numbers next to the curves denote the corresponding Landau levels. Panels (a) and (b) correspond to the K and K′ valleys, respectively. The Landau levels where the
FQHE can be observed are drawn as blue and green filled dots. The green dots correspond to the Landau levels where the FQHE states are identical to that of a monolayer of
graphene or a non-relativistic conventional system. The red dots represent Landau levels with a weak FQHE. The open dots correspond to Landau levels where the FQHE is
absent. In (a), the dashed lines labeled by (i) illustrate the transition between FQHE (symbol ‘F’) and no FQHE (symbol ‘NF’) states under a constant gate voltage and variable
bias potential [42].

Fig. 5. (Color online) The Landau levels of bilayer graphene in a tilted magnetic
field and zero bias voltage shown as a function of the parallel component of the
magnetic field. The perpendicular component of the tilted magnetic field is (a) 1 T
and (b) 2 T. The labels next to the lines denote the corresponding Landau levels,
where only the Landau levels in which the FQHE can be observed, are labeled. Only
the Landau levels with positive energies are shown.
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5. Bilayer graphene in a tilted magnetic field

A tilted magnetic field, applied to a quasi-two-dimensional
electron system, can modify the electron dynamics and corre-
spondingly the electron–electron interaction strength. In a gra-
phene monolayer, due to its purely 2D nature, the component of
the magnetic field parallel to the monolayer does not influence the
electron's spatial dynamics, although it can alter the electron spin
dynamics, which is sensitive to the total magnetic field [43,44].

Bilayer graphene is a quasi-two-dimensional system. The
electron dynamics in such a system is sensitive to both perpendi-
cular and in-plane components of the magnetic field [45]. To
introduce a tilted magnetic field into the Hamiltonian of bilayer
graphene, we introduce the vector potential A

!¼ ð0;B⊥x;B∥yÞ,
where B⊥ (z-component) and B∥ (x-component) are perpendicular
and in-plane components of the tilted magnetic field, respectively.
Here the z-axis is perpendicular to the graphene monolayers. The
perpendicular component of the magnetic field, which alters the
electron dynamics in the (x,y) plane, is introduced in the bilayer
Hamiltonian by replacing the 2D momentum by the generalized
momentum [similar to the Hamiltonian (11)]. The parallel compo-
nent of the magnetic field is introduced through the Peierls
substitution by multiplying the interlayer hopping integral γ1 with
the phase factor expð−ie=ℏAzdÞ ¼ expð−iβyÞ, where β¼ eB∥d=ℏ, and
d is the interlayer separation. Then the Hamiltonian of the bilayer
graphene with AB stacking and at zero bias voltage becomes

HðABÞ
ξ ¼ ξ

0 vFπ− 0 0
vFπþ 0 ξγ1e−iβy 0
0 ξγ1eiβy 0 vFπ−
0 0 vFπþ 0

0
BBBB@

1
CCCCA: ð19Þ

The wave functions corresponding to the Hamiltonian (19) can be
expressed in terms of the non-relativistic 2D Landau wave func-
tions. For the vector potential A

!
⊥ ¼ ð0;B⊥x;0Þ corresponding to the

perpendicular component of the magnetic field, the 2D Landau
wave functions are parametrized by the y component of the wave
vector and the Landau index n, and are described as

ϕjnj;kðx; yÞ∝eikyψkðxÞ ¼ C0eikyHjnj
x−xk
ℓ0

� �
exp −

ðx−xkÞ2
2ℓ2

0

" #
; ð20Þ

where ψkðxÞ ¼ C0Hjnjðx−xk=ℓ0Þexp½−ðx−xkÞ2=2ℓ2
0�, Hn(x) are the Her-

mite polynomials, and xk ¼ kℓ2
0. Here the magnetic length ℓ0 is

defined by the perpendicular component of the magnetic field,
ℓ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB⊥

p
. Then the wave functions of the Hamiltonian (19) are
parametrized by the Landau level index n and the wave vector k
and have the form

Ψ ðbiÞ
n;k ¼

ξC1ϕjnj−1;k
C2ϕjnj;k−β
C3ϕjnj;kþβ

ξC4ϕjnjþ1;k

0
BBBB@

1
CCCCA; ð21Þ

where C1, C2, C3, and C4 are constants. The in-plane component of
the magnetic field results in a coupling of the Landau wave
functions with the wave vectors k, k−β, and kþ β. For the wave
functions of the form (21) the Hamiltonian of bilayer graphene in a
Landau level with index n takes the form

HðABÞ
ξ;n ¼ ξ

0 vFπ− 0 0
vFπþ 0 ξγ1κnðμÞ 0
0 ξγ1κnðμÞ 0 vFπ−
0 0 vFπþ 0

0
BBBB@

1
CCCCA; ð22Þ



T. Chakraborty, V.M. Apalkov / Solid State Communications 175-176 (2013) 123–131 129
where

κnðμÞ ¼
Z

dxψkðxÞψk−βðxÞ ð23Þ

depends on the dimensionless parameter μ¼ βℓ0 ¼ eB∥dℓ0=ℏ.
Therefore the effect of the in-plane component of the magnetic
field on the electron dynamics in a bilayer graphene is the
reduction of the interlayer coupling, i.e., the interlayer coupling
is γ1;n ¼ γ1κnðμÞoγ1. This reduction depends on the Landau level
index and on the dimensionless parameter μ. Due to the small
interlayer distance d¼3.3 Å, the parameter μ is relatively small. To
increase the value of this parameter, the perpendicular component
of the magnetic field needs to be small, i.e., the magnetic length
should be large, and the parallel component of the magnetic field
should also be large. For example, for B⊥ ¼ 1 T, μ¼ 0:014B∥ ½T�. For
the first lowest Landau level indices the function κnðμÞ is
κ0ðμÞ ¼ e−μ

2=4 and κ1ðμÞ ¼ e−μ
2=4ð1−μ2=2Þ.

The Landau levels of a bilayer graphene in a tilted magnetic
field are given by Eq. (14), in which the interlayer coupling ~γ1
should be replaced by ~γ1;n ¼ γ1;n=εB. Here εB is calculated in terms
of the perpendicular component of the tilted magnetic field. In
Fig. 5 the dependence of the Landau levels on the parallel
component of the magnetic field, B∥, is shown for a few lowest
Landau levels of a bilayer graphene. Increasing the parallel
component of the magnetic field, the energies of the Landau levels
are reduced, which is consistent with the reduction of the
interlayer coupling, γ1;n, with increasing B∥. The dependence of
the Landau levels on B∥ becomes weaker with increasing perpen-
dicular magnetic field [Fig. 5(a, b)]. Therefore, the effect of an in-
plane magnetic field on the Landau levels can be observed only for
a small perpendicular magnetic field, B⊥≈1, and a large parallel
magnetic field, B∥≥50 T. It should be pointed out that although the
perpendicular component of the field is rather small, in a conven-
tional semiconductor system the FQHE has been reported in a
magnetic field of Bo3 T [46].

The interaction properties of electrons in the Landau levels of a
bilayer graphene also depend on the in-plane component of the
magnetic field. This dependence is visible only for small perpen-
dicular components of the magnetic field, i.e., B⊥≈1 T. In Fig. 6 we
show the 1

3�FQHE gap as a function of the in-plane component of
the magnetic field for different Landau levels. For B⊥≈1 T, only
three Landau levels (with positive energies) support the FQHE
states. One Landau level 0ðþÞ

1 , the wave function of which has the
form of (16) and depends only on the perpendicular component of
the magnetic field, does not show any dependence on the in-plane
component of the magnetic field. The interaction strength in the
Landau levels 0ðþÞ

2 and 1ðþÞ
1 depends weakly on B∥ (Fig. 6). The

interaction strength increases with B∥ for the Landau level 0ðþÞ
2 and

decreases for the Landau level 1ðþÞ
1 . Therefore the parallel compo-

nent of the magnetic field can in fact, enhance the electron–
Fig. 6. (Color online) The FQHE gaps at different Landau levels of bilayer graphene
shown as a function of the parallel component of the tilted magnetic field. The
perpendicular component of the magnetic field is 1 T. The labels next to the lines
denote the corresponding Landau levels (Fig. 5). The bias voltage is zero in this case.
The results are obtained in spherical geometry for a finite-size system with eight
electrons and 2S¼ 21 flux quanta.
electron interaction strength for some Landau levels (Fig. 6) in a
bilayer graphene.
6. The Pfaffians in graphene

For conventional 2D semiconductor systems, in addition to the
usual incompressible FQHE states that are realized for the odd-
denominator filling factors, the electron–electron interaction is
also responsible for the formation of a special type of incompres-
sible state corresponding to the fractional filling factor ν¼ 5

2. This
filling factor corresponds to a completely occupied n¼0 Landau
level with two spin components and a half-filled n¼1 Landau
level. Since the completely occupied Landau levels do not con-
tribute to the electron dynamics, the ground state of the ν¼ 5

2
system is determined by the electron–electron interaction alone in
the n¼1 Landau level. The incompressible state with a large
excitation gap is formed in this half-filled Landau level. One
unusual property of this state is that the elementary charged
excitations have a charge en ¼ e=4. They obey the “non-abelian”
statistics [47,48] and carry the signature of Majorana fermions
[49]. It was proposed that the ground state of the half-filled n¼1
Landau level is described by a Pfaffian [50,19] or the anti-Pfaffian
function [51,52]. The Pfaffian state is written

ΨPf ¼ Pf
1

zi−zj

� �
∏
io j

ðzi−zjÞ2 exp −∑
i

z2i
4ℓ2

0

 !
; ð24Þ

where the positions of the electrons are described in terms of the
complex variable z¼ x−iy and the Pfaffian is defined as [50,19]

Pf Mij ¼
1

2N=2ðN=2Þ!
∑

s∈SN
sgn s ∏

N=2

l ¼ 1
Msð2l−1Þsð2lÞ; ð25Þ

for an N�N antisymmetric matrix whose elements are Mij. Here
SN is the group of permutations of N objects.

The Pfaffian state is the exact ground state with zero energy for
the electron system at half filling with a special three-particle
interaction which is non-zero only if all three particles are in close
proximity to each other [53]. For realistic two-particle interactions
the Pfaffian state is not an exact eigenstate of the half-filled
system. In the case of the Coulomb interaction, the overlap of
the ground state of the ν¼ 1

2 system in the n¼1 Landau level with
the Pfaffian function is around 80%. By varying the two-particle
interaction potential, i.e., the pseudopotentials, a stronger overlap
(∼99%) of the ground state of the ν¼ 1

2 system in the n¼1 Landau
level with the Pfaffian state is possible. The proximity of the actual
ν¼ 1

2 ground state to the Pfaffian state is most sensitive to the
lowest pseudopotentials, V1, V3, and V5. In graphene, there are two
lowest Landau levels with indices n¼0 and n¼1 with strong
electron–electron interactions. Although conventional FQHE states
with odd-denominator filling factors can be observed at these
Landau levels, the Pfaffian state with half-filling of the correspond-
ing Landau level cannot be realized [54]. In the n¼0 Landau level
in graphene, the interaction potential is identical to the one in the
n¼0 non-relativistic Landau level, and similar to the case of the
non-relativistic system, the Pfaffian state is not the ground state of
the ν¼ 1

2 system in the n¼0 Landau level in graphene. In the n¼1
Landau level in graphene, although the electron–electron interac-
tion results in the stable odd denominator FQHE states, the ground
state of the half-filled Landau level is compressible and is not
described by the Pfaffian function. The overlap of the ground state
of the ν¼ 1

2 system with the Pfaffian function is less than 0.5 in all
Landau levels of the monolayer graphene [54]. In bilayer graphene
the interaction strength and the corresponding Haldane pseudo-
potentials can be controlled by the external parameters, such as
the bias voltage and the direction of the magnetic field. In this case
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the stability (i.e., the magnitude of the excitation gap) of the
Pfaffian state can be strongly enhanced. In bilayer graphene there
are two ‘special’ Landau levels 0ðþÞ

−1 (for valley K) and 0ð−Þ
1 (for valley

K′), that are described by Eq. (17). The numerical calculations in a
spherical geometry show that only at these special Landau levels
the overlap of the ground state with the Pfaffian state is large [54].
In all other bilayer Landau levels the overlap of the ν¼ 1

2 ground
state with the Pfaffian state is found to be small (o0:6) and these
states cannot be described by the Pfaffian function. In spherical
geometry, the Pfaffian state in a system of Ne electrons is realized
for the parameter 2S¼ 2Ne−3, which corresponds to filling factor
ν¼ 1

2 in the thermodynamic limit.
For the zero bias voltage, the energies of the Landau levels 0ðþÞ

−1
and 0ð−Þ

1 [Eq. (17)] are zero and the levels are degenerated with
zero-energy Landau level given by Eq. (16). For a finite bias
voltage, the degeneracy of the Landau levels is lifted. The form
factor Fn, in the Landau level 0ðþÞ

−1 is calculated from Eq. (18) and
determines the interaction properties of the electron system in the
level 0ðþÞ

−1 . For a small magnetic field, γ1bϵB, the form factor is
identical to the form factor of the non-relativistic n¼1 Landau
level. Therefore, in this limit the ground state of the ν¼ 1

2 half-
filled system in the 0ðþÞ

−1 Landau level is incompressible and is
determined by the Pfaffian state. In a large magnetic field, γ15ϵB,
the form factor Fn becomes identical to that of the n¼0 non-
relativistic system, for which the ν¼ 1

2 state is compressible. For
intermediate values of the magnetic field, the ν¼ 1

2 system in the
0ðþÞ
−1 Landau level shows an unique behavior as a function of the

magnetic field: with increasing magnetic field the overlap of the
ground state of the system with the Pfaffian state shows a
maximum for a finite value of the magnetic field [54]. Therefore,
the stability of the Pfaffian ν¼ 1

2 state in bilayer graphene can be
increased when compared to that in non-relativistic systems.

Our results shown in Fig. 7 illustrate the non-monotonic
dependence of the interaction properties of the ν¼ 1

2 system in
the 0ðþÞ

−1 Landau level. Here the overlap of the ground state with the
Fig. 7. (Color online) (a) Overlap of the exact many-particle ground state with the
Pfaffian function. (b) Collective excitation gap of the ν¼ 1

2 state. The results are for
Ne¼14, 2S¼ 25, and U¼5 meV. The black and red lines correspond to γ1 ¼ 400 meV
and 300 meV, respectively. The results are shown for the ν¼ 1

2 system in the
Landau level 0ðþÞ

−1 .
Pfaffian state and the corresponding excitation gap is shown. With
increasing magnetic field the properties of the system change non-
monotonically and for γ1 ¼ 400 meV the overlap with the Pfaffian
state has a maximum in a magnetic field of ∼10 T. The correspond-
ing excitation gap also has a maximum at this point. In dimension-
less units the maximum appears when γ1=ϵB≈4:9. Therefore, for
smaller values of γ1, the maximum of the overlap is realized for a
smaller value of magnetic fields (see the results for γ1 ¼ 300 meV
in Fig. 7).

It is possible to suppress the interlayer hopping integral γ1 by
applying a tilted magnetic field where the in-plane component of
the magnetic field determines the suppression of γ1 by a factor of
κn. To identify the effect of the in-plane magnetic field on the
stability of the Pfaffian state, we characterize the interaction
properties of the half-filled Landau level by the ratios of the
pseudopotentials corresponding to the lowest relative angular
momentum. The ν¼ 1

2 Pfaffian state is most sensitive to two
parameters of the pseudopotentials V1=V5 and V3=V5 [55]. In
Ref. [55], in the thermodynamics limit, the region of the pseudo-
potenial parameters, for which the most stable Pfaffian state can
be realized, was obtained in the plane ðV1=V5Þ−ðV3=V5Þ. We apply
that approach on our bilayer system and evaluate the pseudopo-
tential parameters V1=V5 and V3=V5 in the Landau level 0ðþÞ

−1 as a
function of the magnetic field. In this way, we can identify the
regions of the magnetic field with the most stable Pfaffian state. In
Fig. 8 the parameters V1=V5 and V3=V5 are shown as a function of
the perpendicular component of the magnetic field and for
different in-plane components of the magnetic field. These results
demonstrate that with increasing parallel component of the
magnetic field the values of the pseudopotentials, which
Fig. 8. (Color online) Ratios of pseudopotentials for two values of the angular
momentum V1=V5 [panel (a)] and V3=V5 [panel (b)] as a function of the
perpendicular component of the magnetic field and for different parallel compo-
nents of the magnetic field, B∥ ¼ 5, 50, and 100 T. The data are shown for the
Landau level 0ðþÞ

−1 . The hatched regions correspond to the values of the pseudopo-
tentials where one observes a large overlap of the ground state with the Pfaffian
state and also a large excitation gap of the incompressible ground state.
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correspond to the most stable Pfaffian state and which are
illustrated by the hatched region in Fig. 8, are obtained for smaller
values of the parallel magnetic field. Therefore, for a given value of
the perpendicular component of the magnetic field the parallel
component of the magnetic field increases the stability of the
Pfaffian state.

Another interesting effect, introduced by the parallel compo-
nent of the magnetic field, is the strong modification of the
interaction properties of the electron system at small values of
the perpendicular magnetic field. Such changes in the interaction
potential result in an enhancement of the stability of the Pfaffian
states for small values of B⊥. As an example, for B∥ ¼ 100 T the
stability of the Pfaffian state is strongly increased for a weak
perpendicular magnetic field, B⊥≲2 T (Fig. 8).
7. Concluding remarks

In a magnetic field the strength of the electron–electron interac-
tion, which is characterized by the value of the FQHE gap in a given
Landau level, depends on the Landau level index and the external
parameters of the graphene system. In the case of monolayer
graphene, there are two types of Landau levels with indices n¼0
and n¼1, which have strong electron–electron interactions, i.e., the
FQHE can be observed only in these Landau levels. Among these
Landau levels, the strongest electron–electron interactions are rea-
lized in the n¼1 graphene Landau level. In the Landau level with
index n¼0, the interaction strength is exactly the same as that in the
n¼0 Landau level of the conventional (non-relativistic) system,
which results in exactly the same FQHE gaps.

The strength of the electron–electron interaction can be further
controlled in a bilayer graphene, where the additional parameters
that govern the interaction strength are the interlayer coupling, the
bias voltage, and the orientation of the magnetic field. The bias
voltage between the graphene monolayers changes the structure of
the wave functions of the Landau levels and can strongly modify the
interaction strength. In some Landau levels the electron–electron
interaction can be stronger than that in a monolayer graphene,
resulting in a more stable FQHE. In a given Landau level and as a
function of the bias voltage the bilayer graphene system can show
transitions from a state with weak electron–electron interaction
(FQHE being absent) to a state with strong electron–electron inter-
actions (presence of FQHE). In bilayer graphene, the electron–
electron interactions can be additionally controlled by the direction
of the magnetic field, i.e., in a tilted magnetic field. The sensitivity of
the interaction strength to the parallel component of the magnetic
field is visible only for a weak perpendicular component of the
magnetic field, B⊥≈1 T and for a strong parallel component of the
magnetic field, B∥≥50 T. Finally, we describe the stability of the
Pfaffian state and the excitation gap in a half-filled n¼1 Landau level
in bilayer graphene. We also discuss the possibility of making the
Pfaffian state more stable by applying a tilted magnetic field.
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