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a b s t r a c t

We report on the properties of incompressible states of Dirac fermions in graphene in the presence of an
anisotropic Hamiltonian and a quantizing magnetic field. We introduce the necessary formalism to
incorporate the unimodular spatial metric to deal with the anisotropy in the system. The incompressible
state in graphene is found to survive the anisotropy up to a critical value of the anisotropy parameter.
The anisotropy also introduces two branches in the collective excitations of the corresponding Laughlin
state. It strongly influences the short-range behavior of the pair-correlation functions in the incompres-
sible ground state.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In his quest for a better understanding of the Laughlin state [1],
which is widely regarded as the best description of the fractional
quantum Hall effect (FQHE) ground states [2] at the primary filling
fractions (ν¼ 1=m), Haldane [3] recently demonstrated that the
integer and the fractional quantum Hall effects are fundamentally
different. In the latter case, he introduced a unimodular (area
preserving) spatial metric that characterizes the shape of the
correlation functions of the Laughlin state and is obtained by
minimizing the correlation energy of the fractional quantum Hall
state. This interaction metric is not necessarily congruent to the
Galilean metric present in the one-body term of the system
Hamiltonian. Such a geometrical degree of freedom of the Hamil-
tonian is totally absent in the integer quantum Hall effect, but its
presence helps to explain the success of the many-body state of
Laughlin. Subsequent numerical studies [4–6] have elucidated
various properties of the incompressible FQHE states in the
presence of anisotropic interactions. Anisotropic transport in the
FQHE regime exists in higher order filling fractions [7], and has
also received some theoretical attention [8]. It is naturally interesting
to examine the role of unimodular spatial metrics in the incompres-
sible state of massless (no Galilean metric) Dirac fermions.

Of late, there has been an upsurge of interest on the magnetic
field effects on Dirac fermions in graphene [9]. The FQHE states

were investigated by us in monolayer [10] and bilayer [11]
graphene. Experimentally, the presence of this effect in graphene
has been confirmed [12,13]. Interactions among Dirac fermions
play an important role in the quantum Hall regime of graphene [14].
Here we investigate the nature of the incompressible state of
graphene with anisotropic interactions, which can be introduced
through anisotropic dielectric properties of a substrate. Anisotropic
interactions result in several unique features of the FQHE state, e.g.,
in the collective modes and in the pair-correlation functions.

2. Model and main equations

Monolayer graphene in a magnetic field B has a discrete Landau
level (LL) energy spectrum that is characterized by the LL index
n¼ 0; 71; 72;… and energy [9,14]

ɛn ¼ ℏωB sgnðnÞ
ffiffiffiffiffiffi
jnj

p
; ð1Þ

where ωB ¼
ffiffiffi
2

p
vF=ℓ0 and ℓ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
is the magnetic length. Here

sgnðnÞ ¼ 0 if n¼0 and sgnðnÞ ¼ 71 if n40 and no0, respectively.
The corresponding wavefunctions are

Ψn;m ¼ Cn

sgnðnÞijnj�1ϕjnj�1;m

ijnjϕjnj;m

0
@

1
A; ð2Þ

where Cn ¼ 0 ¼ 1 and Cna0 ¼ 1=
ffiffiffi
2

p
. The functions ϕn;m are the

conventional Landau wavefunctions with the LL index n and the
z-component of electron angular momentum m. These functions
are characterized by two sets of ladder operators: operator b†,
which raises the LL index n, and the guiding center ladder operator
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a†, which raises the intra-Landau index m. The energy spectrum
depends only on n and is highly degenerate with respect to the
electron angular momentum m. The LL wavefunctions in Eq. (2)
are isotropic, i.e., the electron density depends only on ρ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. The basis functions (2) are however, not unique. Due to

degeneracy of the LLs we can choose any single-particle basis,
even anisotropic ones, to describe the properties of the electron
system in a strong magnetic field. For the many-electron system
with isotropic interactions the wavefunctions (2) are the conve-
nient basis for evaluating the many-electron energy spectrum in a
spherical geometry, since the isotropic potential conserves the
angular momentum. In spherical geometry [15], the interaction
properties of the many-electron system are described in terms of
the Haldane pseudopotentials Vm [15], which are the energies of
two electrons with relative angular momentum m. The radius of
the sphere, R, is related to the integer 2S of magnetic fluxes
through the sphere in units of the flux quanta, R¼

ffiffiffi
S

p
ℓ0. The

single-electron states are characterized by the angular momentum,
which is equal to S, and Sz ¼ �S;…; S. For an isotropic potential the
many-particle states are described by the total angular momentum,
L, and Lz , while the energy depends only on L. We can then evaluate
the energy spectra of the system for a given value of Lz , e.g., Lz ¼ 0
[16], which greatly simplifies our analysis of the many-electron
system in a given LL.

We consider the anisotropic electron–electron interaction poten-
tial of the type

Vðr1; r2Þ ¼
e2

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x1Þ2ð1þγÞþðy2�y1Þ2ð1�γÞ

q ; ð3Þ

where r1 ¼ ðx1; y1Þ and r2 ¼ ðx2; y2Þ are the coordinates of two
electrons, κ is the dielectric constant, and the parameter γ char-
acterizes the anisotropy of the interaction potential with γ ¼ 0
corresponding to isotropic interaction. We study the incompressible
states in graphene with fractional filling factor and with the
anisotropic interaction (3). We assume that the interaction does
not mix the states of different LLs. In this case the interaction
potential should be projected on a given LL with index n. Although
the interaction potential within a given LL is anisotropic, it can be
made isotropic by a non-uniform scaling transformation of the
coordinates

x′ ¼ x
ffiffiffiffiffiffiffiffiffiffi
1þγ

p
; y′ ¼ y

ffiffiffiffiffiffiffiffiffiffi
1�γ

p
: ð4Þ

The interaction then becomes isotropic, Vp1=jr′1�r′2j2. In the
scaled coordinate system the Hamiltonian of a single electron in
graphene becomes to the anisotropic, which corresponds to aniso-
tropic Fermi velocity.

To take advantage of the isotropic potential in the scaled
coordinate system we need to define the angular momentum
which is conserved by the isotropic interaction. Therefore we
choose a single-electron basis within a given LL, which is initially
anisotropic, and define the angular momentum in that anisotropic
basis. This procedure was followed in Ref. [4], where the aniso-
tropic LL basis states with the non-Euclidean guiding center
metrics were introduced for the conventional LLs. These metrics
are characterized by the anisotropy parameter γ. The correspond-
ing guiding center intra-LL ladder operators are introduced
through the Bogoliubov transformation aγ ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1�γ2

p
Þðaþγa†Þ;

a†γ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�γ2

p
Þðγaþa†Þ. The LL basis states of the non-relativistic

system with parabolic dispersion relation are then

ϕn;mðγÞ ¼
ðb†Þnða†γ Þmffiffiffiffiffiffiffiffiffiffi

n!m!
p ϕ0;0ðγÞ; ð5Þ

where the state ϕ0;0ðγÞ is determined by the condition aγϕ0;0ðγÞ ¼
bϕ0;0ðγÞ ¼ 0.

In the coordinate representation the zeroth conventional
LL function ϕ0;0ðγÞ of nonrelativistic electrons is

ϕ0;0ðγÞ ¼
ð1�γ2Þ1=4ffiffiffiffiffiffi

2π
p exp � 1

2
γz2� 1

2
jzj2

� �
; ð6Þ

where z¼ xþ iy is the complex coordinate. Expressing the ladder
operators in terms of the complex coordinate, a¼ 1

2 z
nþ∂z and

b¼ 1
2 zþ∂zn , and using the expression for the anisotropic ladder

operators aγ , the anisotropic LL basis states are constructed as

Ψn;mðγÞ ¼ Cn

sgnðnÞijnj�1ϕjnj�1;mðγÞ
ijnjϕjnj;mðγÞ

0
@

1
A: ð7Þ

The angular momentum in this anisotropic basis is m and
LzðγÞ ¼ a†a. For the many-electron system with anisotropic inter-
action and anisotropic basis states, the interaction properties are
characterized by the pseudopotentials, Vm, with relative angular
momentum m¼m1�m2. Therefore the interaction energy of two
electrons depends only on their relative momentum, but not on
the total momentum, M ¼m1þm2. The many-electron system
with anisotropic interaction can then be studied in a spherical
geometry, where the total angular momentum is conserved.

We evaluate Vm in the planar geometry with Ψ n;mðγÞ and use
these values in the spherical geometry to find the energy spectra
of the many-electron system. The pseudopotentials Vm are
obtained from

Vm ¼
Z

dr1dr2jΦmðγ; r1; r2Þj2 V ðr1; r2Þ; ð8Þ

where the two-electron state Φmðγ; r1; r2Þ with relative angular
momentum m and M¼0 is

Φmðγ; r1; r2Þ ¼
ða†γ;1�a†γ;2Þmffiffiffiffiffiffiffiffiffiffiffiffi

2mm!
p Ψn;0ðγ; r1ÞΨ n;0ðγ; r2Þ: ð9Þ

Here a†γ;1 and a†γ;2 are the guiding center ladder operators for
electrons 1 and 2, respectively.

3. Results and discussion

In graphene, the FQHE with a large many-particle excitation
gap occurs only for n¼0 and n¼1, where the FQHE gap is the
largest for the n¼1 LL [10,14]. Here we consider only those two
LLs. To characterize the interaction properties of a partially
occupied LLs, we study the FQHE for a filling factor ν¼ 1=3. Similar
behavior is expected for other filling factors, e.g., ν¼ 1=5, 2/3. The
wavefunction of the n¼0 graphene LL is identical to that of the
n¼0 conventional LL of the nonrelativistic system. Therefore in
this case the interaction properties and the pseudopotentials of
graphene and conventional (non-relativistic) systems are identical.
The n¼1 graphene LL wavefunction, on the other hand, is a
mixture of n¼0 and n¼1 conventional Landau functions that is
responsible for several unique properties of graphene [14].

The magnitude of the FQHE gap depends on how Vm decreases
with m. The FQHE with a large gap is characterized by the large
values of the ratios V1=V3 and V3=V5. In Fig. 1 we show the ratio of
the pseudopotentials as a function of γ. For all values of γ, the ratios
are the largest for n¼1, which suggest that the FQHE state is more
stable in the n¼1 LL. For increasing γ, the ratios decrease for both
n¼0 and n¼1, which makes the FQHE less stable for large γ. These
results suggest that the gap decreases with increasing γ and finally
collapses for γ � 0:8, when the ratios are close to one. To find the
dependence of the FQHE gap on the anisotropy, we evaluate the
energy spectra and the excitation gap of a finite-size system
comprising N¼8 electrons. The ν¼ 1

3 gap is shown in Fig. 2 as
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a function of γ. For increasing γ the gap decreases in both LLs, with
the gap being larger for n¼1. For γ ¼ γcr � 0:8 the gap disappears
and the ν¼ 1

3 state becomes compressible. The critical value γcr is
the same for both LLs. This value corresponds to the condition that
the pseudopotentials V1, V3, and V5 become almost the same (Fig. 1).
For γo0:15 the gap shows weak dependence on γ.

In spherical geometry the energy dispersion is obtained as a
function of L. Each state has a ð2Lþ1Þ degeneracy. The typical
energy spectrum is shown in Fig. 2(a) for γ ¼ 0:4. The energy
spectrum has a finite gap and the low energy excited states of the
spectrum has well defined single energy branch, showing a roton
minimum at finite value of L (L¼5 in Fig. 2(a)). In spherical
geometry, the excited energy branch is described as a function of
the angular momentum E¼ EðLÞ. Transition to the planar geometry
is realized by replacing the angular momentum L by the magni-
tude of the wavevector k¼ L=R, where R is the radius of the sphere.
In this case the energy of the lowest excited states depends on the
magnitude of the wavevector but not on its direction, which
corresponds to an isotropic system.

For anisotropic interactions with anisotropic basis, the energy
depends not only on k but also on its direction. Such an anisotropic
system can be made isotropic under a scaling coordinate transfor-
mation determined by Eq. (4). The corresponding transformation
in the wavevector space is

k′x ¼ kx=
ffiffiffiffiffiffiffiffiffiffi
1þγ

p
; k′y ¼ ky=

ffiffiffiffiffiffiffiffiffiffi
1�γ

p
: ð10Þ

Each state in the spherical geometry has ð2Lþ1Þ degeneracy. In the
planar geometry these states correspond to ð2Lþ1Þ different

directions of the wavevector, βp ¼ 2πp=ð2Lþ1Þ, where p¼ 1;…;

2Lþ1. The corresponding components of the wavevector are

k′x ¼
L
R

cos ϕn ¼
L
R

cos
2πp
2Lþ1

; ð11Þ

k′y ¼
L
R

sin ϕn ¼
L
R

sin
2πp
2Lþ1

: ð12Þ

These are the components of the wavevector in the scaling coordi-
nate system [Eqs. (10)]. In this case the magnitude of the wavevector
depends only on L: ðk′xÞ2þðk′yÞ2 ¼ ðL=RÞ2 and not on the direction.

In the original coordinate system the components of the
wavevector are

kx ¼
ffiffiffiffiffiffiffiffiffiffi
1þγ

p
k′x ¼

ffiffiffiffiffiffiffiffiffiffi
1þγ

p L
R

cos
2πp
2Lþ1

; ð13Þ

ky ¼
ffiffiffiffiffiffiffiffiffiffi
1�γ

p
k′y ¼

ffiffiffiffiffiffiffiffiffiffi
1�γ

p L
R

sin
2πp
2Lþ1

: ð14Þ

Then the magnitude of the wavevector is

kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þk2y

q
¼ L

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þγ cos

4πp
2Lþ1

r
; ð15Þ

which now depends on the direction. In the original coordinate
system each energy level E(L) with a given angular momentum
L generates ð2Lþ1Þ states with different wavevectors kp. In the
thermodynamic limit (R-1), these wavevectors accumulate in
two directions corresponding to the points of large density, which
is proportional to 1=ðdkp=dpÞ. This condition determines two
values of the wavevector, k1 ¼ L=R

ffiffiffiffiffiffiffiffiffiffi
1þγ

p
and k2 ¼ L=R

ffiffiffiffiffiffiffiffiffiffi
1�γ

p
. The

corresponding two branches in the low-energy dispersion relation
of graphene are shown in Fig. 3(b) for γ ¼ 0:4. The energy dispersion
shown in Fig. 3(b) is recalculated from the energy spectrum

Fig. 1. (Color online) The ratios of the pseudopotentials, V1=V3 and V3=V5 as
a function of γ in two graphene LLs n¼0 (red lines) and n¼1 (black lines).

Fig. 2. (Color online) The ν¼ 1
3�FQHE gap as a function of γ for the eight-electron

system and n¼0 (red line) and n¼1 (black line). The gap is evaluated in the
spherical geometry with flux quanta 2S¼ 21.

Fig. 3. (Color online) (a) Energy spectrum of the eight-electron ν¼ 1
3�FQHE system

in the n¼1 LL. The spectrum is evaluated in the spherical geometry with flux
quanta 2S¼ 21, and γ ¼ 0:4. (b) The energy spectrum of the eight-electron
ν¼ 1

3�FQHE system for n¼1 as a function of the wavevector, k for γ ¼ 0:4. The
results are obtained from the energy spectrum in a spherical geometry [panel (a)].
The two branches are shown schematically in (b).
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obtained in the spherical geometry and shown in Fig. 3(a). Splitting
of the magneto-roton mode was first observed experimentally for
conventional semiconductor systems [17] and was suggested [18] to
be due to the interaction-induced anisotropy (just as in the present
case). Experimental confirmation of this splitting in graphene would
be a very important development.

Properties of the incompressible state can also be obtained
from the pair-correlation function

gðrÞ ¼
Z

…
Z

dr3…drN jΦ0ðγ;0; r; r3;…; rNÞj2; ð16Þ

where Φ0ðγ; r1; r2; r3;…; rNÞ is the N-particle wavefunction of the
incompressible ground state. The ground state of the many-
particle system is initially calculated in the spherical geometry
for a special single-particle basis [16], where the states of such
basis are characterized by Lz . Then each basis state of the spherical
geometry in the expression for the ground state of the many-
electron system is replaced by the corresponding anisotropic state
of the planar geometry with the same z component of the angular
momentum, m¼ Lz. The resulting pair-correlation function in
planar geometry is shown for different values of γ in Fig. 4.

For γ ¼ 0, the pair-correlation function gðrÞ is isotropic and
depends only on the magnitude of r. For n¼0 (Fig. 4a), the incom-
pressible state of the system is described by the Laughlin state with
gðrÞpr6 for small r. For an increase in anisotropy, the correlation
function becomes anisotropic and shows quadratic dependence on r,
which signifies the suppression of the FQHE gap. Even for γ ¼ 0:2,
when the gap is still large, the pair-correlation function differs
strongly from the isotropic case. With increasing anisotropy, g(r)
shows local maxima at finite values of r, which suggests a transition
to a compressible state with crystalline structure [6]. For n¼1
(Fig. 4b), due to the presence of both n¼0 and n¼1 conventional
Landau wavefunctions in a single-electron basis [Eq. (7)], the pair-
correlation function has a quadratic dependence on r, even for the
isotropic case. For increasing anisotropy, the pair-correlation func-
tion, just as for n¼0, develops additional local maximum for finite

values of r. The anisotropy of the pair-correlation function in n¼1 is
much weaker than that for n¼0, which suggests a more stable FQHE
in the n¼1 LL, that is consistent with the behavior of the gap in
different LLs (Fig. 3). This means that the FQHE state in graphene is
less sensitive to anisotropy of the interaction than that in conven-
tional semiconductors.

4. Conclusion

The anisotropy of inter-electron interactions changes the prop-
erties of the incompressible FQHE states in graphene. With
increasing anisotropy, which is characterized by the parameter γ,
the FQHE gap is reduced and at a critical value of γc � 0:8 the
ground state becomes compressible with zero excitation gap.
In isotropic graphene, the FQHEs of comparable strength can be
observed at both n¼0 and n¼1 Landau levels, where the stronger
FQHE, i.e., with the larger FQHE gap, is realized in the n¼1 Landau
level. The anisotropy does not alter the relation between the FQHE
gaps in the two Landau levels, n¼0 and n¼1, and for a given value
of γ the FQHE gap at n¼1 is the largest. The critical values of the
anisotropy parameter γc � 0:8 are almost the same for the two
Landau levels n¼0 and n¼1.

Similar to the conventional systems, the anisotropy in graphene
introduces new features in both excitation spectrum and ground
state properties of FQHE systems. This is most evident for the low-
energy excitation spectrum of the FQHE states in graphene which
shows two branches, corresponding to splitting of the magneto-
roton excitation mode of the isotropic system. The electron correla-
tion properties of the ground state of the FQHE system are also
modified in the presence of the anisotropy. Such changes are visible
in the pair-correlation function of the FQHE incompressible state.
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