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a b s t r a c t

Magnetization of anisotropic quantum dots in the presence of the Rashba spin–orbit interaction has been
studied for three and four interacting electrons in the dot for non-zero values of the applied magnetic
field. We observe unique behaviors of magnetization that are direct reflections of the anisotropy and the
spin–orbit interaction parameters independently or concurrently. In particular, there are saw-tooth
structures in the magnetic field dependence of the magnetization, as caused by the electron–electron
interaction, that are strongly modified in the presence of large anisotropy and high strength of the spin–
orbit interactions. We also report the temperature dependence of magnetization that indicates the
temperature beyond which these structures due to the interactions disappear. Additionally, we found the
emergence of a weak sawtooth structure in magnetization for three electrons in the high anisotropy and
large spin–orbit interaction limit that was explained as a result of merging of two low-energy curves
when the level spacings evolve with increasing values of the anisotropy and the spin–orbit interaction
strength.

& 2016 Elsevier B.V. All rights reserved.
Magnetization of quantum confined planar electron systems,
e.g. quantum dots (QDs), the so-called artificial atoms [1–3], and
quantum rings [4] is an important probe that manifests entirely on
the properties of the energy spectra. This is a thermodynamical
quantity that for the QDs has received some experimental atten-
tion [5–7], particularly after the theoretical prediction that the
electron–electron interaction is directly reflected in this quantity
[8]. In addition to the large number of theoretical studies reported
in the literature on the electronic properties of isotropic quantum
dots, there has been lately some studies on the anisotropic quan-
tum dots, both theoretically [10,11] and experimentally [12].
Theoretical studies of the magnetization of elliptical QDs have also
been reported [13]. Effects of the Rashba spin–orbit interaction
(SOI) [14] on the electronic properties of isotropic [15] and ani-
sotropic quantum dots [16] have been investigated earlier. An
external electric field can induce the Rashba spin–orbit interaction
[17] which couples different spin states and introduces level re-
pulsions in the energy spectrum [15,16,18]. This coupling is an
important ingredient for the burgeoning field of semiconductor
spintronics, in particular, for quantum computers with spin de-
grees of freedom as quantum bits [19,20]. Three-electron quantum
dots are particularly relevant in this context [21,22]. Electronic
properties of parabolic quantum dots, including magnetization,
was reported recently in the case of the ultrastrong Rashba SO
a (T. Chakraborty).
coupling limit [23]. Here we report on the magnetic field depen-
dence of the magnetization of an anisotropic QD containing sev-
eral interacting electrons, particularly three and four, in the pre-
sence of the Rashba SOI. Our present work clearly demonstrates
how magnetization of the QDs uniquely reflects the influence of
anisotropy and the Rashba SOI, both concurrently as well as in-
dividually as the strengths of the SOI and the anisotropy are varied
independently. The temperature dependence of magnetization is
also studied here, where we noticed the gradual disappearance of
the interaction induced structures in magnetization with increas-
ing temperature. Another important feature that we found in our
present study is the emergence of a weak sawtooth structure in
three-electron magnetization result in the high anisotropy and
large spin–orbit interaction limit that we explain as a result of
merging of two low-energy curves when the level spacings evolve
with increasing parameters. With the help of the theoretical in-
sights presented here, experimental studies of magnetization will
therefore provide valuable information on the inter-electron ef-
fects, the Rashba spin–orbit coupling and the degree of anisotropy
of the quantum dots.

At zero temperature the magnetization of the QD is defined

as = − ∂
∂
E

B
g where Eg is the ground state energy of the system

[8,9]. We have studied the magnetic field dependence of by
evaluating the expectation value of the magnetization operator
^ = − ∂

∂m
B
, where is the system Hamiltonian. Since the Coulomb
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Fig. 1. Temperature dependence of magnetization of a three-electron anisotropic
dot without the Rashba SOI α( = )0 . The results are for ω = 4 meVx and (a)
ω = 4.1 meVy , (b) ω = 6 meVy , (c) ω = 8 meVy , and (d) ω = 10 meVy . The zero-
temperature magnetization curve for the non-interacting system is also shown in
red. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 2. Energy levels of a three-electron anisotropic dot without the Rashba SOI
α( = )0 . The results are for ω = 4 meVx and (a) ω = 4.1 meVy , (b) ω = 6 meVy , (c)

ω = 8 meVy , and (d) ω = 10 meVy .

Fig. 3. Same as in Fig. 1, but for α = 20 meV nm. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 4. Same as in Fig. 2, but for α = 20 meV nm.
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interaction is independent of B, m̂ would be just a one-body op-
erator, i.e., we can ignore the interaction part from the Hamilto-
nian. The Hamiltonian of a single-electron system subjected to an
external magnetic field with the vector potential = ( − )B y xA ,1

2
,

the confinement potential, and the Rashba SOI is
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The first term of the Hamiltonian is the kinetic energy, which can
be written as
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The SOI part (third term) is
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while the second and the last term correspond to the confinement
potential and the Zeeman term, respectively. We then need to
evaluate the expectation value of the magnetization operator
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Fig. 5. Same as in Fig. 1, but for α = 40 meV nm. (For interpretation of the refer-
ences to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 6. Same as in Fig. 2, but for α = 40 meV nm. The circles in (c) and (d) indicate
the level crossings that lead to new structures in Fig. 5(c) and (d) at T¼0 K.
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with respect to the interacting electron states. We should, how-
ever, point out that the energy spectra in the present studies were
evaluated for the Hamiltonian with the Coulomb interaction

= ϵV e r/c
2 included as in our earlier work [24], but now for three

and four interacting electrons. Here ϵ is the background dielectric
constant.

We have also studied the finite-temperature behavior of the
magnetization, following the thermodynamical model discussed
earlier [25]. Since we are investigating the system with a fixed
number of electrons, we use the canonical ensemble. The tem-
perature dependence of magnetization was therefore evaluated
from the thermodynamic expression
∑ ∑= ∂
∂ ( )

− −E
B

e e ,
1m

m E kT

m

E kT/ /m m

where the partial derivatives were evaluated, as explained above,
as the expectation values of the magnetization operator in the
interacting states labelled by m. In elliptical confinements, the
mutual Coulomb interaction is handled by the numerical scheme
elucidated previously [24], i.e., we diagonalize the many-body
Hamiltonian in the basis consisting of non-interacting many-body
states, which are constructed by the SO coupled single-particle
spinors. These spinors are in turn, as the result of the diag-
onalization of the SO Hamiltonian, expressed as superpositions of
the fundamental 2D oscillator spinors:

| 〉 = | 〉| 〉n n s n n s, ; , .x y z x y z

Here nx and ny are the oscillator quantum numbers and | 〉sz stands
for the spinors
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We see that in the end the magnetization evaluation reduces to a
many-fold summation of the matrix elements:
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which is now susceptible to direct numerical evaluation.
In our numerical investigations, we chose the InAs quantum

dot that shows strong Rashba spin–orbit effects [15,16,24]. In this
case, the relevant parameters are: ϵ ¼ 15.15, g ¼ �14, =m 0.042e .
The energy spectra for three electrons are shown in Figs. 2, 4 and 6
for various values of the SO coupling strength α and for different
values of the anisotropy. For B¼0 the ground states are two-fold
degenerate no matter how strong the SO coupling is or how ani-
sotropic the QD becomes. Interestingly, contrary to our expecta-
tions, at non-zero magnetic fields most of the level crossings of the
energy spectra do not turn into anticrossings when the SO cou-
pling is turned on. Only for a strong value of the Rashba parameter
α (α ¼ 40) [Fig. 6(a) and (b)] the level crossings transform to level
repulsions. However, when the QD becomes more anisotropic
those level repulsions reappear as level crossings [Fig. 6(c) and
(d)].

The energy spectra of anisotropic InAs QD for four electrons are
displayed in Figs. 8 and 10 in the absence and presence of Rashba
SOI, respectively. Clearly the four electron energy spectra are more
dense compared to three electron (or less number of electrons in
the dot) energy spectra and exhibit additional level crossings,
which are reflected to the corresponding magnetization results
(Figs. 7 and 9). Those level crossings move to higher magnetic field
as the eccentricity of the dot increases and this feature becomes
more prominent when the SOI is turned on Fig. 10.

Our three electron results for the magnetic field dependence of
the magnetization for anisotropic QDs are presented in Figs. 1,
3 and 5. The results are calculated both with and without (red
curves) the Coulomb interaction between the electrons for various
values of the SO coupling strength and for various values of ani-
sotropy. A major difference between the non-interacting system
and the interacting system can be found in the magnetization



Fig. 10. Same as in Fig. 8, but for α = 20 meV nm.

Fig. 9. Same as in Fig. 7, but for α = 20 meV nm.Fig. 7. Temperature dependence of magnetization of a four-electron anisotropic
dot without the Rashba SOI α( = )0 . The results are for ω = 4 meVx and (a)
ω = 4.1 meVy , (b) ω = 6 meVy , (c) ω = 8 meVy , and (d) ω = 10 meVy .

Fig. 8. Energy levels of a four-electron anisotropic dot without the Rashba SOI
α( = )0 . The results are for ω = 4 meVx and (a) ω = 4.1 meVy , (b) ω = 6 meVy , (c)

ω = 8 meVy , and (d) ω = 10 meVy .

S. Avetisyan et al. / Physica E 81 (2016) 334–338 337
results: while there is no structure present in the non-interacting
cases (red curves), there are prominent structures for the inter-
acting systems. As it was predicted in earlier theoretical works [8]
(and confirmed in our present work), the electron–electron in-
teraction causes saw-tooth structure in the magnetic field de-
pendence of the magnetization, which is a consequence of the
change in the ground state energy from one magic angular mo-
mentum to another (in the case of isotropic QDs) [2]. Another
interesting behavior of magnetization that should be pointed out
here is that with increasing strength of the Rashba SO parameter α
the jump in magnetization at the level crossings in the energy
spectra moves to lower magnetic fields, while increasing aniso-
tropy of the QD pushes the jump in magnetization to higher
magnetic fields. For InAs elliptical QDs this shift is at most ∼1 T,
when α is increased from 0 to 40 meV nm and ωy is varied from
4.1 to 10 meV. Therefore, low-field magnetization measurements
of the QDs could be a direct probe of the SO coupling strength. In
general, the sawtooth structure shifts to higher magnetic fields
when one squeezes the dot, while stretching of the dot results in a
shift in the opposite direction.

The main feature of the temperature dependence of magneti-
zation is that as the temperature is increased the saw-tooth
structure of the magnetization curve gradually disappears
(Figs. 1 and 3 for three electrons and Figs. 7 and 9 for four elec-
trons). The jump in magnetization slowly vanishes even in the
absence of increasing temperature for an anisotropic QD [Fig. 5
(a) and (b)] which is a result of large SO coupling. However, an
emergent small jump in magnetization is again visible (at T¼0 K)
for strong anisotropic QDs and large SOI [Fig. 5(c) and (d)] which is
clearly the result of two low-lying energy levels crossing near 1.2 T
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[Fig. 6(c) and (d)] (marked by circles). Another emergent jump in
magnetization also appeared in Fig. 3(a) around 0.35 T again as a
result of energy level crossing.

In the four-electron results most of the magnetization features
are preserved. As it was expected, they express many more saw-
tooth structures due to the Coulomb interaction than those were
in the three-electron problem. In addition, we notice that the jump
in magnetization for four electrons appears at higher magnetic
fields compared to three-electron magnetization for the same
parameters. For example, at T¼0 in the presence of SO coupling
α( = )20 the point of jump in the magnetic field dependence of the
magnetization is beyond 3 T for four-electron [Fig. 9(d)] whereas
for three-electron the jump occurs at 2.2 T [Fig. 3(d)]. Similar work
for a larger system is computationally very challenging, here we
present the magnetization results and energy spectra only for α ¼
20 meV nm.

To summarize: we have reported here detailed and accurate
studies of the magnetization of anisotropic quantum dots with
interacting electrons in the presence of the Rashba SOI for finite
values of the magnetic field. The Coulomb interaction in the pre-
sence of the spin–orbit coupling exhibits a very strong effect on
magnetization, particularly in the presence of strong anisotropy by
introducing large saw-tooth structures in the magnetic field de-
pendence of the magnetization, which is weakened by increasing
temperature. Interestingly, there is also the emergence of this
structure in the high anisotropy and large SOI limit that is ex-
plained as due to merging of two low-energy curves when the
level spacings evolve with increasing parameters. Armed with the
theoretical insights presented here, an experimental probe of
magnetization in anisotropic quantum dots will undoubtedly
provide valuable information about the inter-electron strength,
the strength of the QD anisotropy, as well as the SOI strength in
the quantum dot.
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