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� The effect of spin interactions on exciton states in a quantum ring is considered.

� Quantum ring containing a single magnetic impurity is studied.
� Multiband approximation has been used for calculation of the exciton states.
� The bright exciton state can be changed to the dark state and vice versa.
� An experimental method is proposed to estimate spin interaction constants.
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The exciton states in a CdTe quantum ring subjected to an external magnetic field containing a single
magnetic impurity are investigated. We have used the multiband approximation which includes the
heavy hole–light hole coupling effects. The electron–hole spin interactions and the s, p–d interactions
between the electron, the hole and the magnetic impurity are also included. The exciton energy levels
and optical transitions are evaluated using the exact diagonalization scheme. We show that due to the
spin interactions it is possible to change the bright exciton state into the dark state and vice versa with
the help of a magnetic field. We propose a new route to experimentally estimate the s, p–d spin inter-
action constants.

& Elsevier B.V. All rights reserved.
1. Introduction

Electronic properties of planar nanoscale semiconductor
structures, such as quantum rings (QRs) [1] and quantum dots
(QDs) [2] have enjoyed widespread attention in the past few
decades due to their novel fundamental effects and for potential
technological applications. Experimental advances in creating
these structures from a two-dimensional electron gas by using
suitable confinements have resulted in confirmation of several
theoretical predictions in these systems (see, for example [3,4]). It
has been realized lately that QD doped with a single magnetic
impurity [5–7] has great potential to contribute significantly in the
burgeoning field of single spin manipulation [8], which will
eventually lead to important contributions in quantum informa-
tion processing. Quite naturally, quantum dots, in particular the
CdTe QDs containing a single Mn atom has been widely studied
in the literature and several mechanisms for manipulation of
a single Mn spin have been proposed both theoretically and
. Ghazaryan).
experimentally [9–12]. The higher spin stability and hence longer
lasting of the relaxation and decoherence processes in a QR than in
a QD makes QRs more promising candidates for spin manipula-
tions, readout and for realization of spin qubits [13]. Recently, CdTe
QRs have been realized experimentally [14]. The problem of two
interacting electrons in QR containing one magnetic impurity has
been studied previously and it was shown that the scattering on
magnetic impurity is responsible for transitions between singlet
and triplet states of two electrons [15]. Against the backdrop of
these important developments, no studies of an interaction be-
tween an exciton and the magnetic impurity in a QR (which can be
used for manipulation of a Mn spin orientation in a QR and where
unique optical properties of the QR associated with the excitonic
Aharonov–Bohm effect can play special role [16]) have been re-
ported yet in the literature.

Here we report on our studies of the exciton states in a CdTe QR
in a magnetic field, containing a single magnetic impurity. We
have found that due to the resulting spin interactions the bright
exciton state can be changed to the dark state and vice versa, with
the help of an applied magnetic field. Additionally, we propose
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here an experimental means to estimate the s, p–d spin interaction
constants.
2. Theoretical framework

We study the exciton states in a CdTe quantum ring containing
a single manganese magnetic impurity (Mn) and subjected to a
perpendicular magnetic field. Usually, the thickness of the ring is
smaller than the radial dimensions. Therefore, our system can be
considered as quasi two-dimensional with the internal radius R1

and the external radius R2. The electron and the hole are always in
the ground state for the z direction. We chose the confinement
potential of the quantum ring in the radial direction with infinitely
high borders: ρ =V ( ) 0conf if ρ≤ ≤R R1 2 and infinity outside of the
QR. The Hamiltonian of the system can then be written as

= + + + + + +− −V , (1)h p de eh eh s d Mn

where σδ= − −− J r r S( )s d e e Mn and δ= − −− J r r jS( )p d h h Mn de-
scribe the electron–Mn and hole–Mn spin–spin exchange inter-
action with strengths Je and Jh respectively, rMn is the radius vector
of the Mn atom. σδ= − −J r r j( )eh eh e h is the electron–hole spin
interaction Hamiltonian [17]. The electron and the hole Coulomb
interaction term is ε= − | − |V e r r/eh

2
e h , where ε is the dielectric

constant of the system. The last term in Eq. (1) is Zeeman splitting
for the impurity spin.

The electron Hamiltonian in our system is
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is the symmetric gauge vector potential,
the electron charge is −e and the last term is the electron Zeeman
energy. Without the magnetic field the eigenfunctions of e is of
the form
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where Cnl is the normalization constant, = …n 1, 2, , and
= ± ± …l 0, 1, 2, are the radial and angular quantum numbers,

respectively, s is the electron spin and χσ is the electron spin wave
function. The functions ρf ( )nl

e are obtained from a suitable linear
combination of the Bessel functions: ρ ρ= −f J k J k R( ) ( ) ( ( )/nl

e
l nl l nl 1

ρY k R Y k( )) ( )l nl l nl1 , where =k m E ?2 /nl nle
2 . The corresponding ei-

genvalues Enl are obtained from the standard boundary conditions
of the eigenfunctions.

Taking into account only the Γ8 states which correspond to the
states with the hole spin =j 3/2 and include the heavy hole–light
hole coupling effects, we construct the single-hole Hamiltonian for
the ring as

ρ κμ= + −V Bj( ) 2 . (4)B zh L conf

Here L is the Luttinger hamiltonian in axial representation ob-
tained with the four-band ·k p theory [18,19]
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c x y. γ γ,1 2, γ3 and κ are the Luttinger para-

meters and m0 is the free electron mass.
The Hamiltonian (4) is rotationally invariant and we introduce
the total momentum = +F j lh, where j is the angular momentum
of the band edge Bloch function, and lh is the envelop angular
momentum. Since the projection of the total momentum Fz is a
constant of motion, we can find simultaneous eigenstates of (4)
and Fz [20].

For a given value of Fz it is logical to seek the eigenfunctions of
the Hamiltonian (4) as an expansion [19,21]
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where χ jz are the hole spin functions and ρf ( )nl
h are the radial wave

functions similar to ρf ( )nl
e with γ γ= +k m E ?2 / ( )nl

h
nl0
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1 2 . All single

hole energy levels and the expansion coefficients are evaluated
numerically using the exact diagonalization scheme [21].

To evaluate the energy spectrum of the exciton system we di-
agonalize the Hamiltonian (1) without spin interactions in a basis
constructed as products of the single-electron and single-hole
wave functions. The good quantum number is the projection Mz of
the exciton total momentum = +M F le. For a given value of Mz

and the electron spin s, the exciton wave function is presented as

∑ ∑Ψ ψ ρ φ Ψ ρ φ=σ σC n l F( , , ) ( , ) ( , )
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The numerical calculations were carried out for a CdTe QR with
= ˚R 100 A1 , = ˚R 300 A2 , = ˚L 30 Az (Lz is the height of the ring in the

z direction) and with the following parameters: =E 1.568 eVg (Eg

is the bandgap energy between valence and conduction bands),
=m m0.096e 0, = −g 1.5e , γ = 5.31 , γ = 1.72 , γ = 23 , κ¼0.7 [22].
To include the spin–spin interactions, we construct the wave

function of the exciton and the magnetic impurity as an expansion
of the direct products of the lowest state exciton wave function (7)
and eigenfunctions for the magnetic impurity

∑ ∑ ∑Ψ σ Ψ= × | 〉
σ

σC M S S( , , ) .
(8)M S

z z M z,

z z

z

Here s¼71/2, = ± ± ±S 1/2, 3/2, 5/2z and = ± ± ±M 1/2, 3/2,z

…5/2 . Using the components of this expansion as the new basis
functions we calculate the corresponding matrix elements for the
electron–hole, the electron–impurity and the hole–impurity in-
teractions. Employing the steps used in [9] for the electron–hole
spin interaction matrix element, we get

∑ σδ σ σ= − ′ ′ 〈 | | ′ ′〉
′
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where Aeh is obtained by integrating the electron and hole co-
ordinate wave functions, σ is the Pauli spin operator and j is the
hole spin operator [9].

For the electron–impurity interaction we have

∑

σ

δ

σ σ

= − ′ ′ = ′ ×

〈 | | ′ ′〉

−
′

− − −M J A l l

S S

r r

S

( , , )

, , , (10)

l l
M l M l Mn

z z z z

s d e
,

, s d e e ez z

e e

e e

where −As d is obtained after the integration of the hole coordinate
wave functions and putting =r re Mn in the electron wave function.
Similarly, for the case of hole–impurity interaction we have
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As the spin interactions are short ranged, the most interesting case
is when the magnetic impurity is located in the region of average
ring radius. Then we can take ρ = +R R( )/2Mn 1 2 and φ = 0Mn . The
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problem was solved numerically using the exact diagonalization
scheme and with interaction parameters =J 15 meV nme

3,

= −J 60 meV nmh
3 [6,10].

In order to evaluate the optical transition probabilities, we note
that the initial state of the system is that of the magnetic impurity spin
with the valence band states fully occupied and the conduction band
states being empty. We also assume that the impurity states are
| 〉 = | 〉Si z . Recently there were several experimental reports where the
spin orientation of single magnetic impurity in quantum dots was
controlled using optical means even in the absence of a magnetic field
[10,23]. The final states are the eigenstates of the Hamiltonian (1)
presented in (8) Ψ| 〉 = | 〉f . In the electric dipole approximation the
relative oscillator strengths for all possible optical transitions are

proportional to Ψ∼ 〈 | 〉P m m S( ) , z
2. Here the values of = −m 1, 0, 1

characterize the polarization of the light as sþ , π and s� respectively
[5]. The impurity spin state remains unchanged during the optical
transitions.
Fig. 1. (a) Magnetic field dependence of the exciton energy levels with electron
hole spin-interaction included for the ring without magnetic impurity. (b) Optical
transition amplitudes for the sþ and s� polarizations.

Fig. 2. Magnetic field dependence of the optical transition amplitudes for the case
of s� polarization and for various values of the initial state impurity spin projec-
tion Sz . The crossing point of six bright exciton states is shown as inset. (For in-
terpretation of the references to color in the main text, the reader is referred to the
web version of this paper.)
3. Results and discussion

In the absence of the magnetic impurity in the QR and without
the electron–hole spin interaction, the ground state of the exciton
will be four-fold degenerate with values of the total momentum
71 and 72. The magnetic field lifts that degeneracy due to the
Zeeman splitting and as a result two bright = ±J( 1)z and two dark

= ±J( 2)z exciton states appear. The electron–hole spin exchange
interaction in turn gives rise to a further splitting between the
bright and dark exciton states and removes the degeneracy be-
tween them in zero magnetic field. In Fig. 1(a) the dependence of
the 12 low-lying exciton energy levels on the magnetic field is
presented with the electron–hole spin interaction included, for a
QR without a magnetic impurity. Without electron–hole spin in-
teraction these states would correspond to the states with s¼71/
2 and = ±M 1/2, 3/2, 5/2z . The corresponding optical transition
probabilities for s� and sþ polarizations are shown in Fig. 1(b).
The sizes of the symbols in Fig. 1(b) indicate the probability of the
optical transition to that state. Fig. 1(b) reveals two levels with
highest transition amplitude and these levels are similar to the
transitions observed for a QD with total momentum = ±J 1z . Due
to the mixing of angular and spin momenta there are also other
transitions observable with considerable low intensity. For lower
values of the magnetic field, two lowest energy levels in Fig. 1
(a) correspond to the dark exciton states and hence the transition
probabilities to that states are very weak. The energies of two
bright exciton states with the most important components of the
basis functions σ| 〉 = | − 〉j, 1/2, 3/2z and | − 〉1/2, 3/2 are shifted
upwards by the electron–hole spin interaction, but still are clearly
visible optically in Fig. 1(b). In the case of sþ polarization we have
a strong transition to the state | − 〉1/2, 3/2 (black squares), and for
the case of s� polarization, the strong transition is for the state
| − 〉1/2, 3/2 (white squares). We should also mention that with an
increase of the magnetic field the transition probabilities remain
almost unchanged.

The Mn atom has a spin S¼5/2 and there are six possible values
of the impurity spin projection Sz. Therefore, due to the s, p–d spin
interaction each exciton energy level in Fig. 1(a) will split into six
and we have considered 72 energy levels of the system. Many level
crossings and anticrossings appear due to the Zeeman and the s,
p–d splitting of the energy levels. The presence of the impurity in
the ring removes the symmetry of the structure and we do not
have any good quantum numbers to describe the states. All states
are mixed superpositions with different values of the total mo-
mentum of electron, hole and the magnetic impurity.
To clarify this complicated situation, we consider here the op-
tical transition spectrum to these 72 states. The high probability
transitions will be possible only to the bright exciton states which
have the most important components with the same value of the
impurity spin Sz as in the initial state. The results for the s� po-
larization of the incident light are presented in Fig. 2. Here the
shapes and the colors of the points indicate the initial spin of the
impurity and the sizes of the points indicates the probability of the
transition to that state. For the s� polarization of the incident light
the bright exciton states must have the important component with
σ| 〉 = | − 〉M, 1/2, 3/2z z . For the sþ polarization (Fig. 3) the most
important component of the bright states must be | − 〉1/2, 3/2 [5].
For example in the case of the s� polarization and for the initial
state = −S 5/2z in low magnetic fields we have only one strong
transition (Fig. 2 black circles). But near B¼5–6 T that line weak-
ens and disappears and a new optical mode appears. Similar be-
havior was seen for other impurity spin states. This is the direct
signature of the s, p–d spin interaction. Due to these spin inter-
actions the bright exciton state | − 〉1/2, 3/2 is now coupled with
the dark state | − 〉1/2, 1/2 and we have two coupled energy levels.
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Fig. 3. Magnetic field dependence of the optical transition amplitudes for the case of sþ polarization and for various values of the initial state impurity spin projection Sz.
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For the first level at B¼0 the weight of the | − − 〉1/2, 3/2, 5/2 state
is 0.96 and the weight of the | − − 〉1/2, 1/2, 5/2 state is 0.19. With
the increase of the magnetic field, the weight of | − − 〉1/2, 3/2, 5/2
decreases and the weight of | − − 〉1/2, 1/2, 5/2 state increases. As a
result the bright state changes to dark. For the second level we
have an opposite picture. In the case of sþ polarization [Fig. 3(a)–
(d)] we see similar effects for the case of = ±S 5/2z and ±3/2. Now
the bright exciton state | − 〉S1/2, 3/2, z is coupled with the dark
state | − 〉S1/2, 5/2, z . For = ±S 1/2z the effect is not as pronounced
because the energies of the mixed bright and dark states are too
close to each other. Although the observed bright-dark state
transition is quite similar to the ones observed for QD [6,9], they
are different in nature. In a QD the change of bright state to dark or
vice versa results in the change of impurity spin projection by
unity. For QR besides this mechanism the bright-dark state tran-
sition is also related to the change of the ground state angular
momentum from zero to nonzero values due to the increase of the
magnetic field for all values of the ring radii [16]. Our QR has large
radii and width as in [14], which corresponds to strong Coulomb
interaction of the exciton [16]. This angular momentum change is
a manifestation of the Aharonov–Bohm effect and we believe that
for the case of weak Coulomb interaction (QR with small radii and
width), the manifestation of the Aharonov–Bohm effect will be
more pronounced and we will observe several dark–bright state
transition for the same line in the range of magnetic field strength
considered in this paper.
An interesting effect was observed for the s� polarization. In
Fig. 2 there is a crossing point for all energies of the bright exciton
states at B¼0.5 T (see inset in Fig. 2). This is explained as follows:
for the s� polarization the most important component of the
bright exciton states is | − 〉S1/2, 3/2, z , where Sz takes six possible
values. For all these states the energy term connected with the s,
p–d spin interactions has opposite sign with the Zeeman splitting
energy of the magnetic impurity μg BSB zMn , where =g 2Mn . For a
certain value of the magnetic field B0 these two terms will cancel
each other and we will see a crossing point. In general, the value of
B0 at the crossing depends on the ring parameters and on the s, p–
d interaction constants Je and Jh. We believe that this effect is
experimentally observable. After the detection of the experimental
value of the crossing point B0 one should be able to estimate the
real values of the s, p–d interaction constants in a QR. For the sþ

polarization the most important component of the bright states is
| − 〉S1/2, 3/2, z . Now the s, p–d interaction term and the Zeeman
splitting term for the magnetic impurity always have the same
sign and there is no crossing point.

In Fig. 4 the angular dependencies of the exciton probability
density are presented for the first bright exciton state in the case of
s� polarization for both, in the absence (Fig. 4(a)) and presence
(Fig. 4(b)) of the impurity in the ring under the applied magnetic
field B¼2 T. For the ring without impurity the maximum of the
probability density is always on φ φ=e h and it is uniform across the
ring. At the presence of the impurity the effective potential of the
interaction between the exciton and impurity is repulsive and as a
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Fig. 4. Angular dependencies of the exciton probability density for the first bright
exciton state in the case of s� polarization under the applied magnetic field B¼2 T.
a. Ring without magnetic impurity. b. Ring with magnetic impurity.
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consequence the maximum of the probability density is shifted to
the opposite side of the ring φ φ π= =( )e h . Similar behavior is ob-
served also for dark exciton states.
4. Conclusion

In conclusion, we have studied the effect of spin interactions on
the exciton states in a quantum ring containing a single magnetic
impurity subjected to a perpendicular magnetic field. The optical
properties of such a QR have been investigated. We have shown
that due to the s, p–d spin exchange interactions between the
electron, the hole and the magnetic impurity it is possible to
change the bright exciton state into a dark state and vice versa
with the help of the applied magnetic field. Additionally, a new
method is proposed for experimental estimation of s, p–d spin
interaction constants.
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