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Correlated electrons in narrow channels
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Abstract

We investigate the properties of a system of interacting electrons in a narrow channel in the quantum Hall effect regime.
We find that an increase in the strength of the Coulomb interaction causes abrupt changes in the width of the charge-density
profile of translationally invariant states. The resulting phase diagram includes many of the stable odd-denominator states

and also a novel fractional quantum Hall state at lowest half-filled Landau level. The collective modes evaluated at v = 3

1

and at v = % reveal soft modes in between the translationally invariant states in the phase diagram. © 1997 Elsevier Science

B.V. All rights reserved.
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The fractional quantum Hall effect (FQHE) was
discovered in a two-dimensional electron system cre-
ated in a semiconductor heterostructure subjected to a
strong perpendicular magnetic field [1]. It is charac-
terized by Hall plateaus at Landau level filling factors
v = N;/Ns (N, is the number of electrons and N is the
Landau level degeneracy) corresponding to certain
simple fractions with mostly odd denominators. The
understanding of the FQHE is essentially due to
Laughlin [2], who proposed that electrons condense
into incompressible quantum fluid states at certain
filling factors. The FQHE occurs when the chemical
potential of the electron system is discontinuous at
certain magnetic field-dependent densities leading to
incompressibility [3]. The energy gap structures in
the excitation spectra are also well established for
the incompressible states [4, 5]. Interestingly, despite
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intense activities at the half-filled Landau level [6—
18], such a level of understanding has not yet been
achieved for the simplest even-denominator state.

In recent years there has been a great deal of in-
terest in systems where electrons are confined in
even lower dimensions [19]. For example, ballistic
quantum wires fabricated [20,21] with long trans-
port mean-free path and very large subband spacings
enable one to study effects of electron—electron in-
teractions in one-dimensional systems. At high mag-
netic fields when the radius of the cyclotron orbit —
the length scale in the system — is smaller than the
width of the channel it is plausible that the system
behaves like a two-dimensional electron gas (2DEG)
in the sense that it exhibits the QH states. The bound-
aries of the sample are, of course, still important in
that regime, and therefore, in theoretical models one
should be able to treat the edges and bulk on the same
footing.
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There have been experimental attempts to study the
QHE in one dimension (1D-QHE). Following a the-
oretical prediction that in a one-dimensional system
(hard-wall boundary condition) the size of the FQHE
gap is comparable for the filling factors v = % and v =
% [22], observation of incompressible states at specific
filling factors in a narrow-channel electron system was
reported a few years ago [23, 24]. In that experiment,
in addition to various odd-denominator fractions, Hall
resistance also showed signatures of quantization at
the half-filled Landau level. That observation brought
into focus the question about the existence and na-
ture of even-denominator states together with the
role of boundaries of the sample. Theoretical interest
on ID-FQHE has been revived by a recent work of
Yoshioka [25,26] where a parabolic confinement
(see below) was used and incompressible states were
found at v = % and %, but that approach was some-
what different in spirit than our work described below.

There were several attempts to explain the origin of
the non-existence of a stable half-filled quantum Hall
state in two dimensions. In Laughlin’s theory the even
denominator states are symmetric with respect to par-
ticle exchange, and therefore, describes the properties
of bosons rather than fermions. One other explanation
for the non-existence of a stable half-filled state in
two dimension was suggested in Refs. [27, 28] where
it was shown that in order to stabilize the v = % state
one must reduce the short-range part of the electron—
electron interaction. The popular explanation of the
non-existence of QHE states at v = { involves fermion
Chern—Simons theory [13—15] where the ground state
and the low-energy excitations can be described by
a modified Fermi-liquid theory, more precisely, by a
theory of fermions in zero magnetic field.

In our model for the 1D-QHE, electrons (spin polar-
ized) are confined by an electrostatic potential which
is parabolic in the lateral direction and flat along the
channel, and are also subjected to a strong perpen-
dicular magnetic field. The electrons are considered
to be in a cell of length a. The width of the cell
is determined by the lateral electron density profile
which is finite due to the presence of the confinement
potential. We impose a periodicity condition along
the length of the cell. The total Hamiltonian of the
system is

H = Ko+ Hin, (N

where #; includes the kinetic energy of N, electrons
of effective mass m* and the electrostatic confining
potential

N
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with A4 being the vector potential in Landau gauge.
The interaction term of the Hamiltonian consists of the
Coulomb interactions and also the terms correspond-
ing to the neutralizing background
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where ¢ is the background dielectric constant and p(R)
1s the background charge density.

The single-electron wave functions labeled by
K = {m,n} are
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where & = (2n/a)m is the quantized wave vector and
m is the momentum quantum number. The effec-
tive Larmor radius for the cyclotron motion is /2 =

(h/m*2)"2, where Q = \/mf} + w? and @, = eB/m*
is the cyclotron frequency. The single-electron states,
Eq. (4) are localized around ¥ = v + 2ni’m/va = 0.
Here y = /1 + (wo/®,)? is a dimensionless quantity.
The single-electron states for m and m’ are therefore
separated spatially in lateral direction by an amount
AV = 2n(m — m')).z/‘,'a. For a very strong con-
finement energy with respect to cyclotron energy,
spatial separation of the single-electron states van-
ishes — the system becomes truly one-dimensional.
On the other hand, when the confinement becomes
weaker with respect to cyclotron energy, the states
begin to separate spatially and the system becomes
quasi-one-dimensional. In Eq. (4), H, is the Hermite
polynomial of order n. In what follows we set n = 0



82 T. Chakraborty et al. [ Physica E 1 (1997) 80-85

(lowest Landau level). Ignoring the constant Landau
level energy the single-electron energies are given by
Rk
2m* Q2
In the non-interacting ground state, N, electrons oc-
cupy the lowest available single-particle states. It is
then reasonable to require that the electron density is
symmetric around the y = 0 axis, i.e.,. M =3 m; =
0. This symmetry condition holds for odd number of
electrons if m is an integer. In that case the boundary
condition is periodic: Y4 (r + axX) = Yy (r). For erven
number of electrons m has to be a half-odd integer.
The boundary condition is then anti-periodic: ¥ (r +
ax) = —yi(r). As we turn on the inter-electron inter-
action electrons start to avoid each other. Increasing
the interaction strength with respect to the kinetic en-
ergy it becomes energetically favorable for the elec-
trons to occupy also the higher-energy single-particle
levels in order to reduce the Coulomb repulsion.
Given the single-particle states the Hamiltonian
of the many-electron system, projected to the lowest
Landau level, is now written as
H = Z 6,,,(1”]61,” + z

m IR
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where a/ (a,, ) is the cration (annihilation ) operator for
the state m. For the Coulomb potential

1

where ¢ = (g..¢,), the interaction matrix element is
given by
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where ¢/, = ¢, 4?/(ya) is the dimensionless integration
variable, 2 is the unit of length and &, = ¢?/c/ is a

measure of the interaction strength. It is to be noted
that the diagonal term m| = my4 (m; = mj3) diverges
as expected for the long-range Coulomb potential. To
cancel out this divergence we neutralize the system by
embedding the quantum wire into a positively charged
background with a density

p(R) = exp [v—yj . )

Ne
a \/Ed’ d/2J
The width of the background density profile is denoted
by d’ and in actual calculations we set it equal to
the length of the cell. The electrostatic energy of the
background charge is

e*p(R)p(R")

.
Hy == [ dRAR’ ‘
T2 / g|R — R’

——l’\/ 2]/d 1ex 1(*'d")2
2‘ ef/a ql‘q ‘ p 2 ya q»r .
(10)

The interaction of electrons with the positive back-
ground charge is taken into account by the potential
Aoy In general, the electron-background interaction
is a one-body operator with the diagonal matrix ele-
ment
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Using the above relations, the final form of the diag-
onal two-body term is
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effective filling factors are also indicated.

where the divergent part of the electron—electron term
is now cancelled by the positive background charge.

We now examine the change in the density profile
of the translationally invariant state (M = 0) when we
increase &./E for a fixed value of a. Electron density
at r is calculated numerically from

p(r) = 3 Y (rrala;. (12)
Lj=1

In the x-direction the charge density is constant while
in the lateral y-direction it is modified because of the
finite width of the system. Interestingly, as &./Ey in-
creases the width of the charge-density profile changes
abruptly from one value to another (Fig. 1). The effec-
tive filling factors, calculated via v = 2n/%n (where
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n is the number of electrons per unit area and the
width of the wire is the full-width at half-maximum)
are found to be 0.98,0.71,...,0.51 and 0.42 which are
very closetov = 1, %% and v = % in Fig. la (a = 8)
and 0.99 and 0.68, ..., 0.66 in Fig. 1b (¢ = 9.5) which
suggests that these states are v = ] and v = 3, respec-
tively. The state which has the effective filling fac-
tor 0.38,....0.37 is identified as a v = % state also by
calculating the Coulomb-% state and Haldane’s pseu-
dopotential state [25, 26].

A phase diagram for the 1 D-QHE states are then ob-
tained (Fig. 2) by systematically seeking those points
in the parameter space spanned by a and &/E where
the ground state has zero total momentum. We then
plot the energy gap between this ground state and the
first excited state. In Fig. 2 the area of a filled dot is di-
rectly proportional to that gap. The phase diagram con-
sists of separate regions of several QHE states. There
is also a distinct region for the cven-denominator state
v = 1 [29]. The phase diagram is dominated by two
QHE states, viz. v =1 and v = l’ which are also the
predominant QH states observed experimentally in a
2DEG.

The energy spectrum for various 1D-FQHE states
were presented in our earlier publication [29] and they
showed features very similar to what one expects in a
two-dimensional incompressible systems [4, 5]. In or-
der to explore the areas of the phase diagram where we
do not have an incompressible state (between any two
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Fig. 3. The lowest excitation energy at v = % as a function of the

total momentum M for various values of a.

stable QH strips in Fig. 2), we looked at the energy
spectra of various QH states when a is varied. In Figs.
3 and 4, we present such results for v = % and v = %,
respectively. Evidently, the gap structure changes dra-
matically from one a value to another and shows in-
dications of soft modes at certain values of a. It there-
fore indicates that the symmetry changes between the
ground states in different regions of the phase dia-
gram. The precise nature of the states with M # 0 is
as yet, unclear. Further work in this direction, and in
particular, investigations of the nature of correlation
functions near the transition regions is in progress.
The earliest proposal to describe the even-denominator
QH states [3] was to generalize the Laughlin state [2]
where one first makes charge-2 bosons out of elec-
tron pairs and then forms a Laughlin state for bosons.
In subsequent investigations by various authors, sev-
eral QH states were proposed. Most important among
them are the paired QH states. These include the Pfaf-
fian state [27, 30] which is the simplest paired state for
spinless particles and might be useful in the present
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Fig. 4. Same as in Fig. 3, but for the filling factor v =

tof—

narrow-channel system. These studies will be reported
elsewhere.

To summarize our results, we have studied the prop-
erties of incompressible states that are expected to be
present in a narrow-channel electron system. In be-
tween the incompressible states there are states in the
phase diagram where the excitation spectra go soft.
This indicates a phase transition in going from one
QH state to another. The precise nature of the states
in the compressible region is, as yet, unclear.
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