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Abstract

We report on our theoretical studies of the magnetic !eld e#ects on intersubband transitions in quantum dots (QDs)
embedded in a quantum cascade structure subjected to a strong magnetic !eld applied perpendicular to the QD plane. The
peaks of the emission spectra calculated for QDs containing a few interacting electrons indicate that there is a correlation
between the non-monotonic behavior of the maximum value of the emission spectrum as a function of the applied magnetic
!eld and the !eld dependence of the low-lying energy spectra of the dots.
? 2002 Elsevier Science B.V. All rights reserved.
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Rapid developments in modern epitaxial growth
techniques have enabled researchers to create struc-
tures on the nanometer scale where many fascinating
new physical phenomena have been discovered [1]. In
this context, quantum dots (QDs) represent the ulti-
mate reduction in the dimensionality of a nanoscopic
device. Here electrons are con!ned in all directions,
and they occupy spectrally sharp energy levels like
those found in atoms [2,3]. An external magnetic !eld
perpendicular to the QD plane is a very powerful
means to identify the quantum number of states in a
dot. The basic energetics of an electron in a parabolic
con!nement—suitable for a QD model—subjected to
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an external magnetic !eld is known since the early
days of quantum mechanics. The single-electron en-
ergies in this case are written as [4,5] Enl =(2n+1+
|l|)˝�− 1

2 l˝!c, where �=(14!2
c+!2

0)
1=2, !c=eB=m∗c

is the cyclotron frequency in a magnetic !eld B, and
˝!0 is the con!nement energy. The single-electron
wave function (without the normalization constant) is
written as ’nl = r|l| exp(−il
)L|l|

n (r2=2a2) where the
e#ective magnetic length a is given by a2=˝=(2m∗�),
and L|l|

n is a Laguerre polynomial. The quantum num-
ber −l is the angular momentum and the quantum
number n is related to the Landau quantum number
N=n+(|l|−l)=2 (usually referred to as Fock–Darwin
level index [2,3]). In the absence of any con!ne-
ment N becomes the familiar Landau level index, and
E=(N + 1

2)˝!c. In the presence of a con!nement, Enl

is a function of both n and l [6]. Several experimen-
tal groups have reported observation of these features
in QDs [7]. Introduction of interelectron interaction
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in the theoretical treatment of a many-electron dot re-
sults in magic quantum numbers [6] that occur due to
competition between the con!nement and interaction
energies. Theoretical studies of the inIuence of the
con!nement and interaction in the presence of a mag-
netic !eld on intersubband transitions might be im-
portant for exploration of the energetics of QDs as in
the case of quantum wells (for a review, see e.g., Ref.
[8]; experimental work in a similar spirit but based on
tunable intersublevel transitions in self-assemble QDs
was reported in Ref. [9]). Moreover, in quantumwells,
intersubband transitions are useful routes toward de-
veloping designer optical properties and quantum well
engineering [10], and it may as well be the case with
the dots. There is, however, an important di#erence
between the wells and the dots in a similar situation.
For a quantum well in a perpendicular magnetic !eld,
the subbands quantize into a ladder of Landau levels
and only cyclotron transitions are possible (unless, of
course, one applies a parallel !eld or a magnetic !eld
that is tilted from the direction normal to the electron
plane [8,11]). On the other hand, in QDs con!nement
and magnetic !eld lead to Fock–Darwin energy lev-
els at low !elds [2,3], and cyclotron transitions appear
only at very high !elds where the Fock–Darwin levels
merge to form the Landau levels [2–5].
In this paper, we investigate the magnetic !eld ef-

fects on intersubband transitions in a QD. In order
that these results might !nd use in a realistic nano-
structure, we have explored a quantum cascade type of
structure where in place of the quantum wells, the ac-
tive regions contain QD-like con!nement. We should,
however, point out that the e#ects we have uncovered
here are quite general since they are largely dictated
by the energy spectra of the dots, as demonstrated be-
low. Quantum cascade laser (QCL) is a nanostruc-
tured light source in the mid-infrared range (�3:5–
20 �m) ([12], for a review, see e.g., Ref. [13]) which
has proven to have vast application potentials [14]
ranging from gas sensing [15,16] to free-space opti-
cal data transmission [17]. In these systems, optical
transition occurs between quantized conduction band
states (intersubband transition) of a multiple quantum
well structure. A quantum-dot cascade laser (QDCL)
is predicted to exhibit a large blueshift in the lumi-
nescence spectra [18] and is expected to be useful in
tuning the laser by injection of individual electrons in
the dot.

The single-electron Hamiltonian for our system has
the form

H′ =
1

2m∗ (px − eBy=2c)2 +
1

2m∗ (py + eBx=2c)2

+
p2

z

2m∗ + Vplane(x; y) + Vconf (z); (1)

where B is the applied magnetic !eld in the z-direction
and the con!nement potential in that direction is
[11,18]

Vconf (z) =−eFz +

{
0 for wells;

U0 for barriers;

with F being the electric !eld in the z-direction.
We model the QDs in the active layers of the QCL

by assuming parabolic con!nement potential in the
xy-plane: Vplane(x; y)= 1

2m∗(!2
xx2 +!2

yy2), where !x

and !y are the con!nement energies in the x- and
y-direction, respectively, corresponding to the oscilla-
tor lengths of lx =(˝=m∗!x)1=2 and ly =(˝=m∗!y)1=2.
The single-electron Hamiltonian can then be rewritten
as

H′ =Hz +Hx +Hy +Hxy; (2)

where

Hx =
p2

x

2m∗ +
m∗

2

(
!2

x +
1
4

!2
c

)
x2;

Hy =
p2

y

2m∗ +
m∗

2

(
!2

y +
1
4

!2
c

)
y2;

Hz =
p2

z

2m∗ + Vconf (z);

and

Hxy =
!c

2
(xpy − ypx):

As a !rst step we calculate eigenfunctions and eigen-
values of the single-electron HamiltonianHx+Hy+
Hz. The eigenfunctions are the product of eigenfunc-
tions of corresponding one-dimensional Hamiltonians:

�nmk = ’x;n(x)’y;m(y)�k(z);

where ’x;n(x) and ’x;n(x) are eigenfunctions of har-
monic oscillators with frequencies (!2

x + !2
c=4)

1=2

and (!2
x + !2

c=4)
1=2, respectively. The subband func-

tions �k(z), are calculated numerically. Then for each
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Fig. 1. The energy spectra of a two-electron circular (lx = ly) QD. The QD sizes (in nm) considered here are: (a) (5,5), (b) (10,10),
(c) (15,15) and (d) (20,20). The left column corresponds to the interacting system while the right one is for the non-interacting systems.

subband k, we diagonalize the Hamiltonian Hxy in
a subspace ’x;n(x)’y;m(y), where n and m are less
than 20. As a result, we !nd the eigenfunctions,
�j;k(x; y; z), and eigenstates, Ej;k , of single-electron
Hamiltonian (1). In our calculations that follow,
we consider only two subbands in the z-direction
(k = 1; 2) and for a given k all possible states in the
xy-plane with the condition, Ejk ¡ U0.
From the single-electron basis functions, we con-

struct the N -electron (spinless) basis

�nimiki(r1; : : : ; rN )

=A�n1m1k1 (r1) · · ·�nN mN kN (rN ); (3)

whereA is the antisymmetrization operator. The total
many-electron Hamiltonian is written as

H=
N∑

i=1

H′
i +

N∑
i¡j

V (|ri − rj|);

where H′ is given by Eq. (2). For interelectron inter-
actions we consider the Coulomb interaction V (|ri −
rj|)=e2=!|ri−rj|, where ! is the background dielectric
constant. The Hamiltonian matrix is then calculated
in basis (3). The eigenvalues and eigenfunctions were
calculated by exact (numerical) diagonalization of the
Hamiltonian matrix.
In the initial state (before optical emission) all elec-

trons are in the second subband, k=2. In the !nal state
(after optical emission) one electron is in the !rst sub-
band, k = 1, and all other electrons are in the second
subband, k = 2. The intensity of optical transitions is
found from the expression

Iif(!) =
1
Z

∑
if

$(! − Ei + Ef)

×
∣∣∣∣
∫

�1(z)z�2(z) dz
∫

�∗
i (x1y1; : : : ; xN yN )
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Fig. 2. The energy spectra of a two-electron non-circular (lx �= ly) QD. The dot sizes (in nanometers) are: (a) (5,10), (b) (10,15),
(c) (15,20) and (d) (20,25). The left column corresponds to the interacting system while the right one is for the non-interacting systems.

×�f(x1y1; : : : ; xN yN )

× dx1 dy1 · · · dxN dyN

∣∣∣∣
2

×exp(−%Ei);

where Z =
∑

i e
−%Ei is the partition function and % =

1=kT . In all our computation, we take T = 20 K. We
present below our theoretical results for a dot contain-
ing two electrons.
In Fig. 1 the energy spectra of circular (lx = ly)

QDs containing two electrons are shown for di#erent
values of the oscillator strength and di#erent values of
the magnetic !eld. The results in the left column corre-
spond to a system of interacting electrons, while those
in the right column are for the non-interaction systems.
Similar energy spectra are shown in Fig. 2 for elliptical
QDs (lx �= ly). Clearly, the e#ect of interaction on the

energy spectra becomes more pronounced for larger
QDs, which is due to the fact that for a larger QD the
interlevel separation for a single-electron system be-
comes smaller, i.e. the interaction becomes more im-
portant. Another observation is that at a given value
of the magnetic !eld the interaction between elec-
trons tends to decrease the excitation gap (separa-
tion between the low-lying energy levels). This ef-
fect manifests itself in the emission spectra. In Fig. 3,
positions of the maximum of the luminescence spectra
as a function of the applied magnetic !eld are shown
for circular and elliptical QDs. For QDs of a small
size (lx = ly = 5 nm and lx = 5 nm, ly = 10 nm)
the e#ect of the magnetic !eld on the emission peaks
is negligible. This is in good agreement with the en-
ergy spectra of a circular dot (Fig. 3(a)), where a
large gap is present at all values of the magnetic
!eld.
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Fig. 3. The emission peak as a function of magnetic !eld for
circular and non-circular QDs. The numbers next to the lines in
the !gure correspond to the size of the dot (lx; ly).

With increasing size of the QD a well pronounced
downward cusp is developed for a magnetic !eld
close to 5 T. This cusp is observed for a size of
the QD close to 15 nm. In fact, there is an interest-
ing correlation between the appearance of the cusp
and the energy spectra of the QD system. Such a
non-monotonic dependence of the maximum value
of the emission line on the magnetic !eld is ob-
served whenever there is a non-monotonic depen-
dence of the energy gap on the magnetic !eld. The
cusps correspond to the smallest value of the gap.
Indeed, there is a minimum of the energy gap at
B = 5 T for lx = 10 nm, ly = 15 nm system (in
Fig. 2(b), and also in Fig. 1(b), the energy gap is
so small that two points, ground and excited states
in the !gure almost coincide). This minimum cor-
responds to the minimum in Fig. 3. At the same
time the energy gap for the circular dot (lx = 10 nm,
ly = 10 nm) has a weak dependence on the mag-
netic !eld which results in an almost monotonic !eld
dependence in Fig. 3. With a further increase in
size of the dots the energy gap dependence on mag-
netic !eld becomes more monotonic and the cusps
disappear.
The speci!c feature of the system under consider-

ation is that the main transitions are the transitions
between the ground state of the initial system and the

exited states of the !nal system. This can be under-
stood from an analysis of the non-interacting system.
For the non-interacting two-electron system, electrons
in the initial ground state occupy two lowest Fock–
Darwin states (Fig. 4) of the second subband. The
transitions are allowed only to the excited state of the
!nal system, where the electron in the second subband
is in the ground Fock–Darwin state and the electron
in the !rst subband is in the !rst excited Fock–Darwin
state. The transition to the ground state, in which both
electrons are in the ground Fock–Darwin state of the
corresponding subbands, is forbidden. This transition
is allowed only due to the non-parabolicity of the en-
ergy spectrum, and therefore its probability is very
low. It is easy to see that the height of the emission
peak for the non-interacting system does not depend
on the magnetic !eld.
The interelectron interaction mixes the energy

states both in the initial and in the !nal non-interacting
systems. As a result the emission peak becomes
broad and has a lower height compared to that for the
non-interacting system. If the electron–electron inter-
action in the initial and in the !nal systems would
be the same then antisymmetric many-electron states
would be identical in the initial and the !nal systems,
and as a result, the height of the emission peak would
not depend on the magnetic !eld. In the present case,
interactions between the electrons in the initial sys-
tem (electrons are in the same subband) and in the
!nal system (electrons are in the di#erent subbands)
are di#erent. If this di#erence has a weak e#ect on
the many-electron states then the height of the emis-
sion peak has a weak dependence on the magnetic
!eld. Conversely, the height of the emission peak
has a strong magnetic !eld dependence if the states
of the many-electron system are very sensitive to the
interelectron interaction. Such sensitivity is partially
determined by the energy gaps in the non-interaction
system. This is the origin of the correlation between
the emission peaks and energy spectra.
To summarize, we have explored the magnetic !eld

e#ects on intersubband transitions in QDs embedded
in a quantum cascade laser structure. The calculated
emission spectra for QDs containing a few interact-
ing electrons indicate that the behavior of the emis-
sion peaks as a function of the applied magnetic !eld
directly reIects the !eld dependence of the low-lying
energy gap of the QD structure.
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Fig. 4. The Fock–Darwin energy spectra of a two-electron QD in the active layers of a QCL. The QD sizes (in nm) considered here are:
(a) (5,5), (b) (10,10), (c) (15,15) and (d) (20,20). The left column corresponds to the circular dot while the right one is for the non-circular
dot.
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