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Abstract 

A model for a quantum ring in magnetic fields is introduced where various electronic properties viz., the single- and 
many-electron energy spectrum, magnetization (persistent current) and the dipole-allowed absorption energies can be 
studied very accurately. The impurity potential lifts the degeneracies in the energy spectrum and the persistent current is 
then reduced from the impurity-free value. The effect of the Coulomb interaction on the persistent current is, however, 
insignificant. The dipole-allowed absorption energies in a quantum ring are presented. Similar studies for a quantum dot 
with a Gaussian impurity in the middle reveal quite rich structures in the absorption spectrum. 

1. Introduction 

Recent studies of quantum confined systems have 
made it increasingly clear that electron correlations play 
a major role in these mesoscopic systems [1]. Recent 
experimental observations of the persistent current in 
a mesoscopic ring 1-2] and the magnetoplasmon reson- 
ances in quantum ring arrays [31 clearly require theoret- 
ical understanding of the role of electron correlations in 
a quantum ring. While the single-electron results are 
fairly well established 1-4-1, no reliable quantitative theory 
exists, as yet, in the case of many-electron systems. Based 
on some intuitive arguments, Leggett [5-1 recently conjec- 
tured that, for arbitrary electron-electron interactions 
and an arbitrary external potential, the maxima and 
minima of the energy curves for even and odd number of 
electrons would be the same as for the noninteracting 
systems. 

We have recently introduced a model of quantum ring 
to study the energy spectrum where impurity and 
Coulomb interactions are included explicitly [6"1 in the 
Hamiltonian. In our model the electron is confined in 
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a parabolic potential and subjected to a perpendicular 
magnetic field. The single-electron Hamiltonian is writ- 
ten as 

+ ~ m too(r - ro) 2, 

where we use the symmetric gauge vector potential A = 
½( - By, Bx, 0). We have demonstrated earlier [6] that 
our model, in the appropriate limit, correctly reproduces 
the behavior of an ideal one-dimensional ring I-4] 'and 
that of a two-dimensional electron gas. The energy spec- 
trum in the case of non-interacting and interacting elec- 
trons, magnetization [6] and the susceptibility [7] have 
been studied earlier in this model. The two-body 
Coulomb matrix elements are evaluated numerically, 
with the result that, in the lowest Landau level and for an 
impurity-free system, the Coulomb interaction simply 
shifts the noninteracting energy spectrum to higher ener- 
gies. There is no discernible effect of interaction on the 
magnetization. This is explained as due to conservation 
of angular momentum in the system: all close-lying states 
in the lowest Landau level belong to different angular 
momentum and the Coulomb force cannot couple them. 
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Weidenmiiller et al. reached at a similar conclusion inde- 
pendently [8]. Influence of inter-electron interaction on 
the persistent current has also been studied in one-di- 
mensional (1D) disordered discrete-lattice ring model 
[9]. In this model, exact results from numerical diagonal- 
ization of the Hamiltonian are available for small ring 
sizes. In the case of long-range Coulomb interactions, it 
was found that, depending upon the disorder, interaction 
can increase or decrease (mostly decrease) the current. 

Electronic properties of quasi-zero-dimensional elec- 
tron systems (quantum dots) in a magnetic field have 
been under intense investigations in recent years 
[10-13]. These systems exhibit phenomena reminiscent 
of atoms (and are therefore commonly called artificial 
atoms) and yet their size, shape, etc. can be controlled in 
the experiments. Theoretical results on the electronic 
properties of these quantum-confined few-electron sys- 
tems [10-12] have been generally in good agreement 
with the experimental results [13]. Ever since the first 
theoretical work on interacting quantum dots in a mag- 
netic field was reported [10], a large number of papers on 
variations of such systems have been published in the 
literature [11]. Almost all of these theoretical studies 
involve impurity-free quantum-confined few-electron 
systems. Here we describe the properties of a quantum 
dot which includes a repulsive scatterer. Such a system 
can alternatively be thought of as a quantum ring de- 
pending upon the magnetic-field strength and the 
strength of the impurity. Experimental work on the mag- 
netoplasma resonances in quantum dots with repulsive 
impurity at the center has been reported recently [3]. 

2. Quantum ring model 

In our quantum ring model, the wave functions are of 
the form 

~ka=Rnl(r)e il°, n = 0 , 1 , 2  . . . . .  l = 0 ,  +1, +2  . . . . .  

and 2 represents the quantum number pair {n,l}. The 
impurity interaction is chosen to be of the form: 

v i r a p ( r )  = Vo e-(r-Rl*/d2, (1) 

where Vo is the potential strength and d is the width. The 
impurity matrix element can then be written as 

2rcVoe ira°° ~Ra(r)Rz,(r)e-(n* + ~'/d~ l ( 2rR'~r dr Ta, 4' = _ re \d2  j 

(2) 

where m = l '  - l, (R, 0o) is the impurity position and I~ is 
the modified Bessel function. The two-body interaction 

matrix elements [6] are 

V ~ 3 ~ ,  --- 3t, +12.h+z,2r~ dqqV (q )  
o 

x dr1 rtJl~,_l, t(qrl)R~(rl)Ra,(rl)  
o 

X dr 2 r2Jll2_t~b(qr2)R,~2(r2)R~3(r2), (3) 
o 

where Jm is the Bessel function of order m. We have used 
the Coulomb interaction in a plane: V(q) = 2nx/q, where 
t¢ = e2/4~eo e. Let ro be the radius of the ring and A = ~r 2 
its area. The length is measured in units of ro and the 
energy in units of h2/2 m*nA [6]. In these units the 
confinement potential is 

= 2m Coo(r - ro) 2 = 4~2(x - 1) 2, U ( r )  1 • 2 

where ct = ogom*A/h, x = r/ro. This is to be compared 
with the Coulomb interaction which in the present case 
takes the form 

e 2 , /  r0 ~1  
- - =  9.45 m 17-------1--. 
g r  \1  n m / e x  

In our present work we used ro = 10 nm, e = 12.9 as the 
background dielectric constant, and the effective mass 
was chosen to be m* = 0.067, appropriate for GaAs. In 
the impurity potential given above, the strength Vo is 
expressed in this energy unit. For  a = 20, the single- 
electron energy spectrum closely resembles that of an 
ideal 1D ring, while for a = 5, it has the characteristics of 
a 2D electron gas [6, 7]. In what follows, we present the 
numerical results for these two values of ~t. Once the 
energy spectrum is obtained from numerical diagonaliz- 
ation of the Hamiltonian, the magnetic moment is cal- 
culated from the derivative of energy with respect to the 
magnetic field. The persistent current is found to decrease 
drastically in the presence of strong disorder, but the role 
of Coulomb interactions on the persistent current is 
almost insignificant. 

3. Dipole-allowed transitions 

The effect of the impurity on the optical absorption 
spectrum was studied in the dipole approximation. De- 
fining the single particle matrix elements 

d~,  = (2']rei°l).) 
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Fig. 1. Dipole-allowed absorption energies of a single electron 
in a quantum ring versus ~/¢~o for: (a) c~ = 20, tlo = 1.0, d = 0.2; 
(b) ~ = 20, Vo = 4.0, d = 0.5; (c) ~ = 5, Vo = 0.5, d =0.2 and 
(d) ~ = 5, 1/"o = 1.0, d = 0.5. 

the dipole operators can be written as 

1 ~, [dx,~ + d~x,]a~,ax, X = ~ ,  

1 
Y = ~ii ~ [d~,~ - -  d~a,]a~,aa. 

The probability of the absorption from the ground state 
10) to an excited state I f )  will then be proport ional  to the 
quantity 

w = I ( f l r l 0 ) l  2 = I ( f l X I 0 > l  2 + I ( f l  Y I 0 ) I  2. (4) 

In the figures, where we display absorption spectra, the 
areas of the filled points are proport ional  to W. 

In impurity free one-electron rings the dipole-allowed 
absorption from the ground state can happen only to the 
first two excited states. Furthermore,  in a pure ring the 
transition probabilities to both of these states are equal 
as can be seen in Fig. l(c) which exhibits a practically 
impurity free system (low values of the impurity potential 
strength). When the strength of the impurity increases; 
the ground state and the first excited state will mix and 
most of the transition probability will shift to the second 
excited state. This is clearly demonstrated by comparing 
Fig. l(a) and (b). 

In Figs. 2 and 3, we have plotted some of the lowest 
absorption energies in four-electron rings. In an impu- 
rity-free ring, the transition to the first excited state is not 
dipole-allowed (IALI > I). The stronger the impurity 
gets, there will be more mixing of different angular mo- 
menta and the previously forbidden transitions will be 
allowed. In the parameter range we have used for the 
impurity, most of the transition probabilities will still go 
to the modes allowed in impurity-free systems. The lifting 
of the degeneracy in the energy spectra is reflected in the 
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Fig. 2. Dipole-allowed absorption energies for four electrons in 
a quantum ring versus ¢~/~o at ~ = 20 with Coulomb interac- 
tion and impurity potential (a) Vo = 1.0, d = 0.2 and (b) Vo = 
4.0, d = 0.5 included. 
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Fig. 3. Same as in Fig. 2 but for c~ = 5, and (a) Vo = 0.5, d = 0.2 
and (b) Vo = 1.0, d = 0.5. 

absorption spectra by a smooth behavior as a function of 
the applied magnetic field, 

4. Q u a n t u m  dots  

We consider electrons of effective masses m* moving in 
the z = 0 plane and confined by a parabolic potential 
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Fig. 4. Dipole-allowed transition energies of a two-electron 
(interacting) quantum dot with ho% = 4 meV, V0 = 4 meV, 
d =  5nm and the impurity position ( a ) R = 0 n m  and 
(b) R = 5 nm. 

½m.co2(x 2 + y2). We model the impurity by a Gaussian 
potential [Eq. (1)], and apply the exact diagonalization 
method by constructing the basis using the single-particle 
wave functions of a perfect parabolic quantum dot [10]. 
In the actual calculations the spin of the electrons is 
taken into account but the Zeeman energy is ignored. 
Intensities of the optical absorption are calculated within 
the electric-dipole approximation [Eq. (4)]. 

Electromagnetic absorption of a parabolic quantum 
dot (without impurities) has two well-known branches, 
viz., edge and bulk magnetoplasmon modes. For  a mod- 
erately strong Gaussian impurity at the dot center 
(Fig. 4a), the continuous modes of the impurity-free case 
are broken at about 2 T. This discontinuity is a combined 
effect of the impurity and of the Coulomb force. At about 
2 T the ground state changes from L = 0 to L = 1 (L is 
the total orbital angular momentum). Without the impu- 
rity this transition happens at about 2.5 T (singlet-triplet 
transition). The upper mode also splits into two weaker 
modes. 

When the impurity is moved slightly away from the 
center (Fig. 4(b)), the above mentioned discontinuity is 
still present• It is just moved a little bit to 2.2 T. Now we 
can see another combined effect of the impurity and the 
Coulomb force: there is a strong anticrossing in the lower 
mode near 1 T. This anticrossing is due to the coupling 
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Fig. 5. Same as in Fig. 4, but for R = 10 nm and (a) non-inter- 
acting and (b) interacting electrons. 

between states with different total orbital angular mo- 
menta, i.e. the circular symmetry is broken. 

As the impurity is moved further away from the center 
(Fig. 5), but still remain well inside the dot (radius of the 
dot is ~ 25 nm), there is a mode starting at about 5 meV 
at B = 0 T that goes through both the absorption modes. 
The coupling of these modes is seen as anticrossings in 
the upper and lower absorption modes. There are also 
other anticrossings in the upper mode. The degeneracy at 
B = 0 T is clearly lifted. A comparison of Fig. 5(a) and (b) 
shows clearly the effect of the Coulomb force. Without 
Coulomb interaction there are no discontinuities in the 
lower mode. The upper mode has clear anticrossings but 
not at the same magnetic field values as when the interac- 
tion is on. The gap between the two modes at B = 0 T is 
bigger when the interaction is off [14]. 

5. C o n c l u s i o n  

We have studied the effect of an impurity in a quantum 
ring subjected to an external magnetic field. The impurity 
lifts the degeneracy in the energy spectrum, reduces the 
persistent current, and allows the dipole transitions for- 
bidden in a impurity-free system. In a few-electron quan- 
tum ring, the role of the Coulomb interaction is found to 
be insignificant. In the quantum dot, however, the com- 
bined effect of the Coulomb interaction and an impurity 
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results in anticrossings in the excitation energies which 
are absent in noninteracting or impurity-free systems. 
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