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Theory of Incompressible States in a Narrow Channel
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We report on the properties of a system of interacting electrons in a narrow channel in the quantum
Hall effect regime. It is shown that an increase in the strength of the Coulomb interaction causes
abrupt changes in the width of the charge-density profile of translationally invariant states. We
derive a phase diagram which includes many of the stable odd-denominator states as well as a novel
fractional quantum Hall state at the lowest half-filled Landau level. The collective mode evaluated at
the half-filled case is strikingly similar to that for an odd-denominator fractional quantum Hall state.
[S0031-9007(97)03447-9]

PACS numbers: 73.40.Hm, 72.15.Nj, 73.20.Dx

The existence of incompressible quantum fluid states itmposing a periodicity condition in the direction, the
a two-dimensional electron system subjected to a strongystem models an infinitely long quantum wire. Our
perpendicular magnetic field has presented us with aovel results here include abrupt changes in the electron
profound understanding of the odd-denominator fractionatlensity profile as one moves from one FQH state to
guantum Hall effect (FQHE) [1-4]. Interestingly, such another. These stable states, which also include the
a clear physical understanding of the simplest evenunique lowest half-filled Landau level, are identified from
denominator state, viz., the half-filled lowest Landautheir gap structures in the excitation spectra.
level, has not yet emerged [3,5-7]. In recent years, The total Hamiltonian for the system is
study of _electron correlat_ions in narrow c_hannels has H = Hy + Hypy (1)
received increasing attention [8]. Observation of a new ) o
incompressible state at a half-filled Landau level in awherej*-[o contains the kinetic energy @f electrons of
narrow channel was indeed reported a few years agg'assm anS the electrostatic confining potential,
[9], and is naturally expected in the Laughlin picture 1 N
generalized to one dimension [10], where the statistics Hy = Z[zm* (pi — eA)” + S m w%y?}, 2)
of the charge carriers should be arbitrary [11]. That =
observation was remarkable because such a state has,@¥l A is vector potential inLandau gauge The inter-
yet’ not been found to appear either in experiments [1,5?.Cti0n.term of the Hamiltonian consists Of the Coulomb
or in numerical studies [7] of a two-dimensional electronfepulsion of the electrons, the electrostatic energy of the
gas. There have been several attempts to explain tHeositive background, and the interaction energy between
origin of the nonexistence of a stable half-filled quantumthe background and the electrons.
Hall state in two dimensions. These include, among other The single-electron wave functions are given by
things, a transforr_nation from electrons to fermions Wi'th (r) = < )1/2 F<'k B ﬁ)H <X> 3
a Chern-Simons field [6]. One other possible explanation #«(r) = aJm A exp tkx = 52 )\ Y ) (3)
was suggested in Refs. [7,12], where it was shown that
reduction of the short-range part of the repulsive electronwhere the magnetic length is definecdas (i/m*Q)"/?,

electron interaction is required to stabilize this state. ~ and Q = (0§ + w2)/?, where w. = e¢B/m* is the
Here we report on the results of a model we havecyclotron frequencyx = (n,m), and

developed for the FQHE in a narrow channel (1D- A hw, 27 A2

FQHE), where there are a finite number of spin polarized y=y+ Q2 k=y+ va m,

electrons subjected to a strong perpendicular magnetic

field, interacting via the long-range Coulomb potentialwith a dimensionless quantity = /1 + (wo/w.)?. In

and confined by a potential, which arabolic in one (3), H, is a Hermite polynomial of order. Along the
dimension and flat in the other. The electrons arewire the wave function (3) is just a plane wave with wave
considered to be in a cell whose length in thdirection  vector k = (27 /a)m. Here m stands for momentum
is denoted bya. The width of the cell depends on the in the direction of the wire. In the lateral direction
strength of the confining potential relative to the strengththe wave function has a Gaussian form. Restricting
of the interactions and also on the length of the cell.ourselves in the lowest Landau level, i.e., setting= 0,
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and ignoring the constant Landau level energy, the singleevennumber of electrons i#: is ahalf-odd integer Thus,
electron Hamiltonian (2) in the second quantized form is for an odd number of electrons, we hgveriodic bound-
2k wd ¢ t ary conditions along the wire amahtiperiodic boundary

Hy = Z St Q2 aa; = Z Eia;a;, conditions for an even number of electrons. When inter-

i i electron interactions are introduced in the system the elec-

trons start to avoid each other. As interactions increase

statei . with respect to the kinetic energy, electrons begin to also

In the noninteracting ground stat®¥, electrons occupy ©CCUPY higher levels in order to reduce their mutual re-
the lowestV available single-particle levels. It is reason- PUISion. Consequently, states other tidn= 0 are also
able to require that the electron density in that state b&@lized as ground states. However, if the ground state
symmetric around the = 0 axis, i.e., the total momen- NasM # 0, the system is not expected to be in a frac-

tum M = Y ; m; = 0. This symmetry condition holds tional quantum Hall state [4].
for odd number of electrons if is aninteger and for The Coulomb matrix elements in the present model are

| obtained from

Wherea;r (a;) is the creation (annihilation) operator of a

Pans = 5 [ derdes, (2005, 00 @, () (1)
1 e? F{ 1 <277'>2(m1 B m4)2}/‘ 2 exdi2m(ms — ml)q;]exp[—%(yaq;)z]

Nt Bl 9y —
2 €A 2 \ya \/[277(";1{1 mip (aq})?
X 5m|+m2,m3+m4 ) (4)
|
where the length is measured in units af Z. =  and calculating the overlap with the Laughlin-like wave

e?/€\ gives a measure of the interaction energy, and théunctions [13]. These states are also realized in our
dimensionless integration variable ig = qyA*/(ya).  system with real long-range Coulomb potential. The
When m; = my, the integral in the second term of (4) state atr = 3 can also be characterized by calculating

does not converge due to the long-range nature of thghe overlap between the Coulorjbstate and Haldane's
Coulomb potential. To cancel out this divergence we seudopotential% state [14]. We have checked this

have two choices: We can either use a truncated C.OUIO erlap in our present system and found it to vary between
potential [13] or neutralize the system by embedding thqhe values 0.83 and 0.89 at= 9.5

wire into a positively charged background. We prefer

In our quest for a stable half-filled Landau level, we are
the latter procedure beqause the_n the Iong-ran_ge effects BE\rticularly interested to know what happens in between
the Coulomb force are included in our calculations.

. . ) . . the well-established FQHE states. For example, what are
Let us first examine how the translationally invariant

o 2
state, i.e., the/ = 0 state, changes when we change thethe stlates realized in between the FQHE states 5 and

strength of the interactions with respect to kinetic and” = 3 7. In this region there are clear jumps in bétH)
potential energies of the electrons, i.&,/E, [where and(Hi,). To get further insight into thé = 0 states
Eo = (B2/2m*X2)(w3/Q?) is the energy unit] and the realized in the wire, we have investigated the problem

length of the cel. As we varyE, /E, while keepinga of how the eIeptron density is modified When we change
fixed, the expectation values of the kinetic and potentiaﬁ‘/EO for a fixed value ofa. In the x direction the
energies change abruptly from one value to another_c.h_arge dgnsny is constant whll_e.m th_e lateyadlirection
As the calculation is repeated for other fixed values oft IS modified because of the finite width of the system.
a we obtain Figs. 1(a) and 1(b) fatHo) and (Hin), Electron density at is evaluated numerically from
respectively. The expectation values show rich structures - .

in tﬂe pargmeter spa?ce spanned dy= 5,...,12.4 and p(r) = Z Ui ) (0)ala; .

E./Ey = 0,...,80. The two energie$H,) and (FHn) b=l

jump in opposite directions, and therefore the net changket us choose a particular value of saya = 8, and

in total energy does not clearly show the sudden changesee how the density profile of the translationally invariant
in the M = 0 state. However, for a much longer systemstate changes as a function &t /E,. In Fig. 2(a), we
(at a fixed linear density), we expect sharper first-ordeshow the charge densities as a functiortf/ Ey. With

transitions between the different phases. increasingZ./E,, the width of the charge-density profile
As the jump occurs in the parameter space spannechanges abruptly from one value to the other. Calculating
by E./E, and a, it indicates a change in th&/ = the effective filling factor fromy = 27 A%n (wheren is

0 state. One earlier work identified the filling factors the number of electrons per unit area), and taking the
(v = N/N,; where N; is the Landau level degeneracy) width as full width at half-maximum, we get the filling

v =13 v =1, andv = :+ FQHE states in a system of factors0.98, 0.71, 0.56,...,0.51 and0.42 which are very
six electrons interacting via a truncated Coulomb potentiatlose to the values = 1, % % andy = % Repeating the
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FIG. 2. (a) Electronic densities in the lateral direction at
a = 8 and forM = 0 states. (b) Similar results far = 9.5.
6 580 The effective filling factors are shown in the figure.
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FIG. 1. Expectation value of (a) kinetic energy per particle

and (b) interaction energy per particle, as a functioripf E ) ]

and length of the cell for the stat¢ = 0. The effective filling These states are chosen from the phase diagram (Fig. 3)
factorsy = 1, %, 3, 2, andv = 1 are also indicated. at the points where the gap appears to be the largest.
The ubiquitous incompressible gaps in the spectra makes
the analogy with those in the corresponding two-
dimensional systems quite obvious. The novel result
here again is, of course, the signature of incompressibility
in the energy spectrum for the lowest half-filled Landau

same calculation at = 9.5, we get the densities shown in
Fig. 2(b). The effective filling factors for this value of
are0.99 and0.68, ..., 0.66, which suggest that these states
arev =l andv = % respectively. The state which has

the effective filling factor0.38, . ..,0.37 is identified as a
1

v = 3 state by the overlap calculation. gof U -Ii'l L

In Fig. 3 we show a phase diagram for the 1D-FQHE N=6 “$:
states. The diagram is obtained by systematically seeking . -§§

. . 60} A

those points in the parameter space spanned: land !;in
E./Eq, where the ground state haero total momentum © 1/2 :‘ii' : “
We then plot the energy gap between this ground state S 40F L N, "
and the first excited state. In Fig. 3 the area of a filled dot w g’ s, ’{“
is proportional to that gap. The phase diagram consists 20 ’“’
of separate regions of several FQHE states. Remarkably, iAddA ]
there is a distinct region for theven-denominatostate ok ]
v = % The area of this region is, of course, much R S e T e
smaller than those with odd-denominator states. But,
given the total absence of t@ state in a single-layer a/A
system, this observation is rather unique. Figure 4 depicts|G. 3. Phase diagram for the FQHE states at the effect-
the energy spectra for the states= 7, 5,  andv = 1. ive filling factors» = &, 2, 2, 1 2 indicated in the figure.
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= quantum Hall regime. As the interaction strength is
increased, abrupt jumps occur in the expectation values
of the kinetic and potential energies of translationally
invariant states. The width of the charge-density profile
also shows similar abrupt changes. We present the phase
diagram of the stable 1D-FQHE states. In addition to
various odd-denominator filling factors which are well
established in the two-dimensional systems, we find that,
in a region of the parameter space, the lowest half-filled
Landau level also appears as a stable incompressible
state. We also present the energy spectra of those
incompressible states. The low-lying collective modes
at v =% are strikingly similar to those of an odd-
denominator FQHE state.

One of us (T.C.) gratefully acknowledges very helpful
discussions with B. |. Halperin (Harvard).
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FIG. 4. Energy spectra calculated @t E./E,) and v:
(6.8,24), v = 3, (b) (7.6,36), v =
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