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Coulomb screening and the excitation spectra of electrons in a graphene layer with spin-orbit interaction
�SOI� are studied in the random phase approximation. The SOI opens a gap between the valence and conduc-
tion bands and between the intraband and interband electron-hole excitation continuum of the semimetal Dirac
system. As a result, we have observed a dramatic change in the long-wavelength dielectric function of the
system. An undamped plasmon mode appears in the electron-hole continuum gap reflecting the interplay
between the intraband and interband electron correlations.

DOI: 10.1103/PhysRevB.75.033408 PACS number�s�: 73.21.�b, 71.70.Gm, 75.10.Lp, 75.70.Ak

Ever since the recent discovery of the quantum Hall effect
in graphene,1–3 there has been an upsurge of interest in un-
derstanding its electronic properties. Graphene has a promis-
ing potential for nanoscale device applications4 and is also
very interesting physically because of its unusual Dirac-Weyl
type band-structure near the Fermi level.5–11 As a single layer
of graphite or an unrolled single-walled nanotube, the energy
band structure of graphene is well known just as for the
graphite or for a nanotube.5,6,8 Past few years have evidenced
increased activities in the role of the spin-orbit interaction
�SOI� in nanostructures because it introduces many unusual
features in these systems. The SOI is also predicted to ex-
hibit interesting effects such as the spin Hall effect in
graphene8 but overall its effect in graphene is as yet,
unclear.12 Further, the electron-electron interaction is also
important to understand the behavior of electrons in
graphene and has been studied by many authors in graphite-
based structures but without the SOI included.12–15 In this
paper, we explore the effect of the SOI on the electron-
electron interaction and the characteristic excitations in a
graphene layer.

Graphene has a honeycomb lattice of carbon atoms with
two sublattices. Its energy band can be calculated by the
tight-binding model5,6 and an intrinsic graphene is a semi-
metal with the Fermi energy located at the inequivalent K
and K� points at opposite corners of its hexagonal Brillouin
zone.5 In the effective mass approximation, the Hamiltonian
of electrons near the Fermi energy is expressed by a 8�8
matrix. Since the SOI due to the atomic potential only mixes
the states corresponding to the two sublattices, we can reduce
the matrix to four independent 2�2 blocks. In the represen-
tation of the two sublattices, the Hamiltonian of a spin-up
electron near the K point of the reciprocal space reads8,9

H = vp · � + �SO�z = � �SO − i�v�−

− i�v�+ − �SO
� , �1�

with �= ��x ,�y ,�z� the Pauli matrices in the pseudospin
space of the two sublattices and �±=� /�x± i� /�y. Here v
=106 m/s is the “light” velocity of the Dirac electron gas
and �SO is the strength of the spin-orbit interaction. The

eigenfunction are �k
+�r�=eik·r� cos��k/2�

ei�k sin��k/2� � for the state

�k , + � in the conduction band of energy Ek
+=��SO

2 +�2v2k2

while �k
−�r�=eik·r� sin��k/2�

−ei�k cos��k/2� � for the state �k ,−� in the va-

lence band Ek
−=−��SO

2 +�2v2k2 with tan �k=ky /kx, tan �k

=�vk /�SO, and k=�kx
2+ky

2. For a bare Coulomb scattering of
two electrons at states �k ,	� and �p ,	1� into states �k
+q ,	�� and �p−q ,	1��, respectively, the interaction matrix el-
ements are

vk,p
	,	�,	1,	1� = gk

	,	��q�v0�q�gp
	1,	1��− q� . �2�

Here v0=e2 / �2
0
iq� is the two-dimensional Coulomb inter-
action �in the Fourier space� with the high-frequency dielec-

tric constant 
i=111, gk
	,	��q� is the interaction vertex, and the

index 	=± denotes the two bands. The randon-phase ap-
proximation �RPA� dressed interaction matrix elements have
the same form as the bare interaction matrix elements, i.e.,
Eq. �2�.16 The dielectric matrix is then expressed as a unit
matrix multiplied by a dielectric function


̂�q,�� = 1 − v0�q��̂0�q,�� �3�

with the electron-hole propagator

�̂0�q,�� = 4 �
	,	�,k

�gk
	,	��q��2

f	Ek+q
	� 
 − f	Ek

	


� + Ek+q
	� − Ek

	 + i

. �4�

The factor 4 comes from the degenerate two spins and the

two valleys at K and K�; and the vertex factor is �gk
	,	��q��2

= 	1+		� cos �k+q cos �k+		� sin �k+q sin �k�k+q cos �� / �k
+q�
 /2 with � being the angle between k and q. Since the
intra-band backward scattering at q=2k and the interband
vertical transition at q=0 are not allowed under Coulomb
interaction in the system, we have �gk

	,−	�0��2= �gk
	,	�2k��2=0.

The collective excitation spectrum is obtained by finding the
zeros of the real part of the dielectric function 
r. For con-
venience we denote each zero as a plasmon mode which may
differ from the convention used in other places where some
Landau damped modes are not counted since they do not
have poles for 
̂−1. In the following, we present our results
using an estimated SOI strength �0.08–0.1 meV in
graphene.8 However, the results can easily be applied to
Dirac gases of different �SO by scaling the energy and
wavevector in units of �SO and kSO=�SO/ ��v�, respectively.
In graphene with the Fermi energy EF��SO �at the tempera-
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ture kBT��SO�, the SOI can be neglected. As a result, our
�SO=0 result can be applied to systems of different carrier
densities �temperatures� by scaling the energy and wavevec-
tor in units of the Fermi energy EF �thermal energy kBT� and
wave vector kF=EF / ��v� 	kT=kBT / ��v�
, respectively.

First we explore the properties of an intrinsic graphene
where the net electron density is zero and EF=0. In Figs. 1�a�
and 1�b�, we show the real �
r� and imaginary �
i� parts of
the dielectric function at T=0 for different SOI strengths6,8

�SO=0 �solid�, 0.08 �dashed�, and 0.1 meV �dotted� at a
wave vector q=0.05�105 cm−1. At T=0, only the interband
transitions are allowed for electrons. The electron-hole

propagator for �SO=0 is given by �̂0�q ,��=
−q2 / 	4��2v2q2−�2
, which has been previously obtained via
the renormalization group theory.10,13 Therefore we have

r=1 �for ���vq� above the interband electron-hole con-
tinuum �EHC� edge and 
i=0 �for ���vq� below it. With
increasing �SO, the peaks of 
r and 
i, which are located at
the edge of the interband EHC, �H=2��SO

2 +�2v2q2 /4, shift
to higher energies. At the same time, for ���H, 
r increases
continuously with �SO and remains positive. As a conse-
quence, in an intrinsic graphene there is no plasmon mode at
zero temperature.

At a finite temperature, the intraband transitions are al-
lowed and they contribute to the electron-hole propagator of
Eq. �4� and a 
r dip at the intraband EHC edge �L=�vq is
formed as shown in Fig. 1�c�. For �SO=0, where �L=�H,
two plasmon modes may appear: one strongly Landau
damped at �=�vq while the other weakly damped at a
higher energy. The damping rates of the plasmon modes are
indicated in Fig. 1�d� by 
i at the corresponding energies.
Comparing the curves in Fig. 1�d� with those in 1�b� at a
finite temperature we observe a finite 
i at ���L introduced
by the intraband transition and a decreased 
i for ���L due
to the weakening of the interband transitions, a result of the
electronic occupation of the conduction band. With increas-
ing �SO, the 
r peak shifts with �H to higher energies while

the 
r dip stays with �L. Since the 
r peak has a lower energy
than the 
r dip initially at �SO=0, the peak and the dip merge
at first and split again. As a result, at T=2 K the 
r curve for
�SO=0.08 meV is deformed in such a way that two extra
zeros of 
r or two new plasmon modes emerge 	Fig. 1�c�
.
Corresponding to the separation of the 
r peak from its dip,
the 
i curve develops a gap between �L and �H as illustrated
in Fig. 1�d�. One of the plasmon modes is located in this 
i
gap or the EHC gap and is undamped, and can be observed
experimentally. For �SO=0.1 meV, there is no damped plas-
mon mode in the interband EHC.

The appearance of the undamped plasmon mode in the
presence of the SOI is a result of the interplay between the
intraband and interband correlations which can be adjusted
by varying the temperature of the system in experiments. For
an intrinsic graphene with �SO=0.08 meV, increasing the
temperature from T=0 the ratio of the intraband to the inter-
band correlation increases and 
r in the EHC gap ��L��
��H� decreases and crosses zero. There is no plasmon mode
when the interband correlation dominates at T�1.1 K and
only two damped modes exist when the intraband correlation
dominates at T�3.3 K. In the temperature region 1.1 K
�T�3.3 K or T�2�SO when the intraband and interband
correlations match, however, 
r��L��0 while 
r��H��0 and
one undamped plasmon mode exists. Furthermore, in the up-
per end of this regime at 1.9 K�T�3.3 K, one undamped
mode and three damped modes exist.

The � versus q spectrum of the plasmon modes at
T=2 K is plotted by thick solid curves for �SO=0 in Fig.
2�a� and for �SO=0.08 meV in Fig. 2�b�. The weakly
damped plasmon mode for �SO=0 has an approximate dis-
persion of ���q at small q. A finite �SO separates �H from

FIG. 1. Real �
r� and imaginary �
i� parts of the dielectric func-
tion vs � at T=0 �left panels� and T=2 K �right panels� for an
intrinsic graphene �EF=0� and the SOI strength �SO=0 �solid�,
0.08 meV �dashed�, and 0.1 meV �dotted�. The wave vector is
q=0.05�105 cm−1.

FIG. 2. Plasmon spectrum �thick curves� of an electron gas in an
intrinsic graphene �EF=0� at temperatures T=2 K with �SO=0 in
�a� and 0.08 meV in �b�. Intraband �dark shaded� and interband
�light shaded� single-particle continuum are also shown. �L and �H

are the lower and upper borders separating the white �EHC gap� and
shaded areas, respectively, in �b�. The vertical dotted lines indicate
the q values for which excitation intensity is shown in the insets and
the dielectric function is shown in Figs. 1�c� and 1�d�.
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�L and opens a gap between the intraband and interband
EHC’s. As a result, the formerly weakly damped plasmon
mode becomes undamped near q=0 because it is now lo-
cated in the gap. When it approaches the interband EHC
edge, the dispersion curve of this mode is squeezed to a
lower energy by the 
r peak near the interband EHC edge as
shown in Fig. 1�c� and then is split into three plasmon
modes, viz., two new plasmon modes emerge near the inter-
band EHC edge. One of the modes remain undamped in the
EHC gap and the other Landau damped two are located in-
side the interband EHC. The latter two modes merge and
disappear at q near 0.07�105 cm−1 for �SO=0.08 meV. The
undamped mode survives at larger wavevectors until it
merges with the strongly damped mode to the intraband EHC
edge when the interband correlation dominates and 
r be-
comes positive in the entire frequency regime. In the insets
of Fig. 2, we show the excitation spectral weight or the dy-
namical structure factor S�q ,�� �Ref. 17� at q=0.05
�105 cm−1. The damped plasmon spectral weight is hidden
in the EHC’s while the undamped plasmon spectrum appears
as a sharp peak in the EHC spectral gap.18,19

As discussed above, the dominant intraband correlation
results in the appearance of a plasmon mode with dispersion
���q at small q in the Dirac gases as well as in the Fermi
gases.20 Different from the normal Fermi gases, the Dirac gas
at EF=0 shows only the interband correlation at zero tem-
perature and there is a strong competition between the intra-
band and interband correlations as the parameters of the sys-
tem vary. Controlling the temperature of a graphene system
we can change significantly the ratio between the intraband
and interband many-body correlations of the Dirac electron
gas with the SOI and this would lead to the observation of an
undamped plasmon mode in the experiments. Another ap-
proach to changing the ratio between intraband and interband
correlations is by varying the carrier density. By applying a
gate voltage to a graphene layer or by doping one can ma-
nipulate the electron density and the Fermi energy in the
system1,2 and it would be interesting to observe the corre-
sponding changes in the excitations.

Due to the symmetry of the band structure, systems hav-
ing the same density of electrons or holes are equivalent.
Here we consider a system with a net electron density and a
positive Fermi energy EF. For a Dirac gas in graphene, the
extra electrons in the conduction band reduce the interband
scattering rate but enhances the intraband one by increasing
the length of the Fermi ring. Similar to the finite temperature
case, a plasmon mode with an approximate dispersion �
��q at small q appears even at zero temperature as shown in
Fig. 3�a�. For �SO=0 and at T=0, a EHC gap of width
2�v�kF−q� is opened above the intraband EHC edge in the
range 0�q�kF. This EHC gap at the finite Fermi energy
makes the ���q plasmon mode undamped near q=0. An-
other character of this mode at a finite fermi energy is its flat
dispersion slope as shown by the dashed curve in Fig. 3�a�,
compared with the case at the finite temperature as shown in
Fig. 2�a�, near its entrance into the interband EHC. Further-
more, in contrast to the emergence of new plasmon modes
occurred when its dispersion curve enters the interband EHC
from a EHC gap due to the SOI, the dispersion curve enters
the interband EHC smoothly here. In this paper, we charac-

terize the carrier density by the Fermi energy to emphasize
the interesting energy regime in the existence of SOI. The
corresponding carrier density can be estimated with the help
of their simple relation at zero temperature n= �EF

2

−�SO
2 � / ��v2�. For example, the carrier density of a system

with EF=1 meV is n=7.34�107 cm−2.
The presence of the SOI changes the physical scenario of

the excitation spectrum in the �SO=0 case described above.
At T=0, the intraband EHC edge deviates from �=�vq to a
lower energy ��SO

2 +�2v2�kF+q�2−��SO
2 +�2v2kF

2; the inter-
band EHC edge shifts to a higher energy ��SO

2 +�2v2kF
2

+��SO
2 +�2v2�kF−q�2 for q�2kF while remains �H when

q�2kF. More interestingly, the SOI may shift the plasmon
mode in the interband EHC to the EHC gap and makes it
undamped. For a system with EF=0.25 meV, the plasmon
mode at q=0.05�105 cm−1 becomes undamped if �SO
�0.02 meV. In a graphene with �SO=0.08 meV, the plas-
mon mode remains undamped up to q=0.1�105 cm−1 where
it merges with the mode in the intraband EHC as illustrated
by the solid curves in Fig. 3�a�.

At a finite temperature when the system is not degenerate,
the restriction to single-particle transitions by the Fermi en-
ergy is relaxed and the EHC is independent of the Fermi
energy as shown by the shades in Figs. 2�b� and 3�b�. How-
ever, the collective excitation spectrum changes as the ratio
of intraband to interband correlation increases with the net
electron density. The relative weakening of interband corre-
lation when EF��SO lowers the 
r peak at the interband
EHC edge 	Fig. 1�c�
, and consequently changes the number
or shifts the position of the zeros of 
r for different q. Com-
paring the resulting plasmon spectrum in Fig. 3�b� with that
in Fig. 2�b�, we find that for q between 0.006–0.04
�105 cm−1 the undamped mode disappears as the 
r peak
becomes less than zero and for q bigger than
0.07�105 cm−1 two damped modes exist in the interband
EHC.

FIG. 3. The same as in Fig. 2 with EF=0.25 meV at T=0 �a�
and T=2 K �b�. The solid curves are for �SO=0.08 meV and the
dashed in �a� for �SO=0. In the inset of �b�, we zoom the area
where the �q plasmon mode enters the interband EHC and splits
into three modes.
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In summary, we have derived the electron-hole propagator
and the dynamically screened Coulomb interaction matrix of
an electron system in graphene with spin-orbit interaction in
the RPA. In the intrinsic graphene without the SOI, our result
reduces to the analytical result of a Dirac electron gas previ-
ously obtained by the renormalization group theory and pre-
dicts no collective excitations. The SOI changes the Dirac
gas to a narrow gap semiconductor and splits the interband
single-particle continuum from the intraband one. At a finite
temperature or under an applied gate voltage, the intraband
correlation introduces plasmon modes to the system and the
interplay between the intraband and interband correlations
plays an important role in the plasmon spectrum. More in-
terestingly, an undamped plasmon mode exists in the EHC
gap opened by the SOI in the wave-vector range of order
0.1�105 cm−1 and can be observed in the experiments.18,19

Further, in a gated graphene with net electrons or holes, a

EHC gap is formed for q�kF and an undamped plasmon
mode of frequency ���q exists in the Dirac gas even at
T=0 and with a negligible SOI, similar to the situation in a
Fermi gas. In contrast to the negligible effect of the SOI to
the dynamic Coulomb screening and the plasmon spectrum
of a Fermi gas in a InGaAs quantum well,21 however, the
SOI may significantly change these properties of a Dirac gas
in a graphene.

Recently, it has come to our attention that our zero-SOI
result has been repeated by other authors22 and our result has
been employed to discuss the possibility of Wigner crystal-
lization in graphene.23
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