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We report on a theoretical approach developed to investigate the influence of the Bychkov-Rashba interac-
tion on a few interacting electrons confined in a quantum dot. We note that the spin-orbit coupling profoundly
influences the energy spectrum of interacting electrons in a quantum dot. Interelectron interaction causes level
crossings in the ground state and a jump in magnetization. As the coupling strength is increased, that jump is
shifted to lower magnetic fields. Low-field magnetization will therefore provide a direct probe of the spin-orbit
coupling strength in a quantum dot.
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It has long been recognized that a two-dimensional elec-
tron gass2DEGd in narrow-gap semiconductors, particularly
in InAs-based systems with its high values of theg factor,
exhibit zero-field splitting due to the spin-orbitsSOd
coupling.1 This coupling is also the driving mechanism for
making futuristic devices based on controlled spin transport,
such as a spin transistor,2,3 where the electron spins would
precesssdue to the SO couplingd while being transported
through the 2DEG channel. Tuning of this precession in the
proposed spin transistor would provide an additional control
that is not available in conventional devices, but may be
crucial for the rapidly emerging field of semiconductor
spintronics.3 Hence the upsurge of interest in recent years for
a better understanding of the SO coupling in nanostructured
systems.

The spin-orbit interaction in semiconductor heterostruc-
tures can be caused by an electric field perpendicular to the
2DEG. Riding on an electron, this electric field will befelt as
an effective magnetic field lying in the plane of the 2DEG,
perpendicular to the 2D wave vectork of the electron. We
consider the Bychkov-RashbasBRd Hamiltonian,4,5

HBR =
e"2

s2m0cd2skW 3 EW d · sW ,

where EW is the confining electric field at the 2DEG,
sW =ssx,sy,szd denotes the Pauli spin matrices, andc is the
speed of light. The single-electron Hamiltonian for the
2DEG with the electric field normal to the interface,

EW =s0,0,Ezd, takes the form

H = −
"2

2m* S ]2

]x2 +
]2

]y2D + iaSsy
]

]x
− sx

]

]y
D ,

wherea is the SO coupling parameter which is sample de-
pendent and is proportional to the electric fieldsinterfacial
and externally appliedd. Experimentally observed values ofa
lie in the range of 5–45 meV nm.1 The energy dispersion
then consists of two branches:

E±skd =
"2

2m* k2 ± ak,

with an energy separationDSO=E+−E−=2ak for a givenk.
The corresponding wave functions are

C±skx,kyd = x±skx,kydeikxx+ikyy =
1
Î21 1

±
− ikx + ky

k
2eikxx+ikyy.

The spin parts of the wave functionsx±skx,kyd are mutually
orthogonal andkx±uszux±l=0. Therefore in the statesC± the
spins of the electrons lie in thexy plane and point in opposite
directions. In addition,

kx±usxux±l =
2ky

k
, kx±usyux±l = −

2kx

k
,

i.e., the spins areperpendicularto the momentumskx,kyd.
Spatial alignment of spins therefore depends on the wave
vector.1

Spin-orbit interaction and electron-electron interactions
are responsible for a variety of interesting effects in quantum
dots.6 In this paper, we present a numerically exact treatment
of the BR Hamiltonian in a system of interacting electrons
confined in a parabolic quantum dotsQDd7,8 under the influ-
ence of an external magnetic field. More specifically, we ex-
plore the energy spectra and magnetization9 of a few inter-
acting electrons in a quantum dot in the presence of SO
coupling. It should be pointed out that while a large number
of theoretical work has been reported as yet in the literature
for a 2DEG10 and a QD11,12with spin-orbit coupling, in most
cases, the electron-electron interaction has been ignoredsor
treated within an approximation13d due to its inherent com-
plexity.

Let us begin with the single-electron states. Unlike the
case of a circular quantum dot with hard walls where exact
analytical results for the single-electron energy spectrumsin
the presence of the SO interactiond are available, for the
more realistic case of a parabolic QD, the energy spectrum
can only be obtained numerically. In the presence of the BR
interaction, the Schrödinger equation consists of two parts:
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−
"2

2m* ¹2c↑ + a=−c↓ + vcsr dc↑ = «c↑,

−
"2

2m* ¹2c↓ − a=+c↑ + vcsr dc↓ = «c↓, s1d

wherec is a two-component spinor,

c = Sc↑

c↓ D , s2d

=±=] /]x± is] /]yd, and vcsr d is the confinement potential.
We seek a solution of the form

c↑ = f↑srdeim↑u,

c↓ = f↓srdeim↓u,

which with Eq. s1d yields m↑=m↓−1s=md. In the case of a
parabolic confinement potentialvc= 1

2m*v0
2r2, the radial

equations are

xf↑9 + f↑8 + Sn −
m2

4x
−

x

4
D f↑ − bx1/2S f↓8 +

m+ 1

2x
f↓D = 0,

s3d

xf↓9 + f↓8 + Sn −
sm+ 1d2

4x
−

x

4
D f↓ + bx1/2S f↓8 −

m

2x
f↑D = 0,

where x=r2/a2, a2=" / sm*v0d, n=« / s2"v0d and b
=m*aa /"2. When b=0 si.e., a=0d, Eq. s3d reduces to two
uncoupled Laguerre equations with solutions

f↑ = fnm= e−x/2xumu/2Ln
umu,

f↓ = fn,m+1,

with the energies

nnm= n +
umu + 1

2
. s4d

In the presence of an external magnetic fieldB the term

HB =
e2B2r2

8m*c2 −
ieB"

2m*c

]

]u
+

eaB

2"c
rS 0 e−iu

eiu 0
D +

1

2
gmBBsz

has to be added to the spinor HamiltonianH. Here the first
two termssdiagonald are due to the interaction of the orbital
motion and the magnetic field. The thirdsnondiagonald term

originates from the vector potential partAW =sB/2ds−y,x,0d in

the minimal coupling schemea /"fsW 3 spW −e/cAW dgz of the SO
interaction. The last term gives the Zeeman energies of the
components of the spinors. Whenb=0 the functionsfnm will
still be eigenstates of the Hamiltonian provided that we re-
place the single particle energiesnnm with the expressions

nnm
s = n +

umu + 1

2
−

vc

4V
m+ s

gmBB

4"V
,

where signss= ±1 correspond to the upper and lower
components of the spinor. Furthermore, for the angular

velocity v0 related to the harmonic confinement potential
we have to substitute the effective angular velocityV
=v0(1+vc

2/ s4v0
2d)1/2 where vc=eB/ sm*cd is the cyclotron

frequency.
For thebÞ0 case which is our main concern here, we use

the following expansion:

f↑ = o
n=0

`

cn
↑fnm, f↓ = o

n=0

`

cn
↓fn,m+1.

For the angular momentamù0 we find that the expansion
coefficients satisfy the equations11

sn − nnm
↑ dcn

↑ =
b

2
fh+sn + m+ 1dcn

↓ + h−ncn−1
↓ g,

sn − nn,m+1
↓ dcn

↓ =
b

2
fh+cn

↑ + h−cn+1
↑ g,

and the equations

FIG. 1. Energy spectrum of a two-electron InAs quantum dot
versus the applied magnetic field for different values of the
Bychkov-Rashba interaction parametera smeV nmd. For clarity, at
each value of the magnetic field and for a given total angular mo-
mentum, only the lowest energy is plotted. The Zeeman energy is
also included.
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sn − nnm
↑ dcn

↑ = −
b

2
fh−cn

↓ + h+cn+1
↓ g,

sn − nn,m+1
↓ dcn

↓ = −
b

2
fh−sn − mdcn

↑ + h+ncn−1
↑ g,

for states withm,0, and h±=1±ea2B/ s"cd. Solutions of
these eigensystems provide the single-electron energies«
and the spinor wave functionsc fEq. s2dg, which have been
investigated earlier by several authors in a variety of ways.12

For a system of interacting electrons we diagonalize the
many-body Hamiltonian in a basis consisting of noninteract-
ing many-body states, which in turn are constructed as anti-
symmetrized direct products of the two-component spinors
c. Since the Coulomb force is independent of the spin
orienation we evaluate the sum

kcl1
cl2

uVCoulucl3
cl4

l = o
s1,s2

kcl1

s1cl2

s2uVCoulucl3

s2cl4

s1l,

l=sn,md, of four terms. An explicit expression for these
terms for a parabolic QD can be found in Ref. 8.

In our numerical investigations, we choose InAs and InSb
quantum dots with parameters,m* /m0=0.042, e=14.6,

g=14 andm* /m0=0.014,e=17.88,g=40, respectively. InSb
quantum dots are also considered here because of its highg
values and a relatively largea s,14 meV nmd.14 In both
systems, we choose"v0=7.5 meV. The energy spectrum of
the two-electron state in InAs QD is shown in Fig. 1 for
various values of the BR coupling parametera. Similar re-
sults for InSb QD are presented in Fig. 2.

The essential feature of the energy spectra ata=0 is that
with the increase in the magnetic field, the ground state
moves fromJ=0 to J=2 sJ=m+sz is the total angular mo-
mentumd. This is already well established in the literature.9

This level crossing persists for a nonzero value ofa, but the
crossing point shifts to lower magnetic fields. This shift of
the crossing point can perhaps be observed experimentally
by a variety of ways, such as capacitance spectroscopy, or by
transport spectroscopy.8

The results for magnetization at the ground state, defined
asM =−]E/]B, whereE is the total energy of the system, of
quantum dots with or without the BR interaction is presented
in Fig. 3. Magnetization is a fundamental thermodynamic
quantity that reflects the change of the ground state electron
energy in a magnetic field,15 thereby providing valuable in-
formation about many-electron dynamics of the QD in a
magnetic field. We have established earlier that oscillations
in magnetization in a few electron-quantum dots are a direct
consequence of the effects related to the electron-electron
interaction between the two-dimensional electrons confined
in the dot.9. A jump in M occurs at a magnetic field where
the ground state changes from one angular momentum to
anothersFigs. 1 and 2d. Similar behavior is also expected in
a nanoscopic quantum ring.16 With increasing strength ofa,
this jump in magnetization at the energy-level crossing is
pushed to lower magnetic fields. For the InAs QD this shift
can be as large as,1.5 Tesla whena is increased from zero
to 40 meV nm. Therefore, low-field magnetization measure-
ments of quantum dots could be a direct probe of the SO
coupling strength.

FIG. 2. The same as in Fig. 1, but for the InSb quantum dot
system.

FIG. 3. Magnetization in the ground state for various values of
the SO coupling strength and for the two QD systems.
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In closing, we have developed a theoretical approach
where the SO interaction is treated via exact diagonalization
of the Hamiltonian for interacting electrons confined in a
parabolic QD. Coulomb interaction causes energy levels to
cross and at the crossing point magnetization shows a jump.
In a magnetic field the strength of the SO coupling is pro-
portional to the fieldsin addition to the coupling parameter
and the angular momentumd. Hence, the effect of the cou-
pling is more prominent for slopes of the higher angular
momenta energy curves. As a consequence, an increase in
the SO coupling strength causes the energy level crossings to

move to weaker fields and the jump in magnetization shows
a large shift to weaker magnetic fields. This result can be
exploited to tune the SO coupling strength that might be
useful for spin transport. Our theoretical approach can be
extended to include a larger number of electrons in the dot.
Details will be published elsewhere.
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