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A model for periodic array of scatterers in a two-dimensional electron gas~antidots! subjected to a strong
perpendicular magnetic field is presented and its influence on the correlated states of the electrons is studied.
We observe unique interaction- and disorder-driven spin transitions in the system. For a Gaussian form of
antidot potential, the ground state at13-filled lowest Landau level gradually transforms from a fully spin-
polarized state to a spin-partially polarized and eventually to a spin-unpolarized state as the potential strength
and width are increased. The signature of those transitions is also evident in the lowest-energy spin and charge
excitations.

Investigations of the electron states in quantum-confined
systems like quantum dots,1–5 quantum rings,6 and various
other mesoscopic systems in recent years have revealed a
wealth of information on the role of the confinement poten-
tial, electron correlations, etc. in low-dimensional electron
systems. The purpose of this paper is to present a model
calculation of one other such interesting system, which may
be considered the reverse of the quantum dots, viz., antidot
arrays,7,8 in the extreme quantum limit. The antidot arrays
were first created by Weisset al.7 by imposing~lithographi-
cally! a periodic array of strong scatterers upon an otherwise
defect-free two-dimensional electron gas~2DEG!. This is
normally achieved by punching holes at a regular interval in
a high-mobility 2DEG. Transport measurements on these
systems7 have shown interesting magnetoresistance oscilla-
tions at low magnetic fields. The periodicity of these oscilla-
tions was found to correspond to the condition that the cy-
clotron orbit radius is an integer multiple of the modulation
period. Many other peculiarities were also observed in
Hall-effect7 and far-infrared magnetospectroscopy8 measure-
ments. Theoretical attributes to these observed effects have
been the classical nonchaotic9 and chaotic10 electron dynam-
ics and Landau band quantization due to a weak periodic 1D
potential.11 Studies of antidot arrays have recently taken a
very interesting turn with the observation of the fractional
quantum Hall effect~FQHE! in antidot arrays.12 This effect,
first discovered in a 2DEG,13 is entirely due to electron
correlations.14 It arises due to the formation of an energy gap
separating the ground state, which is a uniform-density liquid
state, and the quasiparticle excitations.14,15 The energy gaps
are present because of the incompressibility of the electron
system at certain fractional Landau level fillings. At these
densities, there are positive discontinuities in the chemical
potential that indicate incompressibility of the ground state
and are a measure of the energy gap.14,15 The FQHE in a
pure 2DEG has been studied quite exhaustively15 since its
discovery and in the light of the recent experiment men-
tioned above, it is important to find out how the FQHE states
are influenced by the antidot arrays as compared to the case
of a pure 2DEG.

It should be pointed out that the original motivation be-
hind searching for the FQHE in antidot arrays12 was prima-
rily to look for a signature of the presence of the ‘‘Chern-
Simons gauge field’’ particles.16 In the mean-field
approximation, these objects are expected to behave as non-
interacting fermions in a magnetic field~except at half-filled
Landau level where the magnetic field is exactly canceled by
the so-called gauge field! and should therefore have a cyclo-
tron radius ~effective! at the prominent odd-denominator
FQHE states. If that cyclotron radius matches with the
modulation period one would expect oscillations in magne-
toresistance. However, since in what follows we focus on the
FQHE states at 1/3-filled lowest Landau level, the Laughlin
state is identical to the state of gauge-transformed particles
and we need to consider only the system of two-dimensional
electrons in the presence of antidot arrays. We should point
out that the observed fractions in antidot arrays12 did not
include 1/3.

In the case of a pure 2DEG one begins with two-
dimensional electrons in a periodic rectangular geometry that
is a well-established method for accurate evaluation of the
FQHE states.15,17Accordingly, we consider a rectangular cell
containingNe number of electrons. We ignore for simplicity
the Landau-level mixing, and impose periodic boundary con-
ditions such that the cell contains an integer numberNs of
flux quanta. We also consider the electrons to be in the low-
est Landau level. In the present case of antidot arrays, the
rectangular cell now has, in addition, a static antidot in the
middle of the cell. The antidot potential, just like the Cou-
lomb interaction, is periodically repeated~with period
A2pNsl 0 , for the square cell considered here, where
l 0
25\c/eB is the magnetic length! when the periodic

boundary condition is imposed in both directions of the two-
dimensional plane. The two-body termsuj 1 j 2 j 3 j 4 in the
Hamiltonian

H5 (
j 1 , j 2

t j 1 j 2aj 1
† aj 21 (

j 1 , j 2 , j 3 , j 4
uj 1 j 2 j 3 j 4aj 1

† aj 2
† aj 3aj 4

PHYSICAL REVIEW B 15 FEBRUARY 1996-IIVOLUME 53, NUMBER 8

530163-1829/96/53~8!/4664~4!/$06.00 4664 © 1996 The American Physical Society



to be diagonalized are the matrix elements of the Coulomb
potential described earlier.15,18The periodically repeated an-
tidots interact with an electron atr via the potential

V~r !5(
k,l

Vantidot~R1kax̂1 lb ŷ2r !,

whereR5(X,Y) is the position of the antidot within the cell

of sizea3b. Defining the Fourier transform of the antidot
potential as

Ṽantidot~q!5
1

abE Vantidot~r !eiq•rdr

and denoting byl the aspect ratioa/b the one-body matrix
elements in the Hamiltonian can be written in the lowest
Landau level in the form

t j 1 j 25(
k,l

eiA2p/l 0
2NslXkeiA2pl/l 0

2NsY~ j 12 j 21Nsl !ṼantidotSA 2p

l 0
2Nsl

@k21l2~ j 12 j 21Nsl !
2#1/2D

3ei ~p/Ns!~ j 11 j 22Nsl !ke2~p/2Nsl!@k21l2~ j 12 j 21Nsl !
2#.

In what follows, we use a Gaussian form of the potential for
the scatterers:

Vantidot~r !5V0e
2~r2R!2/d2,

whereV0 ~same units as energy,e2/el 0 , where e is the
background dielectric constant! is the potential strength,d
~in units of magnetic length!. In the limit d→0, one gets the
d-function potential, which was considered earlier by other
authors19 within the Hartree approach and is supposed to be
a good approximation in the case of a steep potential of the
scatterer. As we shall see below, our choice is better in the
magnetic field regime where electron correlations are domi-
nant. There are also other choices available in the literature
such as the product of cosine functions, but our model,
where we impose periodicity of the antidot potential explic-
itly, should effectively be the same as that choice. Our results
indicate unique spin transitions at the 1/3-filled lowest Lan-
dau level, which is known to be fully spin polarized in the
absence of antidot arrays.

Before we present the results of our present work, let us
briefly recapitulate what we know about the 1/3 filling of the
lowest Landau level, studied earlier in this model. The
ground-state energy obtained in the finite-size systems com-
pares extremely well with the many-body calculations.15 The
energy gap and the elementary excitations are also well de-
scribed by the present model for the pure 2DEG in the FQHE
regime and are in good agreement with the many-electron
results. It has been established theoretically15,17,20as well as
experimentally21 that in the limit of low magnetic fields, sev-
eral filling fractions tend to have spin-reversed states. How-
ever, the state at 1/3-filled lowest Landau level remains fully
spin polarized, even in the limit of vanishing Zeeman
energy.15,17

The results for the ground-state energy of the antidot sys-
tem are shown in Fig. 1 for~a! d50.5, ~b! 1.0, and~c! 1.5.
ForV050, we recover the earlier result of a pure 2DEG,15,18

but asV0 is increased, the ground-state energy increases
monotonically. For a repulsive scattering center an increase
in energy is, of course, expected. The important result here is
that asV0 increases the lowest-energy state no longer re-
mains spin polarized, but gradually transforms into a spin-
partially-polarized state (S51) and then to a spin-

unpolarized stateS50, whereS is the total spin of the four-
electron system considered here. These spin transitions can
be explained as follows: In the absence of electron-electron
interactions, but in the presence of antidot potentials, the
degeneracies of the states of the noninteracting systems are
lifted and the system is in the spin-unpolarized state. On the
other hand, in the absence of antidot potentials but for the
interacting systems, the ground state is fully spin polarized
as discussed above. Therefore, for strong antidot potentials
~large values ofV0), the ground state is still unpolarized,
while for moderate to weak antidot potentials the electron-
electron interaction has the tendency to polarize the ground
state.

The spin transitions also depend on the width of the
Gaussian potential~Fig. 1!, which understandably works in a
similar way to theV0 ~i.e., the effect is dominant whend is
increased!. We also find that in the region ofV0 where spin
transitions take place, the spin of the state is not well defined
because there the spin states are degenerate. Away from
those regions, the spin of the ground state is well defined.
Interestingly, similar studies with ad-function potential re-
vealed that the effect of antidot potentials is insignificant.
This is in agreement with our findings that the spin transi-
tions take place only forlarge values ofd. A numerical
study of the effect of ad-function potential in a 2DEG was
reported earlier by Rezayi and Haldane.22 For a six-electron
system in spherical geometry, they found that the Laughlin
ground state is stable regardless of the potential strength.

The stability of the spin-reversed ground states in Fig. 1
depends crucially on the energy gaps, which are different for
different spin states. The spin-reversed excitations have been
observed earlier in the activation energy measurements.21We
have calculated the quasiparticle-quasihole energy gap from
the discontinuity of chemical potential at the ground-state
filling factor.17,23 The results for the lowest-energy excita-
tions are presented in Fig. 2, where we have included the
contribution due to the Zeeman energy. The results are for
d51.0 and for various values of the potential strengthV0 .
ForV050, the earlier results are recovered,17 where, for low
magnetic fields, the spin-reversed quasiparticle and spin-
polarized quasihole pair have the lowest energy and beyond
a crossover point (;12 T!, the fully spin polarized
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quasiparticle-quasihole gap~Laughlin gap! has the lowest
energy. ForV050.1, we have a similar situation with a
crossover point of;8 T, except that the energy gap is low-
ered. Such a lowering of the gap is expected in the presence
of any impurity potentials. Interestingly, we find that the en-
ergy gap vanishes atV050.5. This is the region ofV0 where
the spin of the ground state changes from being fully spin
polarized to a spin partially polarized state~Fig. 1!. As V0 is
increased further, various spin-reversed excitations start to
have the lowest energy and they all decrease with increasing
magnetic field. For a spin-reversed ground state~at other

filling fractions! this behavior has been established earlier
theoretically.23 The energy gaps forV052.0 and 3.0 are very
close and in this region ofV0 there is one other spin transi-
tion where the ground state changes from spin-partially-
polarized to spin-unpolarized (S50) states. All of these
spin-reversed excitation energies decrease with increasing
magnetic field.

Let us now discuss some of the approximations involved
in our model and their possible implications. First, it should
be pointed out that in our model, onlyV0 , d, and the filling
factor are the independent variables. The periodicity of the
antidot potentials is inversely proportional to the magnetic
field B. Although it does not affect our results, this condition
need not be present in a better model for antidot arrays. As
shown in Fig. 2, in the high-magnetic-field region, only
small values ofV0 persist and their sole effect is to reduce
the gap. Here the nature of the ground state and excitations is
the same as that forV050. One should note that although the
system studied here is rather small, it has already been es-
tablished earlier15,17that the ground-state energy obtained for
theV050 case is almost identical to the many-electron sys-
tem results. Therefore, the results presented above are per-
haps reliable representatives of a many-electron system, at
least in the case of weak antidot potentials. Of course, in a
more realistic situation we need to include several other cor-
rections arising from the finite-thickness effects, Landau-
level mixing, etc. The latter effect is known to be quite im-
portant at low fields. Earlier work on the effect of repulsive
impurities on the FQHE states considered only the lowest
Landau level even in the presence of very strong
impurities.22We would like to mention that, since for a given
number of electrons and the filling fraction, the area of the
cell is directly related to the magnetic length,d cannot be
made arbitrarily large compared to the magnetic length. In

FIG. 1. Ground-state energy~per particle! and the total spinS of
1/3-filled lowest Landau level as a function of the antidot potential
strengthV0 and widthd/l 050.5 ~a!, 1.0 ~b!, and 1.5~c!.

FIG. 2. The energy gap~units of e2/el 0) as a function of the
magnetic fieldB ~Tesla! for various values of the potential strength
V0 ~units of energy!. The total spin for the ground state, the quasi-
particle, and the quasihole (SG ,Sp ,Sh) at a givenV0 are also pre-
sented. For example, forV050 and 0.1, the ground-state spin has
S52 ~four-electron system!, and the lowest-energy gap corresponds
to spin-reversed quasiparticle– (S51) spin-polarized-quasihole (S
52) pair up to a crossover point, beyond which the gap is due to
fully spin-polarized-quasiparticle– (S52) quasihole (S52) pair.
The spin-reversed excitations in the low-field regime are given in
the inset.

4666 53TAPASH CHAKRABORTY AND PEKKA PIETILÄINEN



fact, ford@l 0 , the energy rises very rapidly with increasing
V0 and the spin transitions are somewhat anomalous at large
V0 . Our results remain quite stable for a large range of
d;022l 0 andV0 , which might provide an indication that
the Landau-level mixing may not substantially change the
result. We expect that the approximations discussed above
affect primarily the crossover points in spin transitions. Fur-
ther work is needed to improve upon these approximations in
order to study the actual physical systems.

In summary, we have studied the effect of antidot arrays
on the FQHE states at 1/3-filled lowest Landau level. In con-
trast to the pure 2DEG where the ground state at this filling
fraction is most stable and is fully spin polarized, the ground

state in our model of antidot arrays changes to spin-reversed
states and various spin-reversed excitations are favored as a
function of the magnetic field in the presence of antidot ar-
rays. More theoretical work is needed to improve the model
proposed here. Tilted-field experiments on antidot arrays at
5/3 filling factor,21 for a suitable choice of antidot param-
eters, might also be useful to explore these spin transitions.
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