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Introduction. - At low temperatures and high carrier concentrations,
the electrons and holes in semiconductors condense to form a high den-
sity metallic liquid.This electron-hole liquid(EHL)!’%is a collective
state of electrons and holes,which is unique in many respects:It is the
most metallic of metals,and the most quantum of fluids.The experimental
results have indicated that the EHL has the characteristic properties
of a liquid.Its volume is conserved,it has an equilibrium density etc.
The EHL drops have a spherical shape with drop radius of 10_3—10_“cm,
which is much larger than the exciton (bound electron-hole pairs) radius
ax=10_5— 10" ®cm,which represents the characteristic interaction distance
of the particles in the drop.Therefore,in calculating the bulk proper-
ties of the EHL,one can neglect the surface effects.Recently,a many-body
variational approacha’“for two-component systems has been applied to
study the ground-state properties of such a fascinating system.Some of
the results obtained for the EHL are in very good agreement® with recent
experiments.

The study of the EHL in two dimensions is also a very interesting
problem for various reasons.Firstly,there are current experimental eff-
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orts® to obtain such systems.Secondly,all earlier works
on standard perturbative approaches®.A major problem inherent in those
methods,however,is the unphysical behavior of the short-range part of
the correlation functions.Study of the inversion layer® indicated that
the problem of negative correlation functions at small distances becom-
es accute in two-dimensions,which affects the ground-state properties
significantly.

In the following,we shall investigate the two cases:a)the layered
electron-hole liquid with variable interlayer separations,and b) systems
with many-valley structure.

Layered electron-hole liquid.- We consider a model!! where electrons

and holes of finite two-dimensional density p,move in two different
planes separated by a distance c.The tunneling of the particles between
the planes in forbidden.This type of charge distribution is possible in
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two adjacent parts of a semiconductor by an electrical discharge.The un.
perturbed eigenstates in this model are

-
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0 5 (T 2) = A%a e T x(z-m ) (1)
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where A is the normalization area,ﬁ is a two-dimensional vector,a0 is

the spin eigenfunction,mi=0 and 1 for electrons and holes respectively.
We consider only the limit in which the one-dimensional eigenstate x(z)
is arbitarily highly localized,x*(z)x(z) =§(z).The nondynamical corre-

lations for the electrons or holes are
_ 1 2
gp(r) = [1-3(2T (kpr)/ker)?] (2)

where kf is the radius of a two-dimensional 'Fermi disk' and Jl(x) is
the Bessel function.The Fourier transform of (2) gives us the ideal gas

structure function as,
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For a finite separation between the layers (c#0),the electron-hole

interaction is, v

s 4, > > > . .
eh=¢ /|c+ri—rj|, ¢ = (0,0,c) and r is a two dimension-

al vector.Introducing the two-dimensional Coulomb units,ax=ﬁ2/2uez,
EX=2ue"/'ﬁ2 where p=m_/(1+c) is the reduced mass, o=m_ /m, ,the dimension-

less variables x=r/Tr ,q=kr and e =c/a,, f=axrs, the mean interaction
energy in the variational approach®’'* is

* i
€int = %s ![gee(X)+ghh(x)-2x{c;/ré+xz}—zgeh(x)]dX (1)

where guB(X) are the partial pair-correlation functions.Noticing that,

v (q)=-21— exp(-|agc_/r_|), € is expressed in terms of the partial
eh qrs s’ 's

int
static-structure-functions as
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The first term is,as expected,the energy contribution from the electro-
static interaction between the planes of opposite charges.The ground-
state energy in the Hartree-Fock approximation is given by
_1 8v2 1
*HF T2 T 3% r_° (6)
S s
Note the difference in the coefficient of the exchange energy,compared
to Ref.7,because of our different choice of the 2D-units.

The basic equation for the pair-correlation functions gaB(X)’
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a,R =e,h in our approach is®*’*?

2 b f 2 =
[—v + V(IB(X) +W0LB(X)+W0LB(X)]gOLB(X) 0 (7)
- 1 e e
where, qu(x) [anrS/ZX (1 GaB)rs/ X +cs/rs]
Nee=(1%0), Ny =(1+1/a), n . =0.
The 'induced potentials' WuB(x) are given in the earlier works?®’* where
the method of solving the above equations are also given.
Systems with many-valley structure.- So far,we have considered only

the case of a single conduction band and a single valence band.In most
cases,however,we have to take into account,the effect of the valley de-
generacy on the ground-state results to be discussed below.Therefore,in
the following,we will consider a case,where the conduction band has two
minima and the valence band has a single maximum like in GaSe.The Hart-
ree-Fock energy will now depend on the mass ratio as

e _f0.5%c 1 _9.66 1
HF {TI+c T

£ T 3w or (8)
Earlier results in this multi-valley case’ have indicated that the gro-
und-state energy depends more strongly on o,compared to the single val-
ley case and the effect is more pronounced in two-dimensions.This is
mainly due to the difference in the density of states between the two-
and three-dimensional systems.The correlational energy is affected,in

our scheme,primarily through WiB(x),since the fermi momentum now is

k;=2ﬁp/nv,where nv=2 for the electrons and 1 for the holes.

Results and Discussions. - In Figs.1l and 2,we have plotted the electr-
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Fig.1l: Pair-correla-
tion functions gee(r),
ghp(r) and g, (r) vs

kfr for o=1.




247

on-electron,hole-hole,and the electron~hole correlation functions as a
function of kfr,for various values of the dimensionless interlayer sepa-
ration cs,at rs=3.For o=1 (Fig.l),gee(r) and ghh(r) are ideptical and
they vary only slightly for different values of cS.The effect of Cq is
much stronger in geh(r),which tends to show less structure as Cq is in-
creased. For mh/me=10 (Fig.2),there is more or less a similar pattern in
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Fig.2: Same as in Fig.1,but for o=0.1.

the distribution functions,except that the holes show stronger correla-
tions among themselves.This behavior is reminiscent of the hole-hole

distribution functions in three dimensions®.The noticeable difference
in the e-h correlation functions,as compared to those in three dimensi-
ons is that the enhancement is much reduced in two dimensions.In calcu-
lating the enhanced density®,it should however,be noted that the ratio

of the enhanced density to the exciton density is,

Sgeh(O)/4r; 13D

Pen/Px =
emiTx | g (0)/8r: ;2D -

In Fig.3,we have plotted the partial-static-structure functions,and
D(k)=See(k)Shh(k)-Séh(k),as a function of k/kf,for o=1 and o0=0.1,A11
the functions rapidly approach to zero for small k.These functions were
used to obtain the collective modes in the electron-~hole liquid.They
are obtained by generalizing the Bijl-Feynman equation for the two-com-—
ponent systems!? v ‘
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+shh)i{(csee+shh)2-4ob}é] (10)
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where q'=k/kf and ef is the electron fermi energy.In Fig.4,we have plo-

tted the two branches of the excitation energies £ and g, in units of

electron fermi energy as a function of k/kf,for o=1 and o0=0.1.The dash-
ed lines correspond to the threshold energy for the onset of Landau

damping due to excitations of particle-hole pairs of the type 1
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Fig.3: Static-structure func- ,

i 1 1

tions See(k)’shh(k)’ 0 0.5 1 k/kf 15
Seh(k) and D(k) as a

function of k/kf for Fig.4: Dispersion relations of the

0=1,0.1. two-dimensional plasmons in

the EHL for m=1,10,and the

'acoustic plasmon'mode for

m=10,as inset.

[we/ef=q'(q'+2)] and that of type 2 [wh/t-:f =q'(q'+2)c].The plasmon mode
rises sharply from zero with increasing k and has the characteristic
plasma frequency'® wpﬁ[Zﬂezpk/u]%.The 'acoustic plasmon' mode (or ion-
ic sound mode)!* exists only in the case where the holes are much heav-
ier than the electrons'?’!® This mode for ¢=0.1 is drawn as inset in
Fig.4.

Finally,in Fig.5,we have plotted the ground-state energy minimum
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as a function of the interlayer separation cs,for different values of
the electron-hole mass ratio.In the single valley case,the effect of the

heavy holes is clearly insignificant.However,in the multi-valley case,
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Fig.5: The ground-state ener-
gy minimum as a function of
the dimensionless interlayer
separation cS.The solid lines
are the single-valley case
and the short-dashed lines
are the many-valley results.

The curve E represents the
exc

exciton energy in the ground
state and the curve 'AS' is
the result of Ref.8.
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we obtain a significant lowering of the energy.Comparing with the exci-
ton energy in the ground state®,we notice however,that the exciton state
is clearly preferred.Nevertheless,a suitable choice of the electron-
hole effective mass,the valley degeneracy and a finite seperation bet-
ween the layers,might lead to the energy being lower than the exciton
energy.Our result is apparently in contrast with the results of Ref.8
(curved marked AS),who obtained a lower energy for the EHL compared to
the exciton energy Eexc for all values of cS.However,the unphysical
behavior of the correlation functions at small distances®and inadequa-
te range in k,in their interpolation schemes,as pointed out in Ref.10,
introduce large amount of uncertainty in those energy values.Qualitati-
vely,results similar to Fig.5 were obtained in Refs.7 and 10, for cs=0.
More experimental efforts are undoubtedly needed to acieve a better
understanding of this fascinating quantum liquid in two-dimensional

systems.
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