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Introduction.- At low temperatures and high carrier concentrations, 

the electrons and holes in semiconductors condense to form a high den- 

sity metallic liquid. This electron-hole liquid(EHL)1'2is a collective 

state of electrons and holes,which is unique in many respects:It is the 

most metallic of metals,and the most quantum of fluids.The experimental 

results have indicated that the EHL has the characteristic properties 

of a liquid. Its volume is conserved,it has an equilibrium density etc. 

The EHL drops have a spherical shape with drop radius of lO-3-10-~cm, 

which is much larger than the exciton (bound electron-hole pairs) radius 

ax=10-s- lO-6cm,which represents the characteristic interaction distance 

of the particles in the drop. Therefore,in calculating the bulk proper- 

ties of the EHL,one can neglect the surface effects.Recently,a many-body 

variational approach3'~for two-component systems has been applied to 

study the ground-state properties of such a fascinating system. Some of 

the results obtained for the EHL are in very good agreement s with recent 

experiments. 

The study of the EHL in two dimensions is also a very interesting 

problem for various reasons. Firstly,there are current experimental eff- 

orts 6 to obtain such systems. Secondly,all earlier worksT'8'1°were based 

on standard perturbative approachesg.A major problem inherent in those 

methods,however,is the unphysical behavior of the short-range part of 

the correlation functions. Study of the inversion layer 9 indicated that 

the problem of negative correlation functions at small distances becom- 

es accute in two-dimensions,which affects the ground-state properties 

significantly. 

In the following,we shall investigate the two cases:a)the layered 

electron-hole liquid with variable interlayer separations,and b) systems 

with many-valley structure. 

Layered electron-hole liquid.- We consider a model 11 where electrons 

and holes of finite two-dimensional density p,move in two different 

planes separated by a distance c. The tunneling of the particles between 

the planes in forbidden. This type of charge distribution is possible in 
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two adjacent parts of a semiconductor by an electrical discharge. The un- 

perturbed eigenstates in this model are 
÷ _-½ ik r (i) 

¢~,o,m(r,z) = a aoe " X(z-mic) 

where A is the normalization area,~ is a two-dimensional vector,a is 

the spin eigenfunction,mi=0 and 1 for electrons and holes respectively. 

We consider only the limit in which the one-dimensional eigenstate X(z) 

is arbitarily highly !ocalized,x (z)x(z) =~(z).The nondynamical corre- 

lations for the electrons or holes are 

gf(r) = [l-½(2Jl(kfr)/kfr) 2 ] (2) 

where kf is the radius of a two-dimensional 'Fermi disk' and Jl(X) is 

the Bessel function. The Fourier transform of (2) gives us the ideal gas 

structure function as, 

2 sin-l(k/2kf)+ k [l-(k/2kf)2] ½, k<2kf (3) 
= ( 7 

1 , k>2kf 

For a finite separation between the layers (c~0),the electron-hole 

interaction is, Veh=e2/[c+ri-rjl, ~ = (0,0,c) and r is a two dimension- 

al vector. Introducing the two-dimensional Coulomb units,ax--~2/2~e2, 

Ex=2~e~/~2 where ~=me/(l+~) is the reduced mass, ~=me/mh,the dimension- 

less variables x=r/~ ,q=kr and Cs=C/ax, ~=axrs, the mean interaction 

energy in the variational approach 3'4 is 

l • 
__ 2 2 2 --~ 

i [gee(X)+ghh(X)-2X{Cs/rs+X } geh(X)]dx (4) Cint - rs 

where g~(x) are the partial pair-correlation functions.Noticing that, 

Veh(q)=_~_~_27 exp(-[qCs/r sl), eint is expressed in terms of the partial 
S 

static-structure-functions as 

2Cs 1 I ~ 
Cint= r~-s + ~s 0 [See(q)+Shh(q)-2Seh(q)-2]dq 

CS I ~ + - [2 - qCs/rs+...]Seh(q)qdq. (5) 
2r 2 0 

S 

The first term is,as expected,the energy contribution from the electro- 

static interaction between the planes of opposite charges. The ground- 

state energy in the Hartree-Fock approximation is given by 

1 8/2 1 (6) 
eHF = ~2 - ~ r 

S S 

Note the difference in the coefficient of the exchange energy,compared 

to Ref.7,because of our different choice of the 2D-units. 

The basic equation for the pair-correlation functions gaB(x), 
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~,B =e,h in our approach is 3'~, 

[-V2 + v B(x) +W~B(x)+W~B(x)]g~B(x)=0 (7) 

where, v ~(x)=[q ~r /2x-(l-~ ~)r /~x2+c2/r 2 ] 
~P ~ S ~ S S S 

~ee=(l+q), qhh=(l+i/q), neh=0. 

The 'induced potentials' W B(x) are given in the earlier works3'~,where 

the method of solving the above equations are also given. 

Systems with many-valley structure.- So far,we have considered only 

the case of a single conduction band and a single valence band. In most 

cases,however,we have to take into account,the effect of the valley de- 

generacy on the ground-state results to be discussed below. Therefore,in 

the following,we will consider a case,where the conduction band has two 

minima and the valence band has a single maximum like in GaSe.The Hart- 

ree-Fock energy will now depend on the mass ratio as 

I0.5+~ Ii 9.66 1 
~HF=[I-~ r~ 3~ r s 

(8) 

Earlier results in this multi-valley case 7 have indicated that the gr0- 

und-state energy depends more strongly on q,compared to the single val- 

ley case and the effect is more pronounced in two-dimensions.This is 

mainly due to the difference in the density of states between the two- 

and three-dimensional systems. The correlational energy is affected,in 

our scheme,primarily through W~(x),since the fermi momentum now is 

k~=2~p/nv,where nv=2 for the electrons and 1 for the holes. 

Results and Discussions.- In Figs.l and 2,we have plotted the electr- 
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Fig.l: Pair-correla- 

tion functions gee(r), 

ghh(r) and geh(r) vs 

kfr for q=l. 
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on-electron,hole-hole,and the electron-hole correlation functions as a 

function of kfr,for various values of the dimensionless interlayer sepa- 

ration cs,at rs=3.For ~=I (Fig.l),g (r) and ghh(r) are identical and 
e e  

they vary only slightly for different values of c .The effect of c is 
s s 

much stronger in geh(r),which tends to show less structure as c s is in- 

creased. For mh/me=10 Fig.2),there is more or less a similar pattern in 

I i 

//•geh 0 Layered EHL 
Cs = me/mh=0.1 
0.2 rs:3 

- 0 . 2  0 " ' g h h  

, 
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Fig.2: Same as in Fig.l,but for ~=0.I. 

the distribution functions,except that the holes show stronger correla- 

tions among themselves. This behavior is reminiscent of the hole-hole 

distribution functions in three dimensions3.The noticeable difference 

in the e-h correlation functions,as compared to those in three dimensi- 

ons is that the enhancement is much reduced in two dimensions. In calcu- 

lating the enhanced densityS,it should however,be noted that the ratio 

of the enhanced density to the exciton density is, 

= [3geh(O /4r ;3D 
PehlPx [ geh(O)/8r~ ;2D (9) 

In Fig.3,we have plotted the partial-static-structure functions,and 

D(k)=See(k)Bhh(k)-S~h(k),as_ a function of k/kf,for o=I and ~=0.I.AII 

the functions rapidly approach to zero for small k. These functions were 

used to obtain the collective modes in the electron-hole liquid. They 

are obtained by generalizing the Bijl-Feynman equation for the two-com- 

ponent systems 12 
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_ q, 2 
el,2/ef 2D [(eSee+Shh)e{(~See+Shh )2-4~D}½] (10) 

where q'=k/kf and ~f is the electron fermi energy. In Fig.4,we have plo- 

tted the two branches of the excitation energies E l and E2 in units of 

electron fermi energy as a function of k/kf,for o=1 and ~=0.l. The dash- 

ed lines correspond to the threshold energy for the onset of Landau 

damping due to excitations of particle-hole pairs of the type 1 

I , J . . . .  
1 rs=3 i ~  

I- See / / ~  • 
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Fig.3: Static-structure func- 

tions See(k),Shh(k), 

Seh(k) and D(k) as a 

function of k/kf for 

~=l,0.1. 
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Fig.4: Dispersion relations of the 

two-dimensional plasmons in 

the EHL for m =l,10,and the 

'acoustic plasmon'mode for 

m=10,as inset. 

[~e/~f=q'(q'+2)] and that of type 2 [~h/ef =q'(q'+2)~].The plasmon mode 

rises sharply from zero with increasing k and has the characteristic 
! 

plasma frequency 13 ~ =[2~e2pk/~]2.The 'acoustic plasmon' mode (or ion- 
P 

ic sound mode) I~ exists only in the case where the holes are much heav- 

ier than the eleotrons12'15.This mode for 0=0.1 is drawn as inset in 

Fig.4. 

Finally,in Fig.5,we have plotted the ground-state energy minimum 
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as a function of the interlayer separation Cs,fOr different values of 

the electron-hole mass ratio. In the single valley case,the effect of the 

heavy holes is clearly insignificant.However,in the multi-valley case, 

0 | ~ I I I '  

L E(E x ) 
Layered EHL 

-0.25 m=mh/me 

| ! ! 

0 0.2 O.l+ C s 0.6 

Fig.5: The ground-state ener- 

gy minimum as a function of 

the dimensionless interlayer 

separation Cs.The solid lines 

are the single-valley case 

and the short-dashed lines 

are the many-valley results. 

The curve E represents the 
exc 

exciton energy in the ground 

state and the curve 'AS' is 

the result of Ref.8. 

we obtain a significant lowering of the energy. Comparing with the exci- 

ton energy in the ground stateS,we notice however,that the exciton state 

is clearly preferred. Nevertheless,a suitable choice of the electron- 

hole effective mass,the valley degeneracy and a finite seperation bet- 

ween the layers,might lead to the energy being lower than the exciton 

energy. Our result is apparently in contrast with the results of Ref.8 

(curved marked AS),who obtained a lower energy for the EHL compared to 

the exciton energy E for all values of c .However,the unphysical 
exc s 

behavior of the correlation functions at small distancesSand inadequa- 

te range in k,in their interpolation schemes,as pointed out in Ref.10, 

introduce large amount of uncertainty in those energy values. Qualitati- 

vely,results similar to Fig.5 were obtained in Refs.7 and 10,for c =0. 
s 

More experimental efforts are undoubtedly needed to acieve a better 

understanding of this fascinating quantum liquid in two-dimensional 

systems. 
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