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Abstract
We report on the influence of a periodic potential on the fractional quantum Hall effect
(FQHE) states in monolayer graphene. We have shown that for two values of the magnetic flux
per unit cell (one-half and one-third flux quantum) an increase of the periodic potential
strength results in a closure of the FQHE gap and appearance of gaps due to the periodic
potential. In the case of one-half flux quantum this causes a change of the ground state and
consequently the change of the momentum of the system in the ground state. While there is
also crossing between low-lying energy levels for one-third flux quantum, the ground state
does not change with the increase of the periodic potential strength and is always characterized
by the same momentum. Finally, it is shown that for one-half flux quantum the emergent gaps
are due entirely to the electron–electron interaction, whereas for the one-third flux quantum
per unit cell these are due to both non-interacting electrons (Hofstadter butterfly pattern) and
the electron–electron interaction.
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Planar, non-interacting electrons subjected to a periodic
potential and a perpendicular magnetic field were predicted to
display the fractal butterfly pattern in the energy spectrum [1].
This unique pattern results from the incommensurability
between two length scales that are now present in the system:
the magnetic length and the period of the external potential.
Experimental attempts to observe the pattern in semiconductor
nanostructures [2] met only with limited success. While
the existence of the butterfly pattern was indirectly confirmed
in magnetotransport measurements in lateral superlattice
structures, the fractal nature of the spectrum was not
observed. However, very recently, several experimental
groups [3–5] have reported observation of recursive patterns
in Hofstadter butterfly in monolayer and bilayer graphene that
was possible solely due to the unusual electronic properties
of graphene [6, 7]. Although the theoretical issues of the
non-interacting system in this context are largely understood,
questions remain about the precise role of electron–electron
interactions in the butterfly spectrum for graphene [8] and
even in conventional electron systems [9, 10]. Properties of
incompressible states of Dirac fermions have been established
theoretically for monolayer graphene [11–14] and bilayer

graphene [15] and the importance of interactions in the
extreme quantum limit are well known [16, 17]. There
is also experimental evidence of the FQHE states [18]
in graphene [7, 19]. The precise role of FQHE in the
fractal butterfly spectrum has remained unanswered, however.
Interestingly, in a recent experiment [20], the butterfly states in
the integer quantum Hall regime have already been explored.
Understanding the effects of electron correlations on the
Hofstadter butterfly is therefore a pressing issue. Here, we
have developed the magnetic translation algebra [9, 21, 22] of
the FQHE states, in particular for the primary filling factor
ν = 1

3 for Hofstadter butterflies in graphene. Our results
unveil a profound effect of the FQHE states resulting in a
transition from the incompressible FQHE gap to a gap due
to the periodic potential, as a function of the periodic potential
strength, and also crossing of the ground state and low-lying
excited states depending on the number of flux quanta per unit
cell. Interestingly, the transitions predicted here seem to have
been confirmed experimentally [23].

Instead of a sample-specific choice of the periodic
potential, we consider the periodic potential to have square
symmetry which will make our findings more general so that
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it can be useful for interaction effects in fractal butterflies in
other systems as well [1, 24]. Specifically, we choose the
external periodic potential to be of the form

V (x, y) = V0[cos(qxx) + cos(qyy)], (1)

where V0 is the amplitude of the periodic potential and qx =
qy = q0 = 2π/a0, where a0 is the period of the external
potential. Then the many-body Hamiltonian is

H =
Ne∑
i

[
Hi

B + V (xi, yi)
]

+
1

2

Ne∑
i �=j

Vij (2)

where Hi
B is the Hamiltonian of an electron in graphene in a

perpendicular magnetic field and the last term is the Coulomb
interaction. The electron energy spectrum of graphene has
twofold valley and twofold spin degeneracy in the absence
of an external magnetic field, the periodic potential and the
interaction between the electrons. We disregard the lifting of
the valley degeneracy due to the Coulomb interaction and the
periodic potential. We consider here the fully spin polarized
electron system and focus our attention on the valley K . The
single-particle Hamiltonian HB is then written as [6, 7, 16]

HB = vF

(
0 π−
π+ 0

)
, (3)

where π± = πx ± iπy , π = p+eA/c, p is the two-dimensional
electron momentum, A = (0, Bx, 0) is the vector potential and
vF ≈ 106 m s−1 is the Fermi velocity in graphene [6, 7].

We consider a system of finite number Ne of electrons in a
toroidal geometry, i.e. the size of the system is Lx = Mxa0 and
Ly = Mya0 (Mx and My are integers) and apply the periodic
boundary conditions (PBC) in order to eliminate the boundary
effects. Defining the parameter α = φ0/φ, where φ = Ba2

0 is
the magnetic flux through the unit cell of the periodic potential
and φ0 = hc/e the flux quantum, we have

Ns

MxMy

= 1

α
= r

v
, (4)

where Ns is the number of magnetic flux quanta passing
through the system and r and v are coprime integers. The
filling factor is defined as ν = p/q = Ne/Ns , where p and q

are again coprime integers. For a many-body system only the
set of {Lmn/Ns} of the center-of-mass (CM) translations acts
within the same Hilbert space [18, 22]. Here Lmn = mLx x̂ +
nLy ŷ is a magnetic translation lattice vector and (Lx, Ly)

defines the magnetic translation unit cell [21]. Without the
PBC, the Hamiltonian (2) has a symmetry of a magnetic
translation of the CM by any periodic potential lattice vector.
In order to have this symmetry in the thermodynamic limit,
the magnetic translation of the CM by the magnetic translation
lattice vector should be compatible with the translation by
the periodic potential lattice vector [9]. This compatibility
results in additional constraints on our system, that Mx and
My are divisible by v. These constraints and (4) dictate
that Ns = κx,yMx,y , where κx,y are integers. Therefore
from the set of CM translation {Lmn/Ns} only those which

are also translations by the periodic potential lattice vector
will both preserve the Hilbert space and commute with the
Hamiltonian (2).

We are seeking the set of appropriate magnetic translations
that characterizes the states of the Hamiltonian (2) by its
momentum eigenvalues. Based on the considerations above
we search for appropriate translations as the CM translations
with the translation vector ap = mβ1a0x̂ + nβ2a0ŷ, where β1

and β2 are integers determined below. In order for these CM
translations to be diagonalized simultaneously the following
condition must be satisfied Neβ1β2

α
= ±1, ±2, . . .. By choosing

for example β2 = 1 and demanding the above condition for
β1, it can be shown that this condition is the same as the one
obtained earlier by Kol and Read [9]. Hence β1β2 describes the
degeneracy of the system for each value of the CM momentum.
We now make the assumption that the application of the normal
momentum operator Q(Q) = ∑

i eiQ·ri to the many-particle
state will increase its momentum by Q provided that Q is
a magnetic translation reciprocal lattice vector. From the
relation

T CM(ap)Q(Qst ) = eiap ·Qst Q(Qst )T
CM(ap), (5)

it follows that the eigenvalues of the CM translation operator
will have the form e2π i(β1ms/Mx+β2nt/My), where s and t are
integers, which characterize the vector Qst in a magnetic
translation reciprocal lattice. Hence, s and t are defined
only modulo Mx/β1 and My/β2, respectively, and there
are MxMy/β1β2 allowed eigenvalues. It is clear from the
discussions above that s and t are related to the CM momentum
of the system and also in special cases of the system size, to
the relative momentum.

We consider the many-body states |j1, j2, . . . , jNe
〉 as

basis states constructed from the single-particle eigenvectors
of the Hamiltonian (3) [6, 7, 16]

�n,j = Cn

(
sgn(n)(−i)ϕ|n|−1,j

ϕ|n|,j

)
, (6)

where Cn = 1 for n = 0 and Cn = 1/
√

2 for n �= 0,
sgn(n) = 1 for n > 0, sgn(n) = 0 for n = 0, and sgn(n) = −1
for n < 0. Here ϕn,j is the electron wave function in the n-th
Landau level (LL) with the parabolic dispersion taking into
account the PBC [18, 25]3

ϕn,j = 1√
Lyπ1/2	02nn!

∞∑
k=−∞

e
i

	2
0
(Xj +kLx)y

× e
− (x+kLx +Xj )2

2	2
0 Hn

(
x + kLx + Xj

	0

)
, (7)

where Xj = 2πj	2
0/Ly , 	0 = √

ch̄/eB is the magnetic length,
and Hn(x) are the Hermite polynomials. The quantum number
j characterizes the single-particle momentum in the y direction
ky = 2πj/Ly , as well as the guiding center position in the
x direction. Due to the system boundaries it takes integer
values in the range 0 � j < Ns . The eigenvalues of the
Hamiltonian (3) corresponding to the eigenvectors (6) are

3 The periodic rectangular geomery was extensively used earlier in the study
of the FQHE in various situations. For example, see [25].
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εn = sgn(n)h̄ωB

√|n|, where ωB = √
2vF /	0. The many-

body state |j1, j2, . . . , jNe
〉 is characterized by the LL index

n and the spin of the particles. The factorization rule for CM
translations

T CM(ap) = (−1)Neβ1β2mn/αT CM(β1ma0x̂)T CM(β2na0ŷ),

(8)

leads to the relations

T CM(β2na0ŷ)|j1, j2, . . . , jNe
〉 = ei2π

β2n

My
t |j1, j2, . . . , jNe

〉,
(9)

T CM(β1ma0x̂)|j1, j2, . . . , jNe
〉

= |j1 + mβ1κx, j2 + mβ1κx, . . . , jNe
+ mβ1κx〉, (10)

where t = ∑
i ji mod (My/β2) is the total momentum

quantum number in the y direction. Hence, following the
procedure outlined in [18], we fix the total momentum t

and construct the set T of all the Ne particle states with
the momentum t , i.e. T = {|j1, j2, . . . , jNe

〉| ∑
i ji =

t mod
(
My/β2

)}. We then divide the set T into
equivalence classes by defining the states |j ′

1, j
′
2, . . . , j

′
Ne

〉 and
|j1, j2, . . . , jNe

〉 equivalent if and only if they are related by
the rule

|j ′
1, j

′
2, . . . , j

′
Ne

〉
= |j1 + mβ1κx, j2 + mβ1κx, . . . , jNe

+ mβ1κx〉. (11)

These equivalence classes can contain at most Mx/β1 members
because the momenta ji are defined (mod Ns). Let L be one
such set represented by the state |j1, j2, . . . , jNe

〉. It is clear
from the construction that the members of this set are mapped
back to the set by the translation operatorsT CM(β1ma0x̂) and in
fact, by any translation T CM(ap). As in the case of V0 = 0 [18]
we can assert that the complete set of normalized states

|(s, t)〉 = 1√|L|
|L|−1∑
k=0

e−i2π
β1s

Mx
k

× |j1 + β1κxk, j2 + β1κxk, . . . , jNe
+ β1κxk〉, (12)

forms the set of the eigenstates of T CM(ap) and is used
as a basis for exact diagonalization of the Hamiltonian (2)
with fixed quantum numbers s and t . Hence, the magnetic
translation analysis reduces the size of the Hamiltonian matrix
roughly by a factor of MxMy/β1β2.

In what follows we consider the system with filling factor
ν = 1/3. We also consider two cases α = 1/2 and α = 1/3.
We then choose the system size based on the condition (4)
and the number of electrons. For Ne = 4 the system size is
Mx = 3 and My = 2 for α = 1/2, and Mx = 2 and My = 2
for α = 1/3. For Ne = 6 the system size is Mx = 3 and
My = 3 for α = 1/2, and Mx = 3 and My = 2 for α = 1/3.
We evaluate the FQHE gap for two different cases when the
n = 0 LL is filled or n = 1 LL is filled and we disregard
the interaction between the LLs. The period of the external
potential is taken to be a0 = 20 nm throughout.

In figure 1 the dependence of low-lying energy levels on
the amplitude of the periodic potential V0 is presented for
Ne = 4 and n = 0 LL. Both cases of α = 1/2 and α = 1/3 are
shown. Here the levels which in the absence of the periodic

Figure 1. The low-lying four-electron energy levels versus V0 for
n = 0 LL. The results are for (a) α = 1/2 and (b) α = 1/3. The
triplet ground state is shown in green and the first excited state
which crosses the ground state is shown in red. The other excited
states are shown in blue.

potential correspond to the ground state and become triply
degenerate as V0 → 0 are depicted in green, while the level
which first crosses those ground states is depicted in red. The
same dependence for the case of n = 1 LL is shown in figure 2.
For n = 0 and n = 1 LL and for V0 = 0, the FQHE gap is about
3.36 meV and 4 meV, respectively, for α = 1/2, and 3.69 meV
and 4.513 meV, respectively, for α = 1/3. The difference
between the gaps for α = 1/2 and α = 1/3 comes from the
fact that by fixing α and a0 we fix the magnetic field strength
(B) and hence, these two cases correspond to different values
of B. The degeneracy of each level characterized by the CM
momentum is β1 = β2 = 1. In spite of that we notice in
figures 1(a) and 2(a) that for α = 1/2 the ground state splits
into two levels when the periodic potential is present. It should
be noted that just as for V0 = 0, the spectrum as a function
of the CM momentum has a full point symmetry of the PBC
Bravais lattice. So although these three levels are characterized
by different CM momentum, two of those are degenerate due
to the PBC rectangular Bravais lattice. This degeneracy is not
present for the cases where both β1Ne/Mx and β2Ne/My are
integers because, as will be shown below, in these cases the
relative momentum is a conserved quantity and the states can
be characterized by both CM and relative momentum. When
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Figure 2. Same as in figure 1 but for n = 1 LL.

the relative momentum is a conserved quantity all three ground
states correspond to both relative and CM momentum equal
to zero and hence cannot be degenerate when the periodic
potential is present.

In the single-electron case the inclusion of a periodic
potential splits the LL into r subbands of equal weight [26], if
α = v/r . In that case, forα = 1/2 there is no bandgap between
the two subbands. Hence, the appearance of gaps for the
ground and excited states for α = 1/2 is a direct consequence
of the Coulomb interaction [8]. The most striking feature
in figures 1(a) and 2(a) for α = 1/2 is the crossing of the
excited level with both ground states and change of the ground
state at V0 ≈ 7 meV for n = 0 LL and at V0 ≈ 40 meV for
n = 1 LL. The difference in the value of V0 where the ground
state changes between the n = 0 and n = 1 LL is a direct
consequence of the robustness of the FQHE state for n = 1 LL
compared to that of n = 0 LL, which can be clearly seen also by
the magnitude of the gaps for both cases above and was found
earlier in graphene [11]. These crossings and the change of the
ground state result in the crossing of the levels with different
CM momentum and also with different relative momentum
where the relative momentum is a conserved quantity (see
below). In figures 1(b) and 2(b) for α = 1/3 we observe
similar crossing between the levels and closing of the FQHE
gap, although there is no ground state change in this case. This
is related to the fact that we consider the system with filling

Figure 3. Same as in figure 1 but for Ne = 6.

factor ν = 1/3. For α = 1/3 this corresponds to the ground
state of the system, which will be separated from the excited
states by the inclusion of the periodic potential even for non-
interacting electrons due to the Hofstadter gap. Even though
the inclusion of interaction adds additional gaps to the energy
spectra, as can be seen for the excited states in figures 1(b)
and 2(b), the Hofstadter gaps are considerably larger and an
increase of V0 will not result in a change of the ground state.
When α = 1/2 the filling factor ν = 1/3 corresponds to the
point inside the subband and as was shown earlier [8], although
for α = 1/2 there are no gaps for non-interacting electrons,
interaction opens the gaps and the highest gap is observed for
ν = 1/2, which corresponds to the crossing points of two
subbands in the non-interacting case. Hence, this point results
in the change of the ground state for α = 1/2, closure of the
FQHE gap and, afterwards, reappearance of the gap due to the
periodic potential.

In figure 3 the dependence of low-lying energy levels
on V0 is shown for Ne = 6 and n = 0 LL. Both cases of
α = 1/2 and α = 1/3 are presented. Similar dependence for
n = 1 LL is shown in figure 4. The FQHE gap for n = 0
and n = 1 LL and V0 = 0 is ∼4.02 meV and ∼4.85 meV,
respectively, for α = 1/2, ∼4.54 meV and ∼5.52 meV for
α = 1/3, respectively. Similar to the case of Ne = 4
and α = 1/2, we observe the change of the ground state at
V0 ≈ 16.5 meV for n = 0 LL and V0 ≈ 91 meV for n = 1 LL
(not shown in figure 4(a)). For α = 1/3 we again observe
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Figure 4. Same as in figure 2 but for Ne = 6.

a crossing between the highest ground state and the excited
state, but do not observe any ground state change. The only
difference between Ne = 6 and Ne = 4 is the observation
of complete lifting of the degeneracy of ground state with the
inclusion of the periodic potential, and is related to the fact that
for Ne = 6 the relative momentum is a conserved quantity for
all cases considered. It should be noted that although the value
of V0 at which the ground state changes for α = 1/2 varies
considerably with the number of electrons, the value of V0 at
which the closure of the FQHE gap appears is almost the same
for both systems.

Just as for V0 = 0, we can define the relative magnetic
translations T R

i (Neap) = Ti(Neap)T CM(ap), which generally
do not commute with the Coulomb interaction term Vij

and hence with the Hamiltonian (2), unless β1Ne/Mx and
β2Ne/My are integers and, in that case, the vector Neap is
a magnetic translation lattice vector. These conditions are
satisfied for all cases considered here, except for Ne = 4 and
α = 1/2. When these conditions are satisfied the absolute
values of the relative momentum and the CM momentum
eigenvalues are equal and the state can be characterized both
by the CM and the relative momentum eigenstates. As
is well known [18, 22], without the periodic potential the
triply degenerate ground state is characterized by zero relative
momentum. Hence, for the cases when the above conditions
are satisfied and the relative momentum is a conserved quantity,

we can state that the three gound states (depicted in green in all
figures) correspond to both the relative and the CM momentum
equal to zero for all V0 and the crossing observed in the figures
for the ground states result in the change of the value of relative
momentum eigenstate of the ground state.

In conclusion, we have performed magnetic translation
analysis to study the effect of a periodic potential on the FQHE
in graphene for filling factor ν = 1/3. For α = 1/2 and
α = 1/3, increasing the periodic potential strength V0 results
in a closure of the FQHE gap and the appearance of gaps due
to the periodic potential. We also find that for α = 1/2 this
results in a change of the ground state and consequently in
the change of the ground state momentum. For α = 1/3,
despite the observation of the crossing between the low-lying
energy levels, the ground state does not change with an increase
of V0 and is always characterized by zero momentum. The
difference between these two α s is a result of the origin of the
gaps for the energy levels. For α = 1/2 the emergent gaps
are due to the electron–electron interaction only, whereas for
α = 1/3 these are both due to the non-interacting Hofstadter
butterfly pattern and the electron–electron interaction.
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Chakraborty T and Pietiläinen P 1996 Phys. Rev. Lett.

76 4018
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