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The optimal Jastrow wave function in the hypernetted-chain scheme is shown 
to generate numerically suitable expressions for the pressure and the compressi- 
bility of a binary boson mixture. In the single-component case, spin-polarized 
tritium is shown to be unstable for densities below 0.0044 ~ -3 .  

1. INTRODUCTION 

The microscopic theory for single-component Bose fluids (e.g., 
4He, HI') has avhieved great success in recent years. Various optimization 
procedures 1-4 have been devised to obtain the correct long-wavelength 
behavior of the structure functions which are in close agreement with recent 
experimental results. 5 Generalization of these techniques for multicom- 
ponent systems has been achieved recently. 6'7 The formalism has also been 
applied to the problem of two 3He atoms in 4He by Owen. 8 In this paper, 
we will show that the optimization procedure developed in Ref. 7 generates 
numerically suitable expressions for the pressure and the compressibility 
of binary boson mixtures. 

In Section 2, we derive the pressure and the compressibility equations, 
which are then applied to the isotopic mixture of spin-polarized tritium 
(TI') and hydrogen (Ht). The ground state properties of pure TI' and HI' 
are also given. For pure TI', a particular density is obtained below which 
the uniform system is found to be unstable. 
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2. T H E O R Y  

Let us begin with the Jastrow-type wave function for the ground state 

xI~(r 1,1 . . . . .  rl ,N~ ; r2,1 . . . . .  r2,N=) 
1 N1 N2 

= exp ~ [ ~ ,  uu(Irl.,-r~,A) + ,<,E u2:(lr2.,- r:,A) 

+ E uMlrl.,-r~jI)] 
i = 1,N1 
]=l ,N2 

(1) 

where u ~  (r) are the correlation functions for the particle pairs (11), (22), 
and (12), and N1 and N~ are the numbers of the two species in the uniform 
system. Defining the radical distribution functions 

p~pag~ (ri~,,~) = No (N~ - 8~) I dr(i~,i~) (2) 

where I Iq~] 2 dr~2.--N = 1, and dr(,~,i~) denotes dr~2...NWith is and i B omitted, 
and employing the HNC  formalism, 2 we obtain the ground state energy 
for the binary mixture 

with 

2 2 E = x 1E~ 1 + X 2E22  + 2x~x2E12 (3) 

h2P [ 1 2 1 
g ~ ( l r g ~ )  + ~ p j  r g~13(r)v~(r)dr 

8m.a 

h 2p 8~ 
8m~a (2cr)3p~pzf [S,~z(S~z-3)-S--~+S2~,+3] k2dk 

m:~ =0.5(mS 1 +m~l ) ,  o~ #/3, D(k)=Su(k)S22(k)-S22(k) 

Here x~ = p,~/p is the concentration of the species o~, while S,~(k) are the 
structure functions, 

S.~(k) -6,~ = (p~p~)l/2 f [g,a (r) - 1] exp ( ik .  r) dr  (4) 

Minimization of the energy with respect to the radical distribution functions 
results in the following Euler-Lagrange equations7: 

[-(h2/rn,~t~)V z + v~o (r) + W~o (r)]g~/a (r) = 0 (5) 

Here  v ~  (r) are the interaction potentials, and the induced potentials W.~ (r) 
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are given in the Fourier space as 

W ~ ( k )  - 

W ~ ( k )  = 

h2k2[m21(2S~ _ 3 + S ~  ~ . - 1S~]  
4p~ I_ \ DZ] ~-m° -~J 

h2k2 [,, - to S ~ ( m 2 1 S ~ + m ~ l S ~ ) ]  
4(p~pB)l/2 [zm ~0a~ D2 J 

(6) 

Once the optimum distribution functions g~(r) are obtained, the 
density derivative of g~¢(r) can be neglected when we differentiate (3) with 
respect to p. The pressure equation is then given by 

dk 3 ~ h2k2 " 1 + 3 S ~  D S , a ( S ~ + S ~ )  D2 3 ] (7) 

The integrand in (7) depends only on the structure functions, which can 
be calculated very accurately from (5) and (6). The "thermodynamic" 
pressure thus obtained is formally equivalent to the pressure from the 
"virial theorem. ''2 

From (5), the calculation of compressibility is straightforward. This is 
given by 

K-~/p = C = dP/dp (8) 

with 

OE 
C = E + p  Op 

- - E  f dk  h2k2[/1 3 S ~  2 S ~ S ~  2S3~\dS~ 
.#~ (2~r) 3 ~m~ [~ - - D  -T-+ D 3 +--D -~} -~p 

+ ~ O 3 - ~ ]  do 

+ (2&o&~ ( 3  - 2&riD) 2&~ (&~&~ + s]~)) d&~] 
D 2 0 3 ] dp J 

To evaluate the integrals in (8) one needs to know dS~Jdp. This can be 
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obtained by differentiating (5), which results in 

_ 1 / 2  ~ p 1 / 2  t r 
g ~  J ~ V~B(r-r)gii (rq)yij(rii) dr' 

1/2 v =-g~ (r)~-[ W~] 

V~ ~ (k) = 0 W ~  (k)/O&j(k), a, ~ = 1, 2 

1 / 2  where ~ [ f ]  denotes the Fourier transform of f, y ~  - Og~,/Op, and 

p2x~W% (k) 

-h2k :sg,  
= [4_~m~ ( 1 25~S,~ 

--O-T~ D~ ~-b-r-} 

h2k2/2Sl,(S~, +S~e) 3S]t3~] 

+-4~m~ l -~3 D2 j J 

p2(x~x~)l/2 W'a (k ) 

f h2/~ 2 { & , & .  (3 - 2&dD)  
= tZ -Tm  

h2k 2 [ S ~ S ~  (3 - 2S,~/D) 
+ F 

0 3 

D 3 + S:~).)] 

(9) 

(lo) 

The pressure and compressibility equations given above are suitable 
for an accurate numerical evaluation of those quantities. They are also 
useful for analysis of the structure of the solutions of the Euler-Lagrange 
equations. Performing the second variation of the energy with respect to 
6 1/2 g,~ and relating the condition that minimizes the energy to the compressi- 

1 / 2  bility, one obtains the stability condition 9 for g ~ .  An analysis of this type 
has been completed for binary boson mixtures and will be published 
elsewhere. 10 

3. R E S U L T S  

We have solved the above equations for the isotopic mixture of TI' 
and HI'. These new quantum systems are very much of current interest, lm2 
It has been predicted 12 that, because of the small mass and weak interaction, 
the H~' system will be a Bose gas down to ansolute zero, while T~' will be 
a self-bound liquid very much like 4He. [In fact, the values of the "quantum 
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Fig. 1. Compressibility as a function of HI' concentration 

for the  isotopic mixture TI'-HI' .  

parameter ''12 t/ for T]' (0.183) and 4He (0.1815) are very close.] The 
interaction potentials for these systems are very accurately known. 13 The 
T]'-H]' mixture is, however, known to phase-separate completely at all 
pressures and concentrations. 7 In Fig. 1, we plot C for the mixture as a 
function of HI' concentration for P = 3.0, 3.5, and 4.0 atm. The dashed 
lines represent the ideal solution C = x i C ~ + x 2 C 2 ,  with C1 and C2 the 
compressibilities of the pure components T]' and H'~. In the single- 
component case, (5)-(8) reduce to the equations derived earlier. 3'4 These 
equations have been used to study the ground-state properties ~1 of HI'. 
The results are given in Fig. 2 for the sake of completeness. As expected, 
the energy is always positive and the pressure and compressibility go to 
zero at zero density. In Fig. 2, we also present the results in this case is 
that at the density pc = 0.0044 ~ - 3  the compressibility vanishes, rendering 
the uniform system unstable with respect to density fluctuations. It is worth 
noting that a similar phenomenon was observed 4 in 4He, and subsequent 
formal analysis 9 has provided evidence that this is a consequence of the 
long-range behavior known to be present in these systems with short-range 
forces. Due to the low-density regime of T~' as compared to 4He, we expect 
that the present calculation quite accurately pinpoints pc. At the density 
pc, the phonon screening in the medium disappears (C = ms z, where s is 
the speed of sound), and 

S'(0) = _p~.2 lim {r4[g(r) - 1]} 
r - -~  o o  
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becomes infinite. Here  g(r) and S(k)  are the single-component functions. 
The energy vs. density curve is very flat around the equilibrium density 
(po = 0.0056/~-3), where the pressure is zero. 

In conclusion, the optimization procedure 7 for binary boson mixtures 
is shown to generate expressions for the pressure and compressibility which 
are suitable for numerical work. The correct long-range behavior of systems 
with short-range forces can be obtained through optimization techniques. 
Similar study of the long-range behavior in the mixture is in progress. The 
mixture formalism has been applied to a mixture of charged particles, 1° 
where the long-range Coulomb forces play the dominant role. 14'15 The 
results for these systems are reserved for separate publication. 
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