
Published: November 10, 2011

r 2011 American Chemical Society 24666 dx.doi.org/10.1021/jp2095032 | J. Phys. Chem. C 2011, 115, 24666–24673

ARTICLE

pubs.acs.org/JPCC

On the Nature of Interlayer Interactions in a System of Two
Graphene Fragments
Julia Berashevich* and Tapash Chakraborty

Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2

I. INTRODUCTION

Bilayer graphene,1�9 regarded as an important system for
applications in semiconductor electronics, has intrigued the
scientific community to look deeper into the nature of interlayer
interactions in this system. Graphene layers stacked together are
uniquely different from other solid state materials because of the
interlayer weak van der Waals and steric interactions, instead of
the occurrence of C�C bonding between the layers. The half-
filled p orbital left on each carbon atom after bonding with its
neighbors within the honeycomb lattice is responsible for
formation of the π bonds between two neighboring atoms within
the same layer. This creates a closed shell electron system carrying
the weakly bound π electrons that are distinct due to their high
mobility within the graphene layer.10�12 Stacking two systems of
closed electron shells would cause the interlayer interactions to
be mostly repulsive which results in the expulsion of valence
electrons from the overlap region such that only a weak electronic
coupling between the layers can occur. If under certain condi-
tions the electronic coupling becomes negligible then each layer
would display its own electronic behavior in the band diagram as
was found recently in twisted bilayer graphene.7,8,13

Even before the discovery of graphene, the interlayer interac-
tions in natural graphite, which is basically a system of stacked
graphene layers, received intense attention14�17 where the effect
of interlayer decoupling was not encountered. Three types of
layer arrangements are known to exist in graphite,14 but the most
common one is the Bernal stacking in which the carbon atoms
belonging to different sublattices A and B form the AB stacking
pattern between the layers (atoms belonging to A sublattice in

one layer are stacked directly above the atoms of B sublattice
from another layer). Contrary to the conventional wisdom that
only the long-range van der Waals interaction is important in the
case of stacking of closed shell systems, for the AB stacking
in graphite, it was shown that the orbital overlap between the
π orbitals belonging to different layers15,18 is as essential as the all
important van der Waals forces. Therefore, it was predicted that
despite the well-known interlayer distance of 3.4 Å in natural
graphite, for a system containing only two or three layers, the
interlayer spacing depends on the number of layers15 due to
different nodal interactions of the overlapping π orbitals. For an
odd number of adjacent layers, the equilibrium spacing between
the layers was predicted to be 3.30 Å, whereas for the even
number, it is 3.58 Å.15 It then clearly follows that in graphite the
electronic coupling between the layers can not be neglected.
Rather, it provides a substantial influence on the interlayer interac-
tions in addition to the van derWalls and steric type of interactions.

In this context, it is worth pondering what is actually happen-
ing with the interlayer interactions in twisted bilayer graphene
where, interestingly, one observes electronic decoupling between
the layers. The decoupling was first observed experimentally1�3

and was later investigated theoretically.7,8,13 Theoretical inter-
pretations7,8,13 relate the decoupling to the occurrence of a mis-
orientation of 2�5� between the layers. According to a proposed
model, the layer rotation in the real space induces a displacement

Received: October 2, 2011
Revised: November 9, 2011

ABSTRACT: With the help of the quantum chemistry meth-
ods, we have investigated the nature of interlayer interactions
between graphene fragments in different stacking arrangements
(AA and AB). We found that the AB stacking pattern, as the
ground state of the system, is characterized by the effective
interband orbital interactions which are barely present in the
AA. Their vanishing induces electronic decoupling between
the graphene layers, so that the bonding interactionΔEoi between
the flakes is drastically reduced from �0.482 to �0.087 eV as
the stacking pattern is changed from AB to AA. The effective
way to improve the bonding interaction between layers preserv-
ing the same AA lattice order is to induce rotation of the layer.
As the flake is rotated, the bonding interactions are improved mostly due to suppression of the Pauli repulsion which in turn
increases the interlayer orbital interactions, while the interband part of those remain negligible on the whole range of the rotation
angle. The Pauli repulsion is also found to be the main force that moves the two fragments apart as the stacking pattern is changed
fromAA to AB. This enhances the equilibrium interlayer distance, which for the AA staking is larger than the established value for the
AB stacking (3.4 Å).



24667 dx.doi.org/10.1021/jp2095032 |J. Phys. Chem. C 2011, 115, 24666–24673

The Journal of Physical Chemistry C ARTICLE

of the Dirac cones generated in each layer in the reciprocal
space7,8,13 thereby causing the interlayer decoupling. Experimen-
tally, the misorientation of 2�5� in AA-stacked bilayer graphene
has been detected in systems that were created using various
fabrication techniques such as the epitaxial growth,1�3 chemical
vapor deposition4 and ultrasonication.5 The AA stacking is
refereed to the system in which atoms belonging to the same
sublattice are stacked directly on top of each other. Appearance
of the rotational misorientation that is independent of the
fabrication techniques suggests the presence of some forces
between the layers strong enough to cause the layer rotation.
However, the available theoretical models7,8,13 on the electronic
properties of the AA stacked graphene deal only with the band
properties but do not shed any light on the underlying reasons
involved in decoupling, such as the interlayer forces.

In a recent work18 we related the origin of the decoupling
phenomenon and rotational misorientation with layer stacking
pattern which is AA in fabricated multilayer graphene1�5 against
the AB stacking in natural graphite. For the AA staking, the
interlayer electronic coupling is suppressed by a significant
repulsion arising between the graphene layers.18 This repulsion
is also expected to be responsible for the occurrence of lattice
misorientation between the layers. It was suggested that rota-
tional misorientation, which creates theMoir�e pattern, appears as
a way to suppress the repulsion, thereby lowering the total energy
of the system. Even a slight layer rotation of∼2�-5� substantially
shrinks the areas characterized by the AA lattice superposition in
which repulsion dominates over other forces (the areas with AA
and AB stacking coexist in the Moir�e pattern). The other im-
portant result was a prediction18 that the strong repulsion may
induce bumps on the graphene surface in the areas where AA
stacking is preserved. All these effects are important and require
careful studies because the phenomenon of layer rotation
through electronic coupling between layers can offer ways to
manipulate the electronic properties of twisted graphene (Moir�e
pattern of different rotation angle is characterized by different
percentage of AA-spotted areas). Therefore, in this work we
present a detailed quantitative analysis of the repulsive forces and
the orbital overlap in stacked graphene layers and their alteration
with the appearance of rotation. Our studies are based on the
density functional methods including a recently proposed em-
pirical correction (Grimme correction19) which was developed
for a proper consideration of the dispersive interactions between
the closed shell electron systems.

II. COMPUTATIONAL METHODS

The computations were performed with the ADF quantum
chemistry code20 which uses the Kohn�Sham approach to density
functional theory (DFT). The Kohn�Sham approach replaces
the many-body system within the Hamiltonian equation by a
system of the noninteracting particles while all the many-body
terms are incorporated into the so-called Kohn�Sham potential.
This concept is quite useful in the investigation of interacting
closed shell systems because it allows us to present each graphene
flake as an isolated fragment and two fragments interact as the
flakes are stacked. In this way, a proper investigation of the forces
and the orbital overlap can be performed directly in terms of the
fragment presentation.

Within the ADF code the forces between fragments are
included in the bonding energy ΔE0 which comprises of several
majors components21 (ΔE0 =ΔVel +ΔEp +ΔEprep +ΔEoi + Edis).

The first component (ΔVel) takes care of the interactions of
electrostatic nature related to the modification of the charge
distribution (originated from the charge transfer between occu-
pied and unoccupied orbitals), when two systems are allowed to
interact. The second one is the energy change induced by the
Pauli repulsion (ΔEp), which include several components: exchange
repulsion, kinetic repulsion, overlap repulsion, all results from
obeying the Pauli antisymmetry principle. The next term ΔEprep
describes the energy required to change the conformation of the
fragments (structural modification) from the initial geometry
containing separate fragments to the final geometry where the
fragments are allowed to interact. The bonding interactions between
two fragments are included in the ΔEoi term which originates
from the overlap of the fragment’s orbitals. The last term Edis is
the empirical dispersion correction introduced by Grimme19 and
its magnitude is defined by the long-range van der Waals inter-
actions, whose contribution in the short-range is reduced by the
damping function.

Even though theΔEoi term is a measure of the orbital overlap,
the interlayer forces such as the Pauli repulsion and orbital polar-
ization contribute to the ΔEoi as well. The effect of interlayer
forces can not be discarded from ΔEoi and so the overlap of the
selected orbitals can not be separated from the others. This
makes it hard to get a proper understanding of the intricacies of
interlayer interactions between two fragments. The most effec-
tive way to proceed is to follow the established method of linear
combinations of the orbitals. This method can be applied for the
results obtained with the ADF program. With the ADF, each
fragment is described by its own set of orbitals and the program
facilitates their mixing upon the inclusion of the interaction
between the fragments. Therefore, the fragment approach allows
us to evaluate the overlapmatrix Si,j between the fragments i and j
of the Kohn�Sham Hamiltonian (Æji|hKS|jjæ) directly in terms
of the linear combinations of the fragment orbitals via the relation
hKS = SCEC

�1, whereC is the eigenvector defined in terms of the
fragment orbitals and E is the eigenvalue matrix.22 The overlap
matrix S purely depends on the form of the interacting orbitals
and on the distance that keeps the two fragments apart neglecting
the contribution from the attractive and repulsive forces arising
between the fragments. We used the overlap matrix Si,j to define
the spatial overlap integral between the fragments i and j, which is
Ji,j d Æji|H|jjæ.

In this work we consider the spatial overlap integral Ji,j
H�H

between the highest occupied fragment orbitals (HOFO), i.e.,
between twoπ orbitals, each located on different fragments while
their overlap defines the HOMOof the joint system. The overlap
integral was also calculated between the π and π* orbitals, i.e.,
between the highest occupied orbital of one fragment (HOFO1)
with the lowest unoccupied orbital of another fragment (LUFO2)
and because there are two parts of such interactions, HOFO1�
LUFO2 and HOFO2�LUFO1, the average value of overlap
integral was considered and combined into the Ji,j

H�L.
We used the hybrid BLYP exchange-correlation functional,

applying the empirical dispersion correction 1.05 recommended
by Grimme.19,23 For the interacting molecules of closed electron
shells it was found that the proposed correction is enough to
reproduce the intermolecular distance to what is observed in
the experiments or achieved with a more accurate level such
as the ab initio Møller�Plesset second-order (MP2) method.19

For a proper description of the tails of the electron wave
functions that is important for long-range interactions, we
used the Slater-type orbitals. The quite extended TZP basis set
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(triple-ζ polarized basis set) was applied in all the calculations
which improves the precision of our results while suppressing the
basis set superposition error.24 We tested the chosen method to
reproduce the interlayer distance between the graphene flakes
stacked in the AB pattern (which is well-known to be 3.4 Å in
natural graphite) and indeed the correct interlayer distance was
obtained (the so-called equilibrium distance of the AB pattern
deq(AB)). For this calculation the atomic coordinates within the
graphene plane (along the x,y directions) were confined and only
the coordinates in the z direction, i.e., perpendicular to the graphene
plane, were used for relaxation. In fact, the full relaxation of the
system of two stacked fragments is problematic as the repulsion
between layers leads to sliding of the fragments away from
each other.

Ourmain emphases in this work are the energy decomposition
analysis of the bonding energy ΔE0 (ΔVel, ΔEp, ΔEprep, and
ΔEoi) and the spatial overlap integrals (Ji,j

H�H,Ji,j
H�L) which are

determined by the stacking pattern between two graphene flakes
(flake rotation) and the interlayer distance. In most cases the
single point calculations have been used for which the contribu-
tion of ΔEprep becomes zero.

III. AA AND AB STACKING

For our investigations we used two graphene flakes with the
carbon atoms at the edges terminated by the hydrogen atoms, as
shown in Figure 1a with our goal to minimize the contribution of
the edge localized states into the simulation results. Because
bilayer graphene obtained in the experiments1�3 has shown the
AA stacking pattern instead of the AB, common in natural
graphite, we probe the AA stacking for the equilibrium distance
between the flakes (deq(AA)). It was found that this distance is
indeed enhanced in the AA stacking up to deq(AA) = 3.67 Å
against the deq(AB) = 3.4 Å for the AB stacking. To explain an

increase in the interlayer distance, we applied the decomposition
analysis of the bonding energy.

We performed the single point calculations in which the layers
were separated by the established equilibrium distances (deq)
found to be different for AA and AB stacking. The obtained
interlayer forces and spatial overlap integrals are collected in
Table 1. For the purpose of comparison, in addition to the lattice
arrangements AA and AB, we also carried out the bonding
analysis for the AA0 stacking pattern for which the interlayer
equilibrium distance was found to be 3.41 Å and those results are
also displayed in Table 1. According to the obtained HOMO and
LUMO energies, the HOMO�LUMO gap is around 1.5 eV.
Such a large value is expected from the confinement effect25

which appears for graphene structure of finite size. An increase in
the flake size will lead to an exponential reduction of the gap,26

whereas making graphene infinite in one or two directions leads
to disappearance of the gap.

The AB conformation is characterized by a much stronger
bonding interaction than that of AA, as defined by a more
negative bonding energy ΔE0, thereby making the AB stacking
the ground state of the system. The structural distinction of the
AB configuration from AA consists in sliding of one graphene
flake relative to the other by 1.42 Å along the x axis that induces
the shift of the bond positions between the layers against their
superposition for the AA stacking (for the AA case the atomic
coordinates are matched in the x and y directions for both layers).
To obtain the AA0 stacking, a sliding of 1.23 Å is applied along the
y axis.

For the AA stacking, due to the lattice superposition the
π clouds between the layers are also superposed that leads to their
effective overlap defined by the spatial overlap integral Ji,j

H�H =
0.443 eV. The flake sliding induced for the AB and AA0 stacking
breaks the bond superposition condition recognized for the AA
stacking thereby inducing the disarrangement of the π clouds
within the overlapping region. As a result, the π�π interlayer
interactions, which is of particular interest since it is supposedly
responsible for the occurrence of electronic coupling between
the graphene layers,9,27 is significantly reduced for the AB
stacking pattern. This is reflected by a suppression of the spatial
overlap integral to Ji,j

H�H = �0.229 eV (even more drastic re-
duction is observed for the AA0 case where Ji,j

H�H = 0.023 eV).
When two fragments are stacked, the majority of the orbital

interactions described by ΔEoi arise from the overlap of the π
orbitals (π�π or π�π*). For interaction of two closed shell
systems, theπ�π overlap is not the one that leads to the bonding
interactions and, therefore, might be ignored within the orbital
interaction term ΔEoi. That explains the contradictory behavior
of the overlap integral Ji,j

H�H and theΔEoi term, such that when a
reduction of the overlap integral Ji,j

H�H occurs for the AB stacking,
the orbital interactionsΔEoi between the fragments is improved.

Figure 1. (a) Graphene flakes stacked in AA conformation in the 3D
space coordinate system. (b) The energy components (ΔVel, ΔEp, and
ΔEoi) of the bonding energy (ΔE0) as a function of the interlayer
distance between two graphene fragments of AA stacking order. ΔVel is
the electrostatic interactions, ΔEp is Pauli repulsion, and ΔEoi is the
orbital interactions energy.

Table 1. Electronic Properties and the Interlayer Forces
between Two Graphene Fragments Stacked in AA (deq(AA) =
3.67 Å), in AB (deq(AB) = 3.4 Å), and in AA0(deq(AA) = 3.41 Å)
Configurationsa

HOMO LUMO Ji,j
H�H Ji,j

H�L ΔEoi ΔVel ΔEp ΔE0

AA �4.024 �2.596 0.443 10�5 �0.087 �0.691 2.136 �1.483

AB �4.164 �2.506 �0.229 �0.169 �0.482 �1.184 3.388 �1.931

AA0 �4.070 �2.565 0.023 �0.191 �0.491 �1.263 3.644 �1.863
aAll values are in eV.
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However, the improvement of ΔEoi with modification of the
lattice arrangement from AA to AB is also not consistent with
behavior of the Pauli repulsion ΔEp whose increase supposedly
suppresses the interlayer orbital interaction ΔEoi. Therefore, to
understand the alteration of the ΔEoi term we should take into
consideration other components of the orbital interactions, such
as the orbital polarization and the interlayer interaction of the
π�π* orbitals.

Orbital polarization reflects a mixing of the occupied/virtual
orbitals in one fragment due to the presence of another fragment;
that is, each valence electron of one fragment entering the elec-
tron space of electrons of other fragment polarizes its orbitals.
The polarization effect is caused by the repulsion arising between
interacting electrons.28 Analyzing the orbital formation after per-
turbation of the fragment’s orbitals, a discrepancy in the product
orbitals for the AB, AA, and AA0 stacking patterns was detected as
demonstrated by the scheme in Figure 2. Let us consider the
formation of the orbitals generating the HOMO�LUMO gap in
the joint system which would give the most contribution into the
interlayer interaction of the π�π* orbitals. In formation of
HOMO orbital (LUMO) of the joint system two degenerate
fragment’s orbitals HOFO participates (two LUFO orbitals for
the LUMO formation). Perturbation of those degenerate HOFO
orbitals (overall four in two fragments) creates the four molecular
orbitals in the bilayer system (HOMO, HOMO�1, HOMO�2,
and HOMO�3). Similarly, the LUFO orbitals perturb in the
conduction band so that two LUFOs are taken from each frag-
ment and their perturbation leads to formation of four LUMO
orbitals in the stacked system (LUMO, LUMO+1, LUMO+2,
and LUMO+3). For the AA stacking, two pairs of product
orbitals possess an identical orbital energy, i.e., HOMO and
HOMO�1 (LUMO and LUMO+1) are degenerate, the same
for HOMO�2 and HOMO�3 (LUMO+2 and LUMO+3).
However, already for the AB case the conduction band is limited
by a single HOMO orbital being a product of the perturbation of
all four fragment’s orbitals while the rest of the generated orbitals
are shifted deeper into the conduction band where two of them
still would remain degenerate. Mixing of the LUFOs for the AB
stacking stays similar to those for the AA case, i.e., two pairs of
the degenerate orbitals are formed. For the AA0 stacking all
four product orbitals HOMOs (LUMOs) are separated by the
energy gap.

The spatial orbital overlap Ji,j
H�H, regardless of the observed

peculiarities of orbital mixing as lattice arrangement is changed, is

being affected mostly by rearrangements of the π clouds from
their superposition in AA stacking. However, an analysis of
interaction of the occupied/unoccupied orbitals between frag-
ments Ji,j

H�L has shown a distinct behavior. We observed weak
overlap between those orbitals in the AA pattern (Ji,j

H�L = 10�5

eV), while it appears for the AB stacking to be 0.169 eV and
increases even further up to 0.191 eV for the AA0 stacking. Such
progress is consistent with an improvement of the orbital inter-
actionsΔEoi and with enhancement of the attractive interactions
of the electrostatic nature (see ΔVel in Table 1) as stacking
pattern is changed from AA to AB. The terms ΔEoi and ΔVel,
lower the bonding energy ΔE0 and their contributions compen-
sate the growing Pauli repulsion between the fragments.

Therefore, the efficiency of the acceptor�donor interactions,
defined byΔEoi, is found to be several times (at least five) weaker
for the AA stacking in comparison to that for the AB. This
behavior offers an interpretation of the interlayer decoupling
observed in the experiments for the AA stacking in twisted bilayer
graphene,1�5 against the efficient coupling known for the AB
stacking. According to our findings the interlayer decoupling in
AA staking must be caused by suppression of the orbital overlap
of the occupied (π) and unoccupied (π*) orbitals between the
fragments, i.e. interband (HOMO�LUMO) interaction, while a
variation of theπ�π overlap is found to have a insignificant affect
on the interaction between fragments. This conclusion is, in fact,
in contrast to the commonly accepted opinion that the electronic
coupling between the stacked graphene layers, which is capable
to change linear Dirac cones dispersion to parabolic one,
originates from intraband interlayer interactions.9,27 We should
also note that along with the intra- and inter-band interactions
the effect of orbital polarization is one of the significant con-
tribution into the bonding interactions.

IV. INTERLAYER DISTANCE

The observation that the interlayer repulsion characterized by
ΔEp is being stronger for the AB stacking in comparison to that
for AA was contrary to our expectations because the Pauli repul-
sion is presumed to dominate when one structure of closed
electron shell is placed exactly on top of the other (such as the
coordinates in x�y directions coincide as presented in Figure 1a).
The Pauli repulsion has the exponential dependence on the
separation distance and an increase in deq for the AA case must
cause a significant suppression of the repulsive forces. To understand

Figure 2. Energy diagram demonstrating the formation of themolecular orbitals (HOMOs and LUMOs) as the fragment’s orbitals overlap (HOFO and
LUFO) for different arrangements of graphene lattices when the fragments are separated by the equilibrium distance deq.
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this, we considered the deviation of the bonding energy and
its components with the change in the interlayer distance for
the AA stacking [Figure 1b]. The negative sign is for the
attractive interactions. The electrostatic interactionsΔVel and
the orbital interactions ΔEoi are both attractive in nature and
their magnitudes are reduced with increasing distance between
the fragments (ΔVel can have a positive magnitude only for short
interlayer distance when the nuclear repulsion dominates over
other attractive terms). The contribution of the repulsive forces
collected within ΔEp into the total bonding energy displays its
domination over the attractive terms only for a short interlayer
distance, so theΔE0 remains positive (repulsive) up to a distance
of 3.2 Å. The bonding energyΔE0 reaches its minimum at deq≈
3.67 Å (ΔE0≈�1.48 eV) which is still energetically far from the
ground state of AB stacking, where ΔE0 = �1.93 eV.

Among all of the interaction terms, the Pauli repulsion and the
bonding interactions are of particular interest. According to the
Pauli principle the valence electron from one fragment is not
supposed to penetrate the closed valence shell of the other
fragment because the repulsive forces expel the charges from the
overlap region. The main component within ΔEp which con-
tribute to the repulsion effect comes from the kinetic energy
while the potential energy part is attractive.21 It is noticeable in
Figure 1b that as the fragments being separated at a distance
beyond the value of 4.0 Å the Pauli repulsion becomes negligible.
However, if we compare the AA and AB stacking for the same
interlayer distance 3.4 Å, the Pauli repulsion is larger by almost
1.0 eV for the AA stacking (for AA and AB stacking ΔEp = 4.33
and 3.38 eV, respectively), in agreement with our expectations, as
stated above.

The orbital interaction energy ΔEoi belongs to the attractive
forces and its value reflects the efficiency of the donor�acceptor
charge transfer between fragments which is controlled by the
interlayer orbital overlap together with the Pauli repulsion and
orbital polarization. Suppression of the Pauli repulsion with
growing interlayer distance tends to increase the orbital interac-
tion energy ΔEoi. However, a simultaneous reduction of the
spatial orbital overlap generally leads to diminishing of ΔEoi, i.e.,
to a reduction of the charge transfer between the fragments. As a
result, ΔEoi being strongly attractive (negative sign) at short
distances almost vanishes as the distance reaches the value of d=
3.3 Å, whereas after d = 3.9 Å, it turns repulsive with a positive
sign. It was noticed that the composition of themolecular orbitals

near the HOMO�LUMO gap is not changed with distance as it
is shown in Figure 3. For example, HOMO is formed as the
orbital overlap of HOFO provided by each fragment and remains
of the same composition independent of distance change while
just become shifted in energy due to the modification of the
interlayer forces. Therefore, we can conclude that the orbital
polarization term brings no contribution in deviation of ΔEoi
with distance.

To separate the orbital interactions from other forces, we
calculated the spatial overlap integral between the fragments
Ji,j
H�H and Ji,j

H�L. The degradation of Ji,j
H�H upon increase of the

interlayer distance along with the size of the HOMO�LUMO
gap (ΔEgap) are presented in Table 2. Because a rise in interlayer
separation d induces a suppression of the orbital overlap, in
particular of the overlap matrix Si,j, the charge transfer integral
Ji,j
H�H is also being reduced. The same gradual reduction is ob-
served for the Ji,j

H�L overlap (from 5 � 10�5 to 6 � 10�6 eV).
As one increases the interlayer distance d the HOMO�LUMO

gap grows in contrast to the diminishing Ji,j and its enhancement
is directly connected to the orbital interaction between the frag-
ments. We presented in Figure 3 the energy diagram for the ener-
getics of the π and π* orbitals near the HOMO�LUMO gap for
the case of separated fragments and their orbital splitting/mixing
after perturbation. To find the orbital energy change by the frag-
ment interaction we used the expression derived within the H€uckel
approximation for the description of splitting of the π orbitals
belonging to different fragments after inclusion of the interactions

E1 ≈ e0 þ H12 � ðe0 þ H12ÞS12 ð1Þ

E2 ≈ e0 �H12 þ ðe0 �H12ÞS12 ð2Þ
where e0 and E1,2 are the molecular π-orbital energies before (for
identical graphene flakes e1 = e2 = e0) and after perturbation,

Figure 3. Energetics of theπ andπ* orbitals defining theHOMO�LUMOgap in the separated fragments and their splitting as fragments being stacked
in the AA lattice arrangement.

Table 2. Spatial Overlap Integral Ji,j
H�H and Ji,j

H�L and
HOMO�LUMO Gap ΔEgap Calculated for the AA Stacking
Pattern as the Flake Separation d Gradually Increasesa

d 2.94 3.14 3.34 3.40 3.54 3.74 3.94 4.14
Ji,j
H�H �1.21 �0.91 �0.68 �0.63 �0.51 �0.38 �0.28 �0.21

Ji,j
H�L � 10�5 5.03 3.52 2.54 1.62 1.31 1.09 0.86 0.61

ΔEgap 0.45 0.84 1.13 1.20 1.34 1.50 1.61 1.69
aAll values are in eV.
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respectively. S12 is the orbital overlap between the fragments and
H12 is the intrinsic interaction integral that is a combination of the
energy terms responsible for electron�electron interactions and
particularly the contribution of its repulsive part to the orbital
energies E1(2).

As fragments are brought to a distance of 2.94 Å (see Figure 3)
which is much shorter than the equilibrium separation (deq =
3.67 Å), the repulsive force dominates over the attractive inter-
action. Therefore, since the electrons are expelled by repulsion
from the overlap region, within the H€uckel approximation the
overlap matrix S12 is treated as zero or would possess a negative
value so that for simplicity, we can ignore the contribution from
(e0 ( H12)S12 to the orbital energy E1(2). Besides the effect of
repulsion on (e0 ( H12)S12 term, the strong repulsion between
the fragments causes the increment of the H12 and therefore,
closer the fragments are to each other the larger the splitting of
their π orbitals. The significant π�π splitting leads to shift of the
LUMO and HOMO orbitals close to each other thus causing a
suppression of the HOMO�LUMO gap. However, for a large
interlayer distance of 4.14 Å, the value ofH12 diminishes because
of the suppression of the Pauli repulsion, while the overlap matrix
would have positive values. The charge exchange between the
fragments is allowed which decreases the splitting |E1 � E2| for
the π orbitals and in turn enlarges the HOMO�LUMO gap
(ΔEgap).

In this section we considered the basics of the orbital inter-
actions between two graphene fragments when controlled solely
by the separation distance. It was understood that there are two
main components affecting the efficiency of the orbital interac-
tion energy by varying the distance: the Pauli repulsion and the
spatial orbital overlap, while no contribution from the orbital
polarization was observed. The spatial orbital overlap decreases
with increasing distance and so is the Pauli repulsion. These
changes have the opposite influence on the orbital interaction
energyΔEoi, but since the decrease of the spatial orbital overlap is
faster than the Pauli repulsion, ΔEoi is generally reduced with
induced flake separation.

V. FLAKE ROTATION

For two graphene layers stacked together, the rotational
misorientation creates the Moir�e pattern which is a periodic
pattern manifesting itself through the spots where the super-
position of the lattices is preserved, i.e., the AA stacking.7,8,13 The
rest of the surface (the interspot regions) which are of a larger
amount of the surface, possesses the stacking order similar or
close to that for the AB arrangement (see ref 29 for images of
various rotation structures). As the rotation angle increases, the
percentage of AA-spotted areas grows while the size of the spots
and the interspot areas shrink. Already for angles above 20� the
spots with ideal AA stacking vanish completely, leaving the mixed
and weakly defined interlayer lattice order. Therefore, the
experimentally observed lattice misorientation induced by rota-
tion angle of 3�5� (see refs 1�5) is characterized by the well-
defined AA-spots and a high coverage of AB-stacking.

Graphene flakes of finite size are considered in this paper as a
model system to represent the spots characterized by the lattice
superposition (the AA-spots) in misoriented bilayer graphene.
Therefore, by rotating one flake with respect to the other (the
rotation axis is placed at the flake center) we basically recreate the
modification of the shape of the AA-spots affected by the rotation
angle. The main disadvantage of describing misoriented bilayer

graphene by finite size flakes is that it underestimates the contri-
bution of the AB stacking areas to the electronic properties of the
bilayer system. In the model system of rotated flakes the contri-
bution of the interspot regions with AB stacking would depend
on the flake size and therefore for small flakes would be negligible.

In a system of the AA stacked graphene fragments, the inter-
acting π orbitals between the fragments are perfectly orthogonal.
The layer rotation observed in the experiments1�5 breaks that
orthogonality, thereby modifying the balance of the attractive
and repulsive forces between the layers. We simulated the effect
of misorientation in the model system of two graphene flakes
presented in Figure 1a with the rotation axis placed at the flake
center. In a system of two flakes stacked in the AA pattern and
separated by a distance of d = 3.4 Å which is the equilibrium
distance for the AB stacking, we rotate one flake relative to the
other for further elaboration of the interaction parameters.
Our simulation results for the bonding energy ΔE0 between layers
and its components, overlap integrals such as Ji,j

H�H and Ji,j
H�L, and

the HOMO�LUMO gap (ΔEgap) are displayed in Table 3. The
results indicate that the size of the HOMO�LUMO gap (ΔEgap)
grows as the bonding interaction between layers is improved
with rotation.

When two lattices of different flakes are superposed in the
space, the electronic clouds of theirπ orbitals are also superposed
giving the maximum magnitude of the overlap integral Ji,j

H�H

which is being suppressed with the flake rotation because of
misorientation of those π clouds. Therefore, the spatial overlap
integral Ji,j

H�H reaches its minimum as the rotation angle reaches
the value of θ = 18� which is being a result of significant disar-
rangement of the π orbitals within the overlapping region from
their superposed position. Another overlap integral accounting
for interband interactions, Ji,j

H�L (between HOMO and LUMO
orbitals belonging to the different fragments), has shown the
opposite behavior to that of Ji,j

H�H, i.e., with its minimum for the
superposed case while growing with the flake rotation. However,
even when Ji,j

H�L reaches themaximum atθ = 24�30�, its magnitude

Table 3. Interlayer Interactions in the System of TwoTwisted
Flakes Separated by a Distance d = 3.4 Åa

θ ΔEgap |Ji,j
H�H| |Ji,j

H�L| ΔEoi ΔVel ΔEp ΔE0

0.0 1.203 0.627 1.6� 10�5 �0.248 �1.423 4.334 �1.195

1.5 1.209 0.604 2.5� 10�4 �0.253 �1.421 4.325 �1.207

3.0 1.226 0.544 6.5� 10�4 �0.268 �1.416 4.300 �1.242

6.0 1.287 0.563 6.5� 10�4 �0.320 �1.399 4.205 �1.368

9.0 1.365 0.305 8.9� 10�4 �0.384 �1.376 4.081 �1.530

12.0 1.436 0.116 2.3� 10�4 �0.443 �1.356 3.963 �1.682

15.0 1.478 0.131 6.5� 10�4 �0.482 �1.342 3.876 �1.790

18.0 1.492 0.061 6.9� 10�4 �0.494 �1.335 3.831 �1.837

20.0 1.489 0.176 3.9� 10�4 �0.486 �1.333 3.823 �1.832

22.0 1.485 0.318 1.1� 10�4 �0.475 �1.332 3.826 �1.816

24.0 1.481 0.184 5.8� 10�4 �0.453 �1.333 3.839 �1.779

26.0 1.478 0.344 3.7� 10�3 �0.439 �1.333 3.851 �1.753

28.0 1.477 0.363 2.0� 10�3 �0.423 �1.334 3.862 �1.724

30.0 1.476 0.322 2.9� 10�3 �0.417 �1.335 3.870 �1.713

AB 1.568 0.229 0.169 �0.482 �1.184 3.388 �1.931
a For the spatial overlap integral Ji,j

H�H, its modulus has been considered
to avoid confusions of the sign change. ΔEgap is the HOMO�LUMO
gap in the system of two stacked flakes. For a better comparison we
repeated the results for the graphene flakes stacked in the AB pattern at
the equilibrium distance deq = 3.4 Å. All values are in eV.



24672 dx.doi.org/10.1021/jp2095032 |J. Phys. Chem. C 2011, 115, 24666–24673

The Journal of Physical Chemistry C ARTICLE

is stillmuch lower than that found for theAB stacking. For the angle in
the range of θ = 24�30�, both integrals (Ji,j

H�H and Ji,j
H�L) deviate

insignificantly. With breaking of the orthogonality of the π orbitals as
the flake is rotated, the Pauli repulsion is also being suppressed by
∼0.5 eVwhen its reaches itsminimumatθ= 18�. The reduced value
of 3.831 eV for θ = 18� becomes much closer to that for the AB
stacking (ΔEp =3.388 eV). For the rotation angleθ>18�, an increase
in the Pauli repulsion term suppresses the orbital interaction energy
ΔEoi somewhat, despite increasing the magnitude of interband
interactions, Ji,j

H�L.
Moreover, the orbital interaction energyΔEoi grows with flake

rotation as the interband interactions reflected by the Ji,j
H�L

improve (Ji,j
H�L increases up to several orders of magnitude)

along with the fast reduction of the interlayer repulsion. The
coincidence of the minimum ofΔEoi with the minimum value of
the Pauli repulsion achieved for the θ = 18� is a clear evidence
that the efficiency of the orbital interactions is being under direct
control of the repulsive forces.

Therefore, because the layer rotation significantly suppresses
the interlayer repulsion which in turn improves the orbital
interaction, regardless of the deviation of the overlap integrals,
the total bonding energy ΔE0 is lowered with rotation and its
magnitude reaches its minimum also at θ = 18�. In fact, the
magnitude of the total bonding energy found for the angle θ =
18� (ΔE0 =�1.837 eV) is comparable to that for the AB stacking
(ΔE0 = �1.931 eV in Table 1). Above the rotation angle 30�,
some fluctuations for all of the terms occur while closer to angle
60� for which the conditions for the lattice superposition between
two layers reappear; that is, all of the terms have the same values
as for the angle 0�. Basically, the dependence in the range of the
rotation angle from 30� to 60� is displayed in reverse order to that
from 0� to 30�.

Our main conclusion is that the repulsion appeared as result
of the interaction of two systems of closed electron shells
whose lattices are superposed, is the central force controlling
the efficiency of the interlayer orbital interactions. As the flake
rotation breaks the lattice superposition, the suppression of
the repulsion induces an improvement of orbital interactions
(such as the electronic coupling) thereby lowering the bonding
energy ΔE0. Because the orbital interaction between the flakes
depends on the flake rotation, the equilibrium distance deq also
fluctuates with rotation. The modification of the equilibrium
distance deq follows the dependence observed for the bonding
energyΔE0 which is controlled by the Pauli repulsion. Themaximum
equilibrium distance deq = 3.67 Å is obtained for the AA stacking
which is suppressed down to deq = 3.43 Å as the flakes are at an
angle 18� that brings the system to the lowest energy state
achievable with rotation. If the rotational angle grows further
beyond 18�, themagnitude of deq enhances again and for θ= 30�
its value is 3.54 Å.

VI. DISCUSSION AND SUMMARY

Two graphene layers stacked in the AA pattern which is
characterized by the lattice superposition between the layers is
the most unstable configuration in the bilayer geometry. The
instability appears as a result of strong interlayer repulsion in-
duced by the interaction of the filled orthogonal π orbitals within
the overlap region. Therefore, any minimal disruption of the
lattice superposition lowers the total bonding energy and leads to
an enhancement of the system stability. The AB stacking is the
most successful scheme to suppress the Pauli repulsion because it

induces the maximum mis-orientation in the interlayer lattice
order and therefore, the AB stacking appear to be the ground
state of the system characterized by the strongest bonding
interactions between the layers. However, an alternative way to
induce the lattice mis-orientation from that superposed in the AA
stacking and thereby, to transfer the system to the lower energy
state is the layer rotation. It should be noted that any modifica-
tion of the lattice order different from the AB stacking would be
metastable (such as AA0) because AB stacking is the ground state
of the system.

For adjacent graphene flakes of finite size, the rotation of one
flake relative to the other induces a fast reduction of the repulsive
part (ΔEp) and an increase of the attractive forces (orbital
interaction energy ΔEoi) such that both these tendencies lower
the total bonding energy between the layers ΔE0. The lowest
bonding energyΔE0 is achieved for the rotation angle of θ= 18�.
This state is still metastable but with the lowest value of the
bonding energy among all the rotation angles, and its value
correlates with that for the AB stacking being the ground state of
bilayer graphene. However, as it was already noted above, the
description of the adjacent graphene layers by the model system
of finite flakes has crucial disadvantage caused by the under-
estimation of the interspot areas of the AB stacking into the
interlayer repulsion. As we switch to the twisted bilayer graphene
of infinite size, the contribution of large areas of AB stacking,
which was largely neglected in the flake system, should be
considered. For a small rotation angle the percentage of the
AA spotted areas is large which decreases with angle enhance-
ment. Thus, for an angle altered from 10� to 12�, a decrease of
2.5% of AA staking is observed.29 Obviously, since the larger
interspot areas of AB stacking is observed for small rotation
angles 2�5� (see ref 29. for the images of various rotation
structures), we would expect that the rotation angle of much
smaller magnitude than that for the finite systems might be
required (θ < 18�) to bring the stacked graphene layers to the
metastable state with the lowest energy.

However, additionally to rotation there is another way tomake
the system of the flakes stacked in the AA arrangement more
stable, which is to raise the interlayer distance when the bonding
energy is lowered again due to suppression of the Pauli repulsion
between the layers (see Figure 1b). In the case of misoriented
bilayer graphene exhibiting the Moir�e pattern, the distribution of
the repulsive forces would be nonuniform as the lattice order is
not the same in different areas, i.e., a maximum force pushing
apart two lattices would originate at the AA-spots of the lattice
superposition. Moreover, another interesting distinction be-
tween the system of adjacent flakes and bilayer graphene of
infinite size is the alteration of its rigidity. Recalling that the free-
standing graphene is subjected to rippling of its surface,30 the
lower rigidity of the graphene layers than that of flakes is antic-
ipated. Therefore, we expect that a strong Pauli repulsion which
is pronounced locally at the center of the AA-spots might not able
to modify the interlayer separation throughout the whole system
because of large areas of AB stacking, but would rather induce a
local lattice distortion forming the bump on the surface with its
highest point at the center of the AA-spot.18 To simulate this
effect, the flake of larger size containing the bigger areas of AB
stacking have been examined and already for that system the
generation of the bump as high as 0.2 Å was observed. However,
the bump height may be enhanced for an infinite system due to
better efficiency of the attractive interactions in the interspot
areas and lower rigidity of the layers. In fact, the appearance of
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bumps can explain the brightening of the AA-spots observed in
the STM images of the twisted bilayer graphene.1�3

Finally, we consider the interlayer coupling, which is found to
be a function of the rotation angle and interlayer distance. As
fragments being stacked, there are two types of π interactions
occurs, such as perturbation of the occupied/occupied orbitals
(π�π interaction) and interaction of the occupied/unoccupied
orbitals (π�π* interaction). According to the theoretical models
developed to describe the behavior of the π bands in bilayer
graphene, the modification of the linear dispersion of the Dirac
cones to a parabolic one has been simulated by inclusion of the
π�π orbital interaction only.9�27However, we found that although
the intrabands interactions play an important role, but in par-
ticular, the interbands part must be introduced in the model to
account for the decoupling effect arising in the AA stacked
graphene layers. The orbital interaction energy ΔEoi is therefore
suppressed at least five times as the lattice arrangement was
changed from AB to AA, due to vanishing of the π�π* interac-
tions between fragments, which is reflected by a drastic reduction
of the spatial overlap integral Ji,j

H�L.
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