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Abstract: Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a
century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and
experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor
nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in
2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical
understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in
conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented.
Theoretical background on the Moiré pattern in graphene and its application in the magnetoconductance probe that resulted in
graphene butterflies are explained. They have also touched upon the important role of electron–electron interaction in the
butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They
conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene.
1 Introduction

The dynamics of an electron in a periodic potential subjected
to a perpendicular magnetic field has remained an interesting
problem for more than half a century [1–4]. Within the nearest
neighbour tight-binding description of the periodic potential
the energy spectrum of an electron is described by the
Harper equation [2]. Numerical solution of this equation [4]
shows that the applied magnetic field splits the Bloch bands
into subbands and gaps. The resulting energy spectrum,
when plotted as a function of the magnetic flux per lattice
cell, reveals a fractal pattern (a self-similar pattern that
repeats at every scale) [5] that is known in the literature as
Hofstadter’s butterfly (because of the pattern resembling the
butterflies). This is the first example of the fractal pattern
realised in the energy spectra of a quantum system.
A few experimental efforts to detect the butterflies have

been reported in the literature. The earlier ones involved
artificial lateral superlattices on semiconductor
nanostructures [6–11], more precisely the antidot lattice
structures with periods of ∼100 nm. The large period (as
opposed to those in natural crystals) of the artificial
superlattices helps to keep the magnetic field in a
reasonable range of values to observe the fractal pattern.
Measurements of quantised Hall conductance in such a
structure indicated, albeit indirectly, the complex pattern of
gaps that were expected in the butterfly spectrum.
Hofstadter butterfly patterns were also predicted to occur in
other totally unrelated systems, such as, propagation of
microwaves through a waveguide with a periodic array of
scatterers [12] or more recently, with ultracold atoms in
optical lattices [13, 14].
Graphene, a single layer of carbon atoms, arranged in a

hexagonal lattice and contains a wealth of unusual
electronic properties [15–19] has turned out to be the ideal
system in the quest of fractal butterflies. The Dirac fermions
in monolayer and bilayer graphene [17, 18] are the most
promising objects thus far, where the signature of the
recursive pattern of the Hofstadter butterfly has been
unambiguously reported [20–22]. Here the periodic lattice
with a period of ∼10 nm was created by the Moiré pattern
that appears when graphene is placed on a plane of
hexagonal boron nitride (h-BN) with a twist [23–25]. Being
ultraflat and free of charged impurities, h-BN has been the
best substrate for graphene having high-mobility charged
fermions [23]. Some theoretical studies have been reported
earlier in the literature on the butterfly pattern in monolayer
[26] and bilayer graphene [27].
The paper is organised as follows. In Section 2, we briefly

describe the background materials leading to the Hofstadter
butterfly. The situation in conventional semiconductor
systems is presented in Section 3. Section 4 deals with the
theories of the butterfly pattern in monolayer graphene, while
the theoretical intricacies in bilayer graphene are presented in
Section 5. The case of the many-electron system, in
particular the influence of the electron–electron interaction on
the Hofstadter butterfly pattern is described in Section 6. The
concluding remarks are to be found in Section 7.
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Fig. 1 Energy spectra (Hofstadter butterfly) of the Harper (4)

Parameter ã is the magnetic flux per unit cell in units of flux quantum
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2 Electrons in a periodic potential and an
external magnetic field: Hofstadter butterfly

The dynamics of a two-dimensional (2D) electron in a
periodic potential is described by the Hamiltonian [1]

H = H0(px, py)+ V (x, y) (1)

which consists of the kinetic energy term H0(px, py) and the
periodic potential V(x, y). The most important characteristics
of this periodic potential, which determines the dynamics of
an electron in a magnetic field is the area S0 of the unit cell
of the periodic structure of V(x, y). For a structure of a
simple square lattice type, which is characterised by the
lattice constant a0, the area of a unit cell is S0 = a20. The
magnetic field B is introduced in the Hamiltonian (1) via the
Peierls substitution, which replaces the momentum (px, py)
by the generalised expression (px− eAx/c, py− eAy/c). Here
(Ax, Ay) is the vector potential. We choose the vector
potential in the Landau gauge A = (0, Bx). The corresponding
Hamiltonian then becomes

H = H0(px − exB)+ V (x, y) (2)

The energy spectra of the Hamiltonian (2) as a function of the
magnetic field has the unique fractal structure. Such a
structure has a more clear description in the two limiting
cases of weak and strong magnetic field. In the case of the
weak magnetic field, first, the periodic potential results in
the formation of the Bloch bands and then the external
magnetic field splits each Bloch band of the periodic
potential into minibands of the Landau level (LL) type. In a
weak magnetic field, the coupling of different bands can be
disregarded. The corresponding Schrödinger equation,
which determines the energy spectrum of the system, has a
simple form in the tight-binding approximation of the
periodic potential, for which the energy dispersion within a
single band is [1]

E(px, py) = 2D0 cos (pxa0/h− )+ cos (pya0/h− )
( )

(3)

where a simple square lattice structure with lattice constant a0
was assumed. In an external magnetic field, the wave function
which is defined at the lattice points (ma0, na0), has the form
C(ma, na) = eikyncm. The corresponding Schrödinger
equation reduces to a 1D equation – the so called Harper
equation [2]

cm+1 + cm−1 + 2 cos 2pmã− ky

( )
cm = 1cm (4)

where ε = E/Δ0 and ã = F/F0. Here F = BS0 = Ba20 is the
magnetic flux through a unit cell and Φ0 = hc/e is the
magnetic flux quantum. Therefore the dimensionless
parameter ã is the magnetic flux through a unit cell
measured in units of the flux quantum. The energy spectra,
determined by the Harper (4), is a periodic function of the
parameter ã with period 1. Hence it is enough to consider
only the values of ã within the range 0 , ã , 1. The
remarkable property of the Harper (4) is that although the
corresponding Hamiltonian is an analytical function of ã,
the energy spectrum (4) is very sensitive to the value of ã.
At rational values of ã = p/q the energy spectrum has q
bands separated by q− 1 gaps, where each band is p fold
degenerate. As a function of ã the energy spectrum (4) has
20
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a fractal structure that is known as the Hofstadter butterfly
[4]. This structure is shown in Fig. 1. The thermodynamic
potential Vb(T , m, ã), corresponding of the system
described by the Harper (4), satisfies the following
symmetry property [28]

Vb(T , m, ã) = Vb(T , m, −ã) = Vb(T , m, ã+ 1) (5)

which means that the thermodynamic properties of the system
are determined by 0 , ã , 1/2 and μ < 0. Here μ is the
chemical potential.
In a strong magnetic field, the energy spectra of the system

also show the Hofstadter butterfly fractal structure. Now the
periodic potential should be considered as a weak
perturbation, which results in a splitting of the
corresponding LLs, formed by the strong magnetic field.
For a weak periodic potential the inter LL coupling can be
disregarded. Then the splitting of a given LL is described
by the same Harper-type equation [1]

cm+1 + cm−1 + 2 cos 2pma− ky

( )
cm = 1cm (6)

but now the parameter, which determines the fractal structure
of the energy spectrum, is a = 1/ã = F0/F–inverse
magnetic flux though a unit cell in units of the flux
quantum. Therefore for 0 < α < 1 the energy spectrum has a
structure similar to the one shown in Fig. 1. The Hofstadter
butterfly energy spectra is realised either as a splitting of
the Bloch band by a weak magnetic field or as a splitting of
a LL by the weak periodic potential. The thermodynamic
properties of these two systems are related by the duality
transformation [28]

VL(T , m, a) = aVb(T , m, ã) (7)

where ΩL(T, μ, α) is the thermodynamic potential within a
single LL and weak periodic potential.
For intermediate values of the magnetic field, the mixing of

the LL by the periodic potential or the mixing of Bloch bands
by the magnetic field becomes strong. This will modify the
universality of the butterfly structure and add some
system-dependent features. In the following sections, we
consider the limits of high and intermediate magnetic fields
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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Fig. 2 Single-electron energy spectra of conventional
semiconductor systems with parabolic dispersion relation

Period of the potential is a0 = 20 nm and its amplitude is
a V0 = 10 meV
b V0 = 20 meV
Energy spectra are shown as a function of the parameter α =Φ0/Φ
Numbers indicate the LL index n
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for conventional semiconductor systems and the monolayer
and bilayer graphene.

3 Conventional semiconductor systems:
strong field limit

For strong and intermediate magnetic fields, the periodic
potential is considered as a perturbation, which can modify
and mix the states of the zero-order Hamiltonian, consisting
of the kinetic part only H0(px − eAx/c, py − eAy/c). For
conventional semiconductor systems, the zero-order
Hamiltonian is described by the parabolic dispersion
relation, p2/2m. The transverse magnetic field results in
Landau quantisation where the LLs are characterised by the
Landau level index n = 0, 1, 2, … with energies
En = (n+ 1/2)h− vc,B. Here ωc,B = eB/mc is the cyclotron
frequency. The corresponding Landau wave functions fn,k

have the form

fn,k(x, y) =
eiky��
L

√ e−(x−xk )
2/2ℓ20������������

p1/2ℓ02nn!
√ Hn(x− xk) (8)

where L is the length of a sample in the y direction, k is the y
component of the electron wave vector, ℓ0 =

��������
ch− /eB

√
is the

magnetic length, xk = kℓ20 and Hn(x) are the Hermite
polynomials.
We consider a system in a periodic external potential that

has the form

V (x, y) = V0 cos (qxx)+ cos (qyy)
[ ]

(9)

where V0 is the amplitude of the periodic potential, qx = qy =
q0 = 2π/a0, and a0 is a period of the external potential V(x, y).
The periodic potential mixes the electron states fn,k within a
single LL, that is, states with the same value of LL index n
and different values of k, and also mixes the states of
different LLs with different indices n. The strength of the
mixing is determined by the matrix elements of the periodic
potential V(x, y) between the LL states fn,k.
The matrix elements of the periodic potential V(x, y) in the

basis fn,k(x, y) are

kfn′,k′
∣∣ cos (q0y) fn,k

∣∣ l

= i n
′−n| |−(n′−n)

2
dk ′,k+q0

+ (−1)n−n′dk′,k−q0

{ }
Mn′,n

(10)

and

kfn′ ,k ′
∣∣ cos (q0x) fn,k

∣∣ l

= i n
′−n| | dk′,k

2
eiq0kℓ

2
0 + (−1)n−n′e−iq0kℓ

2
0

[ ]
Mn′,n

(11)

Here

Mn′,n =
m!

M !

( )1/2

e−Q/2Q|n′−n|/2L|n
′−n|

m (Q) (12)

Q = q20ℓ
2
0/2, m =min(n′, n) and M =max(n′, n).

The matrix elements (10) and (11) determine the mixture of
the LL states introduced by the periodic potential. While the
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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component of the potential periodic in the x direction (11)
couples only the states with the same value of the wave
vector k, the component periodic in the y direction couples
the states with the wave vectors separated by q0. Within a
single LL the potential periodic in the x direction modifies
the energy of each Landau state. As a result the energy of
the Landau state within a given LL becomes a periodic
function of q0kl

2
0. Additional coupling of the states

separated by q0, which is determined by (10), results in the
formation of the band structure when q20l

2
0 becomes a rational

fraction of 2π, which is exactly the condition that the
parameter α is rational. It follows from (10) and (11) that for
a given LL with an index n the effective amplitude of the
periodic potential acquires an additional factor and becomes
/V0Mn,n / Ln(q

2
0ℓ

2
0/2) = Ln(pa). These renormalised

amplitudes determine the width of the corresponding bands.
At values of α where Ln(πα) = 0, all bands have zero width
which correspond to the flatband condition [6, 7].
In general, the expressions for the matrix elements (11) and

(10) can be used to find the energy spectra of any finite
number of LLs, taking into account the coupling of
different LLs introduced by the periodic potential. For a
21
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Fig. 3 Single-electron energy spectra of graphene monolayer in a
periodic potential and an external magnetic field

Period of the potential is a0 = 20 nm and its amplitude is
a V0 = 50 meV
b V0 = 100 meV
Energy spectra are shown as a function of the parameter α =Φ0/Φ
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given value of k within the interval 0 < k < q0, a finite set of
basis wave functions fn,k , fn,k+q0

, fn,k+2q0
, . . . , fn,k+Nxq0

is
considered. Here n = 0, …, NL, NL is the number of LLs,
and Nx determines the size of the system in the x direction:
Lx = Nxq0ℓ

2
0. The matrix elements (10) and (11) determine

the coupling of the states within this truncated basis and
finally determines the corresponding Hamiltonian matrix.
The diagonalisation of the matrix provides the energy
spectrum for a given value of k. The spectra are calculated
for a finite number Ny of k points, where Ny determines the
size of the system in the y direction: Ly = 2πNy/q0.
Following this procedure, the energy spectra of the

conventional system with parabolic dispersion relation were
evaluated for NL = 2 LLs. The results are shown in Fig. 2
for the period of the potential a0 = 20 nm. The results
clearly show that while for the potential amplitude V0 = 10
meV the mixing of LLs is relatively weak, for a higher
amplitude V0 = 20 meV the mixing becomes strong
especially for α close to 1, that is, in weak magnetic fields.
The butterfly structure is no longer described by the simple
Harper equation. In [29], a detailed analysis of the
Hofstadter butterfly spectrum was done for strong and
intermediate periodic potential strength. The magnetic field
splits the Bloch bands and introduces coupling of the states
of different Bloch bands.

4 Monolayer graphene

4.1 Square lattice periodic structure

The unique feature of graphene is a relativistic-like
low-energy dispersion relation [15, 16], corresponding to
the Dirac fermions [17, 18], which results in several unique
features in Landau quantisation and in the structure of the
LLs. The LLs in graphene have 2-fold valley degeneracy
corresponding to two valleys K and K′. The degeneracy
cannot be lifted by the periodic potential with typical long
periods, a0 > 10 nm. In this case, the Hofstadter butterfly
pattern realised in graphene have 2-fold valley degeneracy
and it is enough to consider only the states of one valley,
for example, valley K. The corresponding Hamiltonian H0
is written [15, 16] in the matrix form

H0 = vF
0 px − ipy

px + ipy 0

( )
(13)

where π = p + eA/c, p is the electron momentum and
vF ≃ 106 m/s is the Fermi velocity.
The LLs in graphene, which are determined by the

Hamiltonian (13), are specified by the Landau index n = 0,
±1, ±2, …, where the positive and negative values
correspond to the conduction and valence band levels,
respectively. The energy of the LL with index n is [15, 16]

E(gr)
n = snh− vgr,B

���
n| |

√
(14)

where ωgr,B = vF/ℓ0 is the cyclotron frequency in graphene;
sn = 1 for n > 1, sn = 0 for n = 0 and sn =−1 for n < 1.
The eigenfunctions of the Hamiltonian (13), corresponding

to the LL with index n, are given by

Cn,k = Cn

sni
|n|−1f|n|−1,k

i|n|f|n|,k

( )
(15)
22
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where Cn = 1 for n = 0 and Cn = 1/
��
2

√
for n≠ 0. Here fn, k is

the Landau wave function introduced by (8) for an electron
with parabolic dispersion relation. The graphene monolayer
is then placed in a weak periodic potential V(x, y), which is
given by (9). This potential introduces coupling of LLs in
graphene. The corresponding matrix elements of the
periodic potential are

kn′k ′
∣∣ cos (q0y) nk| l = in−n′

2
CnCn′ dk ′,k+q0

+ (− 1)n−n′dk ′,k−q0

{ }
× snsn′M|n′|−1,|n|−1 +M|n′|,|n|

[ ]
(16)

and

kn′k ′
∣∣ cos (q0x) nk| l

= dk′,k
2

CnCn′e
−iq0kℓ

2
0

× 1+ (−1)n−n′
[ ]

snsn′M|n′ |−1,|n|−1 +M|n′|,|n|
[ ]

(17)

For a given LL with index n, the periodic potential is
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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Fig. 4 Moiré pattern in two hexagonal lattices with rotational
misalignment

Two lattices, which correspond to two layers are shown by red and black dots,
respectively
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determined by the effective value

V0 s2nM|n|−1,|n|−1 +M|n|,|n|
[ ]/ V0 s2nL|n|−1(pa)+ L|n|(pa)

[ ]
(18)

The flatbands in graphene are therefore realised at points
where s2nL|n|−1(pa)+ L|n|(pa) is 0. For n = 0, that is, s0 = 0,
this is exactly the same condition as in conventional
systems, but for other LLs the condition of flatbands
becomes L|n|−1(πα) + L|n|(πα) = 0.
In Fig. 3, the Hofstadter butterfly energy spectra is shown

for a graphene monolayer, taking into account three LLs with
n =−1, 0 and 1. The main difference between the
conventional systems and graphene is the broadening of the
energy structure within a single LL. For conventional
system (Fig. 2), the width of the energy spectra for the n = 1
LL is small for small values of α and large for large α. In
graphene, the behaviour is different: the broadening of the
n = 1 LL is large for small values of α and small for
intermediate and large values of α. Another specific feature
of the energy spectra of graphene is that the mixing of the
LLs, introduced by the periodic potential, is visible for
much large values of the amplitude of the potential,
V0 ≃ 100 meV compared to V0 ≃ 20 meV in conventional
systems (Fig. 2b).

4.2 Moiré structure

With the system of graphene one has the unique possibility to
generate in the Hamiltonian a periodical perturbation
(periodic potential) based on the intrinsic structure of
graphene-based systems. Such a periodic structure is based
on the Moiré pattern which appears between two similar
regular structures overlaid at an angle. In graphene, the
Moiré pattern is realised in (i) twisted bilayer graphene [30–
39] which consists of two monolayers with the relative
small rotation angle between the layers; and (ii) graphene
monolayer on hexagonal boron nitride substrate with
rotational misalignment between the graphene monolayer
and the h-BN [20–23, 40, 41]. Realisation of the Moiré
pattern in two hexagonal lattices (layers) is shown in Fig. 4.
That pattern introduces a large-scale periodicity in the
Hamiltonian of the systems, which, in a magnetic field,
results in the Hofstadter butterfly spectra.
For twisted bilayer graphene, the periodical modulation of

the Hamiltonian is introduced through the interlayer hopping
coupling, which capture the periodic structure of the Moiré
pattern. The interlayer coupling matrix is [38]

T (r) = w
∑
j

e−iqjrT j (19)

where j = 1, 2, 3 and matrices Tj have the form

T1 =
1 1

1 1

( )
, T2 =

e−ic 1

eic e−ic

( )
, T3 =

eic 1

e−ic eic

( )

(20)

Here c = 2π/3, q1 = kDθ(0, −1), q2 = kDu(
��
3

√
/2, 1/2),

q3 = kDu(−
��
3

√
/2, 1/2), θ is the twist angle, kD is the Dirac

momentum and w is the hopping energy. The interlayer
coupling has a matrix form, where the two components of
the matrix correspond to two layers of graphene bilayer.
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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The Moiré periodicity in the matrix T(r) results in the
formation of the Hofstadter butterfly pattern, which was
studied in [38] as a splitting of the Landau levels because
of the weak periodical modulation of T(r). Since the area of
the Moiré units cell is ∝ 1/θ2, to observe the Hofstadter
butterfly pattern for experimentally realised magnetic fields
the twist angle should be small, u & 50.
Just as for the twisted bilayer graphene, the periodical

perturbation in the Hamiltonian of monolayer graphene
placed on a h-BN substrate is introduced through the
periodical modulation of the interlayer coupling. The
difference from the bilayer graphene case is that there is a
small ≃1.8% lattice mismatch between the graphene and
the BN. As a result, the interlayer coupling is determined
by both the lattice mismatch and rotational misalignment by
an angle θ. Then the corresponding superlattice period a0
depends both on the twist angle and the lattice mismatch.
Even in the case of perfect alignment, that is, for the zero
twist angle, the superlattice period is a0 ≃ 13 nm. This
value introduces upper limits on the superlattice period.
This is different from twisted graphene bilayer, for which
there is no superlattice for perfect alignment of the layers
and there is no constraint on the values of a0. Another
specific feature of graphene monolayer on the h-BN
substrate is an asymmetry term in the effective Hamiltonian
of graphene, which is because of different couplings of the
B and N atoms to the graphene layer.
The periodic perturbation of the graphene Hamiltonian on

the h-BN substrate, that is, the graphene superlattice, results
in the formation of multiple Moiré minibands and
generation of secondary Dirac points [40–42] near the
edges of the superlattice Brillouin zone. These points are
characterised by the wave vector G = 4p/

��
3

√
a0. The

energy corresponding to this vector is EG = h− vFG/2. To
observe these secondary Dirac points the graphene should
be doped upto energy EG. Since the period of the Moiré
superlattice is determined by the twist angle, the doping
requirement introduces a constraint on the values of the
twist angle, which should be less than 1° [22]. The
23
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Fig. 5 Experimental results for the Hall conductance probe of
minigap opening within a Landau level in graphene, depicting the
self-similarity pattern

(Courtesy of P. Kim and C. Dean)
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formation of the fractal Hofstadter butterfly pattern in
graphene on the h-BN substrate was studied theoretically in
[42] and was later observed experimentally in [20–22]. This
butterfly pattern was realised as splitting of the Moiré
minibands (secondary Dirac cones) by a magnetic field. An
example of the experimental results from the
magnetoconductance probe of the minigap opening in
graphene is shown in Fig. 5, where the fractal pattern is
clearly visible.
5 Bilayer graphene

Bilayer graphene consists of two coupled monolayers. This
coupling opens a gap in the low energy dispersion relation
and, in a magnetic field, modifies the LL structure. We
consider the bilayer graphene with Bernal stacking. A
single-particle Hamiltonian (kinetic energy part) of this
system in a magnetic field is [43, 44]

H(bi)
j = j

U

2
vFp− 0 0

vFp+
U

2
jg1 0

0 jg1 −U

2
vFp−

0 0 vFp+ −U

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where j =±1 corresponds to two valley (K and K′), U is the
inter-layer bias voltage which can be varied for a given
system, and g1 ≃ 0.4 eV is the inter-layer coupling. The
eigenfunctions of the Hamiltonian (21) can be expressed in
24
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term of the Landau functions fn,k (8)

C
(bi)
n,k =

jC1f|n|−1,k
iC2f|n|,k
iC3f|n|k

jC4f|n|+1,k

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (22)

where the coefficients, C1, C2, C3 and C4, can be found from
the following system of equations

1C1 = juC1 −
��
n

√
C2 (23)

1C2 = juC2 −
��
n

√
C1 + g̃1C3 (24)

1C3 = −juC3 +
������
n+ 1

√
C4 + g̃1C2 (25)

1C4 = −juC4 +
������
n+ 1

√
C3 (26)

Here all energies are expressed in units of 1B = h− vF/ℓ0, ε is
the energy of the LL, u =U/(2εB), and g̃1 = g1/1B. The
energy spectra of the LLs can be found from [45]

1+ ju( )2−2n
[ ]

1− ju( )2−2(n+ 1)
[ ] = g̃21 12 − u2

[ ]
(27)

For each value of n≥ 0 there are four solutions of the
eigenvalue (27), corresponding to four Landau levels in a
bilayer graphene for a given valley, j =±1. For zero bias
voltage, U = 0 these four Landau levels are

1 = +

����������������������������������������
2n+ 1+ g̃21

2
+

1

2

�������������������
(2+ g̃21)

2 + 8ng̃21

√√
(28)

In this case, each Landau level has 2-fold valley degeneracy
which is lifted at finite bias voltage U.
For n = 0, there are two special LLs of bilayer graphene.

One LL has the energy ε =−ju and the wave function of
this LL consists of f0,k functions only

C
(bi)
01,k

=
f0,k

0
0
0

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (29)

This LL of bilayer graphene has exactly the same properties
as for the 0th conventional, non-relativistic Landau level.
For zero bias voltage U, this level has zero energy.
For small values of U there is another solution of (27) with

n = 0, which has almost zero energy, 1 ≃ 0. The
corresponding LL has the wavefunction

C
(bi)
02,k

= 1����������
g21 + 212B

√
g1f1,k

0��
2

√
1Bf0,k

0

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (30)

The wave function of this LL is the mixture of the n = 0 and
n = 1 conventional (non-relativistic) Landau functions f0,k

and f1,k. This mixing depends on the magnitude of the
magnetic field. In a small magnetic field, 1B ≪ g1, the
wavefunction is (c1,m, 0, 0, 0)

T and the LL is identical to
the n = 1 non-relativistic LL. In a large magnetic field
1B ≫ g1, the LL wavefunction is (0, 0, c0,m, 0)

T and the
bilayer LL has the same properties as the n = 0
non-relativistic LL.
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Fig. 6 Single-electron energy spectra of bilayer graphene in a
periodic potential and an external magnetic field

Period of the potential is a0 = 20 nm and its amplitude is V0 = 100 meV
Bias voltage is
a U = 0
b U = 200 meV
c U = 400 meV
Energy spectra are shown as a function of the parameter α =Φ0/Φ
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Following the same procedure as for the conventional

systems and the graphene monolayer, we can find the
matrix elements of the periodic potential in the basis of LL
wave function of bilayer graphene

kn′k ′
∣∣ cos (q0y) nk| l

= in−n′

2
CnCn′ dk′,k+q0

+ (−1)n−n′dk ′,k−q0

{ }
× Cn,1Cn′,1M|n′|−1,|n|−1 + Cn,4Cn′,4M|n′|+1,|n|+1

[
+ Cn,2Cn′,2 + Cn,3Cn′,3

( )
M|n′ |,|n|

]
(31)

and

kn′k ′
∣∣ cos (q0x) nk| l

= dk ′,k
2

CnCn′e
−iq0kℓ

2
0 1+ (−1)n−n′
[ ]

× Cn,1Cn′,1M|n′|−1,|n|−1 + Cn,4Cn′,4M|n′|+1,|n|+1

[
+ Cn,2Cn′,2 + Cn,3Cn′,3

( )
M|n′ |,|n|

]
.

(32)

With the known matrix elements of the periodic potential, we
can find the energy spectra of bilayer graphene in a magnetic
field and weak (or intermediate) periodic potential, taking into
account many LLs. The results are shown in Fig. 6. For zero
bias voltage (Fig. 6a), similar to graphene, the inter-Landau
level coupling becomes important only for large amplitudes
of the periodic potential, V0 > 100 meV. This is true except
for two degenerate LLs of type (29) and (30), for which the
inter-level coupling becomes strong even for small
amplitudes V0 because of the degeneracy of the levels. In
this case, the structure of the energy spectrum near zero
energy becomes complicated because of the mixture of two
degenerate butterfly structures. These two butterfly
structures are not identical because of different types of
wave functions of the two LLs and correspondingly
different effective periodic potentials. For one LL, the
effective periodic potential is V0L0(πα), while for the other
LL, the wave function of which is given by (30), the
effective strength of the potential is

V0

g21 + 212B
g21L1(pa)+ 212BL0(g

2
1L0(pa)

( )
(33)

At a finite bias voltage (Figs. 6b and c) the degeneracy of two
low energy LLs is lifted and we can observe two distinctively
separated butterfly structures for large values of α. For small α
(large magnetic field), there is a large overlap of the two
butterfly structures and a strong inter-level mixture is
expected. In one of the initially degenerate LLs the flatband
condition is satisfied for a ≃ 0.35 (Fig. 6c). The Hofstadter
butterfly in bilayer graphene has been studied in [27],
where general configuration of the bilayer graphene, for
example, continuous displacement between the layers, was
introduced.

6 Interaction effects

6.1 Hartree approximation

Theoretical analysis of the Hofstadter butterfly problem was
mainly restricted to non-interacting electron systems. There
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
doi: 10.1049/iet-cds.2014.0275
were only a few papers that reported on the effects of
electron–electron interactions on the fractal energy spectra
[46–51]. The problem with the inclusion of the electron–
electron interaction into the system is related to the
requirement that the system should have a large size to
capture the fractal nature of the spectrum. The Hartree or
25
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Fig. 8 Band gaps against V0 for

a, d n = 0
b, e n = 1
c, f n = 2 LLs
Band gaps are defined as the gaps between the corresponding bands of Dirac
fermions in a magnetic field for α = 1/3
Black lines correspond to the case of the non-intercting system, while the red
lines correspond to the Dirac fermions with Hartree interaction and half filling
of the n = 0 Landau level
Gaps are labelled as D

(0)
ni (non-interacting system) and Δni (interacting

system), where n is the LL index and i = 1 and 2 corresponds to the
low-energy and high energy gaps, respectively
Period of the periodic potential is a0 = 20 nm (a, b and c) and a0 = 40 nm (d, e
and f)

Fig. 7 Band gaps in the n = 0, n = 1 and n = 2 LLs against the
amplitude of the periodic potential, V0, for interacting systems
with half filling of the n = 0 Landau level

Band gap Δn at LL with index n is defined as the gap between the
corresponding bands of Dirac fermions in a magnetic field corresponding
to α = 1/2
Period of the potential is
a a0 = 20 nm
b a0 = 40 nm
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mean-field approaches have been used to estimate the effect
of interactions on the electron energy spectrum.
In the Hartree approach, the problem is reduced to the

single-electron problem in a periodic potential and the
Hartree potential, produced by the inter-electron interaction
with average electron density. The Hamiltonian of the
system with the Hartree interaction is

H = H0(px, py)+ V (x, y)+ VH (x, y) (34)

where VH(x, y) is the Hartree potential, which can be
expressed as

VH(x, y) =
∫
dx1dy1

e2

k|r − r1|
n(r1) (35)

Here κ is the background dielectric constant and

n(r) =
∑′

i

|Ci(x, y)|2 (36)

where the prime means that the sum goes over all occupied
electron states. The number of occupied states is determined
by the chemical potential of the system, μ, that is, only
the states with energy Ei less than the chemical potential,
Ei < μ, are occupied. The wave functions Ψi(x, y) are
single-particle wave functions of the Hamiltonian (34).
The finite size system (34)–(36) can be solved numerically

following the self-consistent procedure. The final solution is
the energy spectrum of the electron system with the Hartree
interaction. It is convenient to express the Hartree potential
in the reciprocal space. The electron density should have
the same spatial symmetry as the periodic potential. Then
the Fourier transform of the electron density

ñ(G) = 1

A0

∫
drn(r)e−irG (37)

is non-zero only at points of reciprocal lattice, that is, at points
G = Gnx,ny

= (2p/a0)(nx, ny), where nx and ny are integers.
Here A0 in (37) is the area of the sample. Then the Fourier
transform of the Hartree potential is also non-zero only at
points of the reciprocal lattice and is given by

V (G) = 2pe2

k|G| ñ(G) for G = 0 (38)

and V(G = 0) = 0. In [46–48], this approach was used to study
the interaction effects on Hofstadter butterfly in conventional
systems, where strong oscillations of the LL bandwidth with
chemical potential, that is, filling of the LL, were reported.
Following the procedure outlined above, the interaction

effects on the band structure of the Hofstadter butterfly in
graphene were studied in [51]. The graphene LLs with
indices n = 0, n =± 1 and n =± 2 were considered and the
gap structure for α = 1/2 and α = 1/3 with interaction and
without interaction were analysed. Periodic boundary
conditions were applied and the size of the system was
50a0 × 50a0. For α = 1/2, the system is expected to have two
bands separated by a gap. For non-interacting system the
gap is zero at all LLs. Finite electron–electron interactions
open gaps for α = 1/2, where the magnitude of the gap
depends both on the period a0 of the periodic potential and
its magnitude V0. In Fig. 7, [51] this dependence is shown
26
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for the case when half of the n = 0 LL is occupied, that is,
the chemical potential is zero. Strong non-monotonic
dependence of the gaps on the LL index is clearly visible in
Fig. 7, and as a function of the LL index the gap has a
minimum for n = 1.
The case of α = 1/3 has been also studied in [51] (Fig. 8). In

this case, even without the interaction, the system has three
bands and correspondingly two non-zero gaps in each LL.
For a non-interacting system the two gaps i = 1, 2 in the LL
with index n are labelled as D(0)

n,i . Owing to the symmetry
the two gaps in the n = 0 LL are the same, D(0)

01 = D(0)
02 . In

higher LLs (n = 1 and 2), the two gaps are different because
of the LL mixing introduced by the periodic potential. Then
the gaps in the same LL are different, for example,
D
(0)
11 = D

(0)
12 . Interaction modifies the gaps with the general
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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Fig. 9 Band gaps in

a n = 0
b n = 1 LLs against the period a0 of the periodic potential for non-interacting
system and the system with interaction and half filling of the n = 0 Landau
level for α = 1/3
Amplitude of the potential is V0 = 25 meV
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tendency that the lower energy gap is enhanced and the higher
one is suppressed. For n = 0 the two gaps are no longer equal,
Δ01≠ Δ02. As a function of the amplitude of the periodic
potential the gaps have a non-monotonic dependence with
local minimum (or maximum) at finite values of V0. The
higher energy gap for n = 1, Δ12, is strongly suppressed by
the electron–electron interactions (Fig. 8).
The enhancement or suppression of the gaps by the

electron–electron interactions depend not only on the
amplitude of the periodic potential but also on the period of
the potential. This dependence is shown in Fig. 9 for α = 1/3
and amplitude of the potential V0 = 25 meV. The results are
shown for the n = 0 and n = 1 LLs only. The gaps, both for
the system with interactions and without interactions, have
weak dependence on a0 for small values of the period,
a0 & 25 nm. For larger values of a0 there is a strong
suppression of the low energy gap, Δ11, in the n = 1 LL and
higher energy gap, Δ02, in the n = 0 LL. In general, the gaps
have monotonic dependence on a0, except the higher
energy gap, Δ12, in the n = 1 LL, which has a minimum at
a0 ≃ 25 nm.
6.2 Correlation effects: extreme quantum limit

In the extreme quantum limit, that is, in a strong magnetic
field and extremely low temperatures, electrons display the
celebrated fractional quantum Hall effect (FQHE), which is
a unique manifestation of the collective modes of the
many-electron system. The effect is driven entirely by the
electron correlations resulting in the so-called
incompressible states [52–55]. It should be pointed out that
the properties of incompressible states of Dirac fermions
have been established theoretically for monolayer graphene
[56] and bilayer graphene [57, 58] and the importance of
interactions in the extreme quantum limit are well known
[17, 18, 59–63]. There are also experimental evidence of
the FQHE states in graphene [15, 64–67]. The precise role
of FQHE in the fractal butterfly spectrum has remained
unanswered, however. Interestingly, in a recent experiment
[68], the butterfly states in the integer quantum Hall regime
[69] have been already explored. Understanding the effects
of electron correlations on the Hofstadter butterfly is
therefore a pressing issue. In [70], the authors have recently
developed the magnetic translation algebra [71, 72] of
the FQHE states, in particular for the primary filling factor
n = 1/3 for Hofstadter butterflies in the graphene [73, 74].
They considered a system of electrons in a periodic
rectangular geometry that was very useful earlier in
studying the properties of the FQHE in the absence of a
IET Circuits Devices Syst., 2015, Vol. 9, Iss. 1, pp. 19–29
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periodic potential [75–82]. The work in [70] has unveiled a
profound effect of the FQHE states on the butterfly
spectrum resulting in a transition from the incompressible
FQHE gap to the gap because of the periodic potential
alone, as a function of the periodic potential strength. There
are also crossing of the ground state and low-lying excited
states depending on the number of flux quanta per unit
cells, that are absent when the periodic potential is turned off.
The magnetic translation analysis was employed to study

the effect of a periodic potential on the FQHE in graphene
for the primary filling factor n = 1/3. For α = 1/2 and α = 1/3,
increasing the periodic potential strength V0 resulted in a
closure of the FQHE gap and the appearance of gaps
because of the periodic potential [70]. It was also found
that for α = 1/2 this results in a change of the ground state
and consequently in the change of the ground state
momentum. For α = 1/3, despite the observation of the
crossing between the low-lying energy levels, the ground
state does not change with an increase of V0 and is always
characterised by the zero momentum. The difference
between these two α s is a result of the origin of the gaps
in the energy levels. For α = 1/2 the emergent gaps are
because of the electron–electron interaction only, whereas
for α = 1/3 these are both because of the non-interacting
Hofstadter butterfly pattern and the electron–electron
interaction.

7 Concluding remarks

It has been a while since the beautiful theoretical idea of the
Hofstadter butterfly which encompasses the fractal geometry
and electron dynamics in a magnetic field and periodic
potentials was proposed. The advent of graphene has
facilitated the experimental observation of fractal butterflies
in real physical systems. The remarkable electronic
properties of graphene, briefly describe here, helped in
achieving this feat when the experimentalists made
tremendous progress in creating the Moiré pattern in
graphene by finding the appropriate substrate. Discovery of
the fractal butterfly in graphene has opened up new
directions of research, both in materials science, and in
fundamental studies of 2D electrons. The inherent
complexity of the butterfly spectrum is yet to be fully
explored, however. Future experiments will undoubtedly be
at the limit of strong electron correlations [68], which
depend crucially on the superior quality of graphene
superlattices, thereby opening up the fertile field of
many-body effects on Dirac materials for future explorations.
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