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1. Introduction

The quantization of the Hall effect discovered by von Klitzing et al. (1980) is a
remarkable macroscopic quantum phenomenon which occurs in two-dimensional
electron systems at low temperatures and strong perpendicular magnetic fields. Under
these conditions, the Hall conductivity exhibits plateaus at integral multiples of
e?/h (a universal constant). The striking result is the accuracy of the quantization
(better than one part in ten million) which is totally indifferent to impurities or
geometric details of the two-dimensional system. Each plateau is accompanied by a
deep minimum in the diagonal resistivity, indicating a dissipationless flow of current.
In 1982, there was yet another surprise in this field. Working with much higher
mobility samples, Tsui et al. (1982) discovered the fractional quantization of the Hall
conductivity. The physical mechanism responsible for the integer quantum Hall effect
(IQHE) and the fractional quantum Hall effect (FQHE) are quite different, despite
the apparent similarity of the experimental results. In the former case, the role of the
random impurity potential is quite decisive, while in the latter case electron—electron
interaction plays a predominant role resulting in a unique collective phenomenon.

In the following sections, we shall briefly describe the theoretical and experimental
developments in the QHE. It should be mentioned, however, that the QHE has been
one of the most active fields of research in condensed matter physics for over a
decade. It is, therefore, quite impossible to describe here all the details of the major
developments. Our aim in this chapter is to touch upon the most significant theoreti-
cal and experimental work to construct a reasonably consistent picture of the QHE.
For more details on the topics discussed, the reader is encouraged to read the original
work cited here and some of the reviews available in the literature (Aoki 1987,
Chakraborty and Pietildinen 1988a, Hajdu and Landwehr 1985, Halperin 1983,
MacDonald 1989, Morandi 1988, Prange and Girvin 1987, Rashba and Timofeev
1986).

2. Two-dimensional electron gas

The major impetus in the studies of the QHE is due to experimental realization of
almost ideal two-dimensional electron systems. The electrons are dynamically two-
dimensional because they are free to move in only two spatial dimensions. In the
third dimension, they have quantized energy levels [in reality, the wave functions
have a finite spatial extent in the third dimension (Ando et al. 1982)]. In the following,
we provide a very brief discussion on the systems where the electron layers are
created. For details see the reviews by Ando et al. (1982) and Stormer (1984).
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980 T. Chakraborty
2.1. Systems with a two-dimensional electron gas

Electron layers have been created in many different systems. Electrons on the surface
of liquid helium provides an almost ideal two-dimensional system (Grimes 1978,
Monarkha and Shikin 1982). They are trapped on the surface by a combination of
an external field and an image potential. The electron concentration in this system
is, however, very low (10°-10° cm~2) and the system behaves classically. The high-
density electron systems where the QHE is usually observed are typically created in
the metal-oxide—semiconductor field effect transistor (MOSFET) and in semiconduc-
tor heterojunctions.

2.1.1. Inversion layers in Si-MOSFET structures

A schematic picture of an n-channel Si-MOSFET is shown in fig. 1a. The system
consists of a semiconductor (p-Si) which has a plane interface with a thin film of
insulator (SiO, ), the opposite side of which carries a metal gate electrode. Application
of a voltage (gate voltage V;) between the gate and the Si/SiO, interface results in
bending of the electron energy bands. For a strong enough electric field, as the
bottom of the conduction band is pushed down below the Fermi energy Eg, electrons
accumulate in a two-dimensional quasi-triangular potential well close to the interface
(fig. 1b). As the width of the well is small (~ 50 A), electron motion perpendicular to
the interface is quantized but the electrons move freely parallel to the interface. In
the plane, the energy spectrum is

h? kf
k)= e + =L,

where m* is the effective mass of the electrons, k is the two-dimensional wave vector
and &? is the bottom of the corresponding subband. The system is called an inversion

(a) (b)

Conduction
Band

| -Inversion Layer
0=00000=

Valence
Band

o p-Si
Depletion

Vb

Fig. 1. (a) Schematic view of an Si-MOSFET and (b) energy level diagram.



The quantum Hall effect 981

layer because here the charge carriers are the electrons while the semiconductor is
p-type. -

At low temperatures (kT < AE, the energy spacing) the electrons are trapped in
the lowest subband and the system is purely two-dimensional. The MOSFET is quite
useful in the present study because by varying the gate voltage the electron concen-
tration can be varied within a wide range (n, ~ 0-10*3 cm~2).

2.1.2. Electron layers in semiconductor heterostructures

Two-dimensional electron layers are also created in semiconductor heterostructures
at a nearly perfectly lattice-matched semiconductor/semiconductor interface. One
such widely used system is the GaAs/Al,Ga, _,As (0 < x < 1) heterostructure. The
lattice constants of GaAs and Al,Ga, _,As are almost the same so that the interface
is nearly free from any disorder. The band gap of the alloy is wider than that of
GaAs and it increases with the aluminum concentration x. Carriers in the neighbor-
hood of the heterojunction transfer from the doped AlGaAs alloy across the interface
to the low-lying band edge states of the narrow band gap material (GaAs). The
electric field due to the charge transfer bends the energy bands as shown in fig. 2. A
quasi-triangular potential well (~100 A) formed in the GaAs traps the electrons as
two-dimensional carriers.

The mobile carriers are spatially separated from their parent ionized impurities
via modulation doping. This leads to very high carrier mobilities and, in fact, the
FQHE was discovered in these high-mobility GaAs-heterostructures (Stérmer 1984).
However, unlike MOSFETs, the electron concentration in heterostructures can be
varied only within a very narrow range. Carrier densities in these systems typically
range from 1 x 10'' cm~2 to 1 x 10'2 cm ™2,

~10"%cm™
Si
n-TYPE

Fig. 2. Energy diagram at a GaAs-heterostructure interface.



982 T. Chakraborty
2.2. Electrons in a strong magnetic field

Let us begin with the problem of a free electron (with effective mass m*) in a uniform
magnetic field B. The Hamiltonian is then written

Ho = (I3 + I17)2m*, (1

where IT = —ihV + (e/c)A is the kinetic momentum and the vector potential A4 is
related to the magnetic field as B=V x A. Following Kubo et al. (1965), we introduce
the center coordinates of the cyclotron motion (X, Y) as

X=x-¢ Y=y—n, @)
where
6 = (c/eB)Hy’ n= _(c/eB)Hx’ (3)

are the relative coordinates. It can be easily seen that (&, n) represents a cyclotron
motion with frequency

B
w,= e_* (cyclotron frequency). )
m*c

Defining the magnetic length

he\!?
Iy = <—) (cyclotron radius) ()
eB

and from the commutation relation

it is clear that £ and # are subject to an uncertainty of order /,. The Hamiltonian
(1) is now rewritten in terms of (&, ) as

ha,

%=ﬂ

& +n?), (6)

whose eigenenergies are the discrete Landau levels (Fock 1928, Landau 1930)
E,=(n+}hw,, n=0,1,2,.... 7

The Hamiltonian (6) does not contain (X, Y), which means that electrons in cyclotron
motion with different center coordinates have the same energy. The center coordinates
also follow the commutation rule, [X, Y] =1il3.
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Choosing now the Landau gauge such that the vector potential 4 has only one
nonvanishing component, say, 4, = Bx, the Hamiltonian is

1 5 eB \?
%:%[px+<py+_c_x> :I ®)
The variables are easily separable and an eigenfunction is written in the form
@ =e" y(x), ¥

where the usual identification is made, p, = —ih 0/0y — hk,. The function y(x) is the
eigenfunction of the time-independent Schrodinger equation

h2
—ﬁx"+%M*w3(x—X)zx=Ex(X), (10)
where X = —k,I3. The above equation is easily recognized as the Schrddinger

equation corresponding to a harmonic oscillator of spring constant hw, = h? /m*I13,
with equilibrium point at X.
The eigenfunction (ignoring the normalization factor) is now written

Pux = €™ exp[—(x — X)?/213] H,[(x — X)/lo] (an

with H, the Hermite polynomial. The functions are extended in y and localized in
x. The localization remains unaffected under a gauge transformation. When the
system is confined in a rectangular cell with sides L, and L,, the degeneracy of each
Landau level (number of allowed states) is, in fact, the number of allowed values of
k,, such that the center X lies between 0 and L,. With use of periodic boundary
conditions we get, k, = 2nn,/L,, with n, an integer. The allowed values of n, are then
determined by the condition

27n,
L

X:

13, 0<X<L,. (12)

y
The degeneracy N, can then be expressed in terms of the magnetic length [, as
_ L.,
S 2mld’

(13)

Equation (13) can also be reexpressed in terms of the magnetic flux @ and the flux
quantum @, = hc/e as

[/ ]
‘o

Ny=—®=—.
* he P,

(14)

The Landau-level degeneracy is thus the total number of flux quanta in the external
magnetic field. One other important quantity is the dimensionless density of the
electrons expressed as the filling factor of the Landau level

v=2nl3n,, (15)

where n, is the electron density in the system.
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Thus far, we have ignored the presence of any impurities in the system. In a more

general case, the Hamiltonian is written as
H = Hy+ U(r), (16)

where U(r) is the electron—impurity interaction. Following Kubo et al. (1965), the
equation of motion for (X, Y) can be derived as

.o i 130U
= = X = — = ———
X =0, X)= 41U, X] = 0,
i (17
.o i I50U
Y—g[f, Y]_E[Ua Y]—— h ax’
where we have employed the commutation relation: [x, n] = —[y, £] =il3. Due to

the presence of the impurity potential, the degeneracy of the states with different
(X, Y) is lifted and the Landau levels instead of being a series of é-functions broaden
into bands (fig. 3).

The density of states D(E) of the two-dimensional electron system is an important
quantity for the understanding of the QHE. Several authors have contributed theo-
retically and experimentally to our present understanding of the density of states
(DOS) in the presence of a random potential (Ioffe and Larkin 1981, Wegner 1983,
Brezin et al. 1984, Ando and Uemura 1974, Ando 1983a, 1984, Ando and Aoki 1985,
Aoki and Ando 1985). The DOS can be determined by measuring thermodynamic
quantities like magnetization (Eisenstein et al. 19895), electron heat capacity (Gornik
et al. 1985) and quantum oscillations of the chemical potential (Pudalov et al. 1985),
from magnetocapacitance measurements (Smith et al. 1986), from activated conduc-
tion (Stahl et al. 1985), from the temperature dependence of the slope of the Hall
plateau (Wei et al. 1985a) or from an analysis of the shape of the Hall plateau
(Pudalov and Semenchinsky 1985). A review of the experimental results is available
in the literature (Gornik 1987). The results of all these studies can be stated as follows:
the DOS between the D(E) peaks is approximately constant and is a significant
fraction of the value at zero magnetic field. The width of each peak is I' ~ B*/?. It is
also established now that there are localized states in the tails of D(E) and extended

(@)

hog

D(E)

FiI!Iied

Er

Fig. 3. Density of states versus energy. (a) impurity-free system, U = 0. (b) U # 0, with mobility edges and
the localized regions.
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states which carry the Hall current located in the region of the maximum of D(E).
The regions of localized states are known as the mobility gaps and their boundaries
with the regions of extended states are called the mobility edges. For further details,
see § 3.3.1.

3. Integral quantum Hall effect

Before the discovery of the IQHE by von Klitzing et al. (1980), there were experimen-
tal indications of the existence of such an effect. Plateau-like behavior was actually
observed in p,, (Englert and von Klitzing 1978) and in o,, (Wakabayashi and Kawayji
1980). Accurate quantization of the Hall plateau was not achieved in those experi-
ments. The possibility of p,, quantization was also considered theoretically by Ando
et al. (1975).

3.1. Experimental work

In fig. 4, we present the experimental results of von Klitzing et al. (1980) and von
Klitzing (1982, 1986) for a Si-MOSFET inversion layer in a magnetic field of B=
19 T. The diagonal resistance R,, (= p,,) and the Hall resistance R,, (~ Ry) are
plotted as a function of gate voltage V; (oc electron concentration). The diagonal

LANDAU - LEVEL FILLING

12 -

10

Ryy, Rxx (kQ)
®
T

Fig. 4. The quantum Hall effect observed in Si(100) MOS inversion layer in a magnetic field of B=19T

at temperature T = 1.5 K. The diagonal resistance and the Hall resistance are shown as a function of gate

voltage (oc electron concentration). The oscillations in R, are labeled by the Landau-level index (n), spin

(1, 1) and the valley (+, —). The upper scale indicates the Landau-level filling described in the text, and
the inset shows the details of a plateau for B=13.5T.
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resistance is seen to vanish at different regions of Vg, indicating a current flow
without any dissipation. In the same regions, R, develops plateaus with R, = h/ne*
(n integer). The quantization condition on the plateaus are found to be obeyed with
extreme accuracy. The experimental accuracy so far achieved is better than one part
in 107 while resistivities as low as p,, < 107°Q/J have been established (Stérmer
1984). Another interesting feature of the above findings is that the quantization
condition of the conductivity is very insensitive to the details of the sample (geometry,
amount of disorder, etc.). The quantized Hall resistance is more stable and more
reproducible than any wire resistor and since 1 January 1990, the quantized Hall
resistance has been used as an international reference resistor. The Hall resistance
of a quantized plateau is expressed as Ry = Rg/n and Ry ~25813Q is the von
Klitzing constant which appears to be a universal quantity (Taylor 1989, Quinn 1989).

The accurate quantization of the Hall resistance can be used to determine the
value of the fine-structure constant « (von Klitzing et al. 1980). This is a quantity of
fundamental importance in quantum electrodynamics and is related to the Hall
resistance in the manner

where 1, is the permeability of the vacuum and c is the velocity of light.

After the initial experiment by von Klitzing et al., there were several other experi-
ments demonstrating integral quantization in a variety of systems. Tsui and Gossard
(1981) observed the effect in a GaAs-heterostructure. This system was also used by
other authors (Paalanen et al. 1982, Ebert et al. 1982, von Klitzing 1986). Because
of the small effective mass m* of the electrons in GaAs [m&/m§,., > 3], the Landau-
level splitting is larger compared to that in Si and the high-quality of the interface
results in a high mobility of the two-dimensional electrons (fig. 5). In addition, the
IQHE has been observed in systems like InGaAs/InP (Nicholas et al. 1982, Guldner
et al. 1982, 1986), HgTe/CdTe (Kirk et al. 1986) and two-dimensional electrons and
holes formed in InAs/GaSb heterostructures (Mendez et al. 1985), in GaAs hetero-
structures (Stormer et al. 1983a) and in Si-MOSFETs (Gusev et al. 1984).

It is interesting to note that the quantum Hall effect presents a very special
situation viz. the conductivity o,,, describing the current density along the electric
field, and resistivity p,,, defining the electric field strength along the current path,
vanish simultaneously. In a two-dimensional system, in the presence of a magnetic
field, the current density j is related to an electric field E by

j=GE, E=}jj, (18)

where ¢ is the conductivity tensor and p =(6)~ ' is the resistivity tensor. They are
defined as

n Oxx O-xy w1 1 Oxx — axy
5 S , (19)
- O-xy Oxx Oxx O'xy ny Oxx

where we have used the Onsager reciprocity relations (Kubo 1957), ¢,,=0,, and
0,x = —0,,. Similarly,
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Fig. 5. The Hall resistivity (p,, = ¥;;/I) and magnetoresistivity (p,, = V /I) of a modulation-doped GaAs-
heterostructure. The inset shows the sample configuration.

” 1 Pxx —Px
G= ﬁ( y>' (20)
pxx + pr pxy pxx

Experimental results show that when a plateau appears, p,, =0, which means that,

0 = Prx/(P2x + pZy) = 0, provided that p,, #0, and o, = —p,,/(p2, + p2,) = —1/p,,.
For a sample of length L in each dimension, the Hall resistance Ry is related to the
Hall resistivity p,, as Ry = —p,,L* % where J is the dimensionality. In two dimen-
sions, resistance and resistivity are, therefore, the same quantity. The dimension of
Ry is usually expressed as Q/[].

3.1.1. Classical Hall effect

The motion of an electron moving classically in crossed electric (E,) and magnetic
(B.) fields is a superposition of a circular motion with frequency w, and a uniform
drift perpendicular to E, with a velocity v= (0, vp), vp = cE,/B (Stérmer and Tsui
1983). The resulting orbit is a trochoid and is a consequence of the Lorentz force.
The current density is then j=enyv. From the discussion above, we can readily
deduce that, o, = 0 and g,, = —nqec/B. The classical Hall conductivity as a function
of electron concentration does not show any quantization. In order to introduce
scattering due to random potentials in the system, one adds a term m*v/t, where t
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is the scattering relaxation time, to the equation of motion. The resulting diagonal
and Hall conductivities are

nee’t 1 ngec (w,1)? MoeC . O

T =T 1@ 777 B 1+’ B

@1
The free-electron result is trivially recovered by considering the limit w.t — 0. As
we shall see below, this scattering-free situation will occur only in very special
circumstances.

3.1.2. Quantum mechanical approach

The quantum mechanical results for the dynamics of an electron in a magnetic field
are presented in § 2.2. In the case of an electron in crossed electric and magnetic
fields, the eigenstates (7) and (9) can be written as (Brown 1968)

E,x=(n+})ho,+ eE. X —im*v}, 22

Onx = eikyy X(X - X+ UD/wc)'
These states carry a current in the y-direction. The contribution to the current from
an occupied state is

. 1 eBx
Jy=—e <nX W(py + T)

since, ¥ = (1/m*)[p— (e/c)A]. All the electronic states |nX) carry the same Hall
current. The total current is then j, = noevp and the Hall conductivity, as discussed
above, is readily obtained as g,, = —ngec/B. From the definition of the filling factor
(15), we get the quantization as: o,, = —ve” /h. According to the Kubo formula, the
diagonal term of the conductivity tensor can be expressed entirely in terms of the
states at the Fermi surface. The off-diagonal elements of 6 are, on the other hand,
determined by all the states below the Fermi level. Therefore, if the Fermi energy is
located inside the mobility gap, o,, = 0 (and p,, = 0) at T=0. For T # 0, the diagonal
conductivity is non-zero, but exponentially small. The non-zero contribution is due
to activated excitation of the electrons to the extended states belonging to higher
Landau levels, or due to variable-range hopping (Ono 1982). The Hall-conductivity
oy is finite, even at T =0, due to the contribution from extended states below Eg.
As the variation of Eg (due to change in n, or B) within the mobility gap has no
effect on the occupancy of the states (at T—0), oy(= 0,,) remains constant. This
accounts for the observation of the plateaus in oy as a function of n, or B. The
accurate quantization of oy in the region of a plateau still remained to be explained
and is the central issue of several theoretical studies to be discussed below.

nX> = ¢ OEwx = evp (23)

3.2. Integral quantization: theoretical work

An explanation of some aspects of the IQHE is possible without introducing the
localized states, by invoking the reservoir theory (Baraff and Tsui 1981). According
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to this theory, the ionized donors in the heterojunctions serve as a reservoir. The
electrons tunnel across a potential barrier to the electron channel. When the density
of states in the channel D(E) is a sum of delta-functions, the thermodynamic equilib-
rium requires that v is an integer in certain ranges of B. Then, oy = const. and so is
v. The reservoir theory does not account for the exact quantization, cannot properly
explain the Si-MOSFET system where D(E) is governed by the gate potential and
has not received any experimental support (Pudalov et al. 1984).

The theoretical approaches discussed below address the important aspects of the
IQHE, viz, the high precision of the QHE and independence of the effects of the
sample boundary or the impurities. Also, they shed light on the physical mechanism
that is responsible for the occurrence of IQHE.

3.2.1. Kubo formula approach

The Kubo formula (Kubo 1957, Kubo et al. 1965) is a general expression for the
current, regarded as a linear response to an external field. In this approach the Hall
conductivity is written as

nyec

B + Aoy, (24)

Oy =
where Ac,, is given by the correlation function of the velocities of the center
coordinates X and Y as (Aoki and Ando 1981, Ando 1982, 1983b, Aoki 1987)

e*h

¥4 5

Ao <f(Ea) Y, R(E,— E; +i0)?
;

(25)
x [l X|B) <BI Vo) — <ol VB <BIXI0¢>]>,

where f(E) is the Fermi distribution function, |a) is the eigenstate of the Hamiltonian
(16) and A4 is the area of the system. If |o) is a localized state, then, for any |B),

| X1B) = (i)~ x| X|B) (E, — Ep). (26)

Using eqs. (25) and (26) and the relation [ X, Y] =il2, the contribution from the state
| to Ac,, in eq. (25) is Ad%, = f(E,)ec/B.

From this result, several important observations (at T = 0) can be made:

(@) As long as the Fermi level lies in the energy regime of the localized states, o
is constant.

(b) If all the states below the Fermi level Eg are localized, o,,=0 because Ac,,
exactly cancels* —ngec/B. For the QHE to exist, at least one state per Landau level
has to be extended. This shows that the presence of a magnetic field provides a
situation different from that predicted by the scaling theory (Abrahams et al. 1979).
According to that theory, particles moving in a two-dimensional random potential
are always localized in the absence of a magnetic field and at T = 0.

xy

*A similar result was also obtained by Usov and Ulinich (1982).
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| o,

_ny

GXX

2nl§ Ny

Fig. 6. The diagonal conductivity o,,, the Hall conductivity o,, and the density of states D(E) as a
function of the Landau-level filling factor.

In the case of a strong magnetic field and when E; lies in a gap between the nth
and (n + 1)th Landau levels, i.e., electrons occupy states up to the nth Landau level
such that v =n, Aoki and Ando (1981) showed that o,, =0 and o,, = — ne*/h. The
situation is depicted in fig. 6 whers, at the onset of the upper plateau, ¢,, = —e*/h
which is what one expects when all the states (including localized states) would carry
the Hall current.

Prange (1981) explained this apparent paradox by studying a model of free
electrons interacting with a d-function impurity. He concluded that the Hall current
at the integral quantization is exactly the same as that for free electrons because the
loss of Hall current due to the formation of one localized state is exactly compensated
by an appropriate increase of the Hall current carried by the remaining extended
states.

There are several other important contributions based on the Kubo formula which
should also be mentioned. Thouless (1981) has shown that for the integer quantiza-
tion, the Hall conductivity (as derived from the Kubo formula) is unaffected by a
weak variation of the impurity potential. Streda (1982) reformulated the Kubo
approach to write the Hall conductivity as

ON(E)

1 11 11
oy=o0y+oy, oyE)=—ec——— . 27)
H H H OB o

Here N(E) is the number of states with energy <E, and the first term o}; depends
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on the material parameters and impurity potential U(r). If, at T = 0, the Fermi energy
lies in a gap of the energy spectrum of the system, o, and g}, vanish. If that gap is
the nth Landau gap and the degeneracy of the Landau band is the same as that for
free-electron Landau levels N(Eg) = neB/hc and o}, = —ne? /h. Relation (27) is thermo-
dynamic.

3.2.2. The gauge invariance approach

The universal character of the QHE suggests that the effect is due to a fundamental
principle. Laughlin (1981) proposed that the effect is due to the gauge invariance and
the existence of a mobility gap. Following Laughlin, we consider a Gedankenexperi-
ment involving the measurement of Hall conductivity in the geometry of fig. 7. A two-
dimensional electron system is bent into the form of a ribbon. A magnetic field B
pierces the ribbon everywhere normal to the surface and a voltage V (Hall voltage)
is applied across the edges of the ribbon.

Let us now imagine passing a flux @ through a solenoid as shown. The current I
is then expressed in terms of the total electronic energy of the system U as (Byers
and Yang 1961)

ou
I=c¢ 2D (28)
Under a gauge transformation 4 > 4 + 64 = A + 3@ /L, where L is the circumference
of the loop, the wave function of the electron acquires a phase factor

Y]
Wy exp<i£c-—6—§ >=t//exp (2nia%>. (29)
If the electron is localized (e.g., trapped by an impurity), the wave function vanishes
outside a region of size smaller than L and will not respond to the flux. The energies
of localized states are unchanged by the adiabatic process of varying @. On the other
hand, if the electron is extended, such a transformation is not allowed unless 6®/®,,
is an integer (the wave functions are required to be single-valued). We have seen
earlier that the electrons in Landau levels have extended wave functions and will
contribute to the current.

Fig. 7. Hall effect in the geometry of Laughlin’s Gedankenexperiment.
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Let us now imagine that the magnetic flux through the loop is increased adiabati-
cally from zero. If the Fermi level lies in a mobility gap (i.e., o, =0 as discussed
above) any localized states which may be present will not see the change. The
electrons in the extended states will however, respond to the change until the flux
reaches @,, when each of these states must map identically onto themselves (the
transformation is unitary). For free electrons, Laughlin (1981) showed that as the flux
is increased adiabatically, each state moves to its neighboring state in the direction
of the electric field, as in a shift register (Laughlin 1984a). When the flux increases
by one quantum, the electron distribution must look exactly the same as before. The
net result of the adiabatic process is a transfer of charge from one edge of the loop
to the other. If n electrons are transferred during a change A® of one flux quantum,
the net change in electronic energy is AU = —neV, where V is the potential difference
between the edges. Writing 3U/3® — AU/A®, we get [ = —c(neV/AD )= —n(e? /h)V,
and gy = —ne” /h. According to Laughlin’s approach, the quantization is so accurate
because it is based on two very general conditions: the gauge invariance of the system
and the existence of a mobility gap.

Laughlin’s work has been extended to the case of a dirty system by Giuliani et al.
(1983) and also to study the gauge transformation for disordered systems numerical
experiments have been performed (Aoki 1982, Aers and MacDonald 1984). Halperin
(1982) extended the Laughlin approach to include the role of edge states which will
be discussed in § 3.3.3.

3.2.3. The topological invariance approach
We have thus far, considered only the one-electron system and ignored the many-
body interaction. The quantization condition in the presence of a many-body inter-
action was studied by Niu et al. (1985) (see also Avron and Seiler 1985, Aoki and
Ando 1986a), who showed that the Hall conductance can be expressed in a topologi-
cally invariant form. In the following, we briefly discuss the work of Niu et al. (1985).
The Hall conductivity of a rectangular plane with sides L, and L, is written via
the Kubo formula as (see, e.g., Morandi 1988)
ie?h (v1)on (V2)n0 — (V2)on (V1 )no
=g (Eo—E, )} e
where A =L, L,, |0} is the ground state and |n) corresponds to the excited states
of the N -electron Hamiltonian, E, and E, are the corresponding eigenenergies and
the velocity operators v, and v, are defined as
NC

1
b= —*<—ihVi+§A,->, 0= (0, 0,). G1)

i=1m;

Considering the Landau gauge 4 = (0, Bx), the wave function y for the opposite
edges are related by magnetic translations (Brown 1968)

Y(x; + Ly) = e eiLi/la Y(x;), Y(yi+ Ly)=e' Y(yi)s (32)
where « and f are phase parameters. Making the unitary transformation

Ne Ne
<p,,=exp<—ioz Y xi>exr><—i/3 ) yi) 2%
S =1
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one can write the Hall conductivity as (Niu et al. 1985)

o= 1€ (/0901000 /090|000 (33)
H™p \\ 06 | 09 dp |00 /)
where 0 =aL, and ¢ = fL,.
One major condition for quantization in this approach is that the Hall conductivity

is a local response function, insensitive to the boundary condition. We can, therefore,
average over all the phases (0 <6 <27, 0 < ¢ < 27) that specify different boundary

conditions
990 090|090
w>_<w o9 /) (34)

< 21t %
2n1 1)
This can be evaluated as
2!

10} e’ 1
— do —VxA=——0dl A 35
j Lz 8 Mm§ (33)

The vector A is defined by its components

a(Po 09

A = — —_ == H - 36

Now, if the ground state is nondegenerate and is separated from the excited states
by a gap, the ground state can only change by a phase factor depending on 0 and
¢. For example, the ground state must go back to itself (up to an overall phase
factor) as 6 and ¢ change by 2n. Therefore, ¢ dI-A4 = 2mi x (integer) and oy =
integer x e?/h.

Integral (34) is a topological invariant and was originally obtained for noninter-
acting electrons in a two-dimensional periodic potential (Thouless et al. 1982). An
excellent introduction to the connection between the IQHE and the topological idea
can be found in the book by Morandi (1988). Similar arguments for the FQHE have

also been put forward by Niu et al. (1985). A better treatment of the latter case was
given, however, by Tao and Haldane (1986) and will be discussed briefly in § 4.2.6.

3.3. Other developments

3.3.1. Electron localization in the quantum Hall regime

We have seen above that the extended and localized states form an integral part of
our understanding of the IQHE. Several authors have studied the role of various
disorder potentials in the IQHE regime (Iordansky 1982, Kazarinov and Luryi 1982,
Luryi and Kazarinov 1983, Trugman 1983, Joynt and Prange 1984, Apenko and
Lozovik 1985).
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For an external potential U(r) which varies slowly over length scales of order [,
and neglecting the inter-Landau-level transition, the motion of an electron reduces
to a drift of the center of cyclotron motion along an equipotential line U(r) = const.
The state of an electron with energy E (measured from the center of the Landau
band) is localized near the line U(r) = E, and decreases exponentially from this line.
The properties of the equipotential lines for a two-dimensional random potential are
fairly well known from the classical percolation model (Zallen and Scher 1971). If
the potential U(r) is symmetric about E =0 (e.g., for equal number of attractive and
repulsive scatterers), the equipotentials with E # 0 are closed curves of finite length,
and correspond to localized states. If we call the regions with U(r)> E land and
those with U(r) < E water, we get a set of islands for E > 0 or a number of lakes for
E <0. In that case, we have at least one coast line at E =0. In this picture, all the
states in a two-dimensional system subjected to a strong magnetic field are localized,
except for the state at the center of the Landau band, which is extended. In an
external electric field, analyzing the delocalized drift trajectories, Iordansky (1982)
and others (Kazarinov and Luryi 1982, Luryi and Kazarinov 1983, Trugman 1983)
obtained the quantization for a,,.

The behavior of the localization length in strong magnetic fields has been a very
active area of research. Using diagrammatic techniques, Ono (1982) was the first to
suggest that only the center of the Landau level is extended while the other states
are exponentially localized. Ando studied the electron localization by numerically
diagonalizing the Hamiltonian matrix for a system with short-range -function (Ando
1983a) and long-range (Gaussian form) impurities (Ando 1984) which are randomly
distributed. The localization length was studied by Ando via the Thouless-number
method. The Thouless number g(L) is defined as the ratio of the shifts AE of the
individual energy levels due to a change in boundary conditions (from periodic to
anti-periodic) to the level separation [L?> D(E)] !, where D(E) is the density of states
per unit area. For localized states, one can determine the extent of the localized wave
functions or the inverse localization length o(E), from

g(L)=g(0)e =Pk,

where L is the sample length (Licciardello and Thouless 1978). The conclusion was
that the states are exponentially localized except in the vicinity of the center of each
Landau band. The inverse localization length was found to decrease almost linearly
with energy when the energy is far from the center of the Landau band, and then
smoothly approaches zero with energy. Extremely large localization lengths in the
center of the Landau band were also found in numerical studies by other groups
(Schweitzer et al. 1984). Finite-size studies with sample size ~ 50000 times the
cyclotron radius (Aoki and Ando 1985, 1986b, Ando and Aoki 1985) resulted in
a(E) oc|E — E,|° near the center E,, of each Landau level with the critical exponent
s<2 and s<4 for n=0 and n=1, respectively. From a perturbative calculation,
Hikami (1986) estimated s = 1.9 + 0.2. The critical exponent from the classical perco-
lation model is § (Trugman 1983) and including quantum tunneling one gets s =3
(Mil'nikov and Sokolov 1988). A percolation model, including quantum tunneling
and interference near the percolation threshold (Chalker and Coddington 1988)
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yielded a one-parameter scaling behavior and a critical exponent s = 2.5 + 0.5. Recent
finite-size scaling studies in the lowest Landau band (Huckestein 1990, Huckestein
and Kramer 1990) revealed a universal one-parameter scaling behavior and a critical
exponent s =2.34 + 0.04. For more recent results on the finite-size scaling, see the
paper by Huo and Bhatt (1992).

3.3.2. Renormalization group approach

This approach is a result of the attempts to unify the weak localization in a two-
dimensional electron system (Abrahams et al. 1979, Gorkov et al. 1979) and the
quantization of the Hall conductivity. According to the two-parameter scaling theory
of the IQHE (Pruisken 1984, 1985, Levine et al. 1983, Khmel’nitzkii 1983, 1984), 7.,
and o, (in units of e?/h) vary with a length scale L, given by the renormalization
group equations

T B0 o) E=InL @)
where f,, is a periodic function of a,, with a period of e?/h. The resulting phase
diagram is shown in fig. 8. The beginning of each flow line is selected at a point
corresponding to a spatial scale £ =0, where ¢ can be estimated from the classical
formula (21). With increasing system size, all flow lines merge into one of the fixed
points at (o,,, ,,) = (0, —ne?/h) which are the localization fixed points and describe
localized wave functions of the electrons near the Fermi energy Eg. In addition, the
system also has unstable fixed points (denoted by ®) where the flow lines with ¢, =
—(n+%)e?/h terminate. At these points, o,, >0 and describes the singular behavior
in the renormalized transport coefficients, corresponding microscopically to the
occurrence of a diverging localization length. These delocalization fixed points are
associated with the extended states at Eg. It should be noted that the explicit form
of the f-function is not known, only its asymptote is calculated. An approximate

2
3 Y BR,
s Llriviyly ‘
b=

Lw \ Y| Y Y Y Y

1 1
OO | l 2 + 3 4
—0yy [e2/1]

Fig. 8. Scaling diagram for the integral quantum Hall effect.
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calculation of o,, at the unstable fixed points gives o, = (1.4/n)e? /h for a white-noise
random potential (Hikami 1984).

The predictions of the two-parameter scaling theory have been tested experimen-
tally (Wei et al. 1985b, 1986). The study was carried out on the 2DES in InGaAs/
InP heterostructures. It was assumed that the effective sample size is governed by
inelastic scattering which can be varied via the temperature T, and a phase diagram
was constructed (fig. 9) from the measurements of o,.(T) and o,,(T). In this figure,
the dashed lines are from the temperature range 4.2-10 K, where lowering of T is
accompanied by the usual enhancement of the Shubnikov—de Haas oscillations as a
result of a change of the Fermi distribution. In the scaling region (T ~ 0.5-4.2 K) the
results, presented as full lines, show a tendency (as T—0) to flow out toward the
fixed points (0, e?/h), (0, 2¢*/h), (0, 3e/h) and (0, 4e*/h). Detailed studies by these
authors indicated that there is a remarkable symmetry about the line o,, = 15. The
data are consistent with the existence of an intermediate coupling, delocalization
critical point. A phase diagram for the FQHE based on the scaling hypothesis has
also been proposed (Laughlin et al. 1985). The theories are still in a state where a
fair amount of guesswork is required as input.

The two-parameter scaling theory of the IQHE has not received much support
from other theoretical work. Finite-size studies of the diagonal and off-diagonal
conductivities (Ando 1986) indicate that they are not independent but possess single
flow lines dependent on the Landau-level index which contradicts the scaling theory
results discussed above.

3.3.3. Current-carrying edge states
In calculating the Hall current in § 3.1.2, we assumed that the current is distributed
over the entire surface of the two-dimensional layer. Some authors have pointed out

08

Txx [ez/h]

= %%y [ez/h]

Fig. 9. Experimental results for the conductivity plotted as T-driven flow lines from T =10 to 0.5 K. The
dashed lines are from 10 to 4.2 K and the solid lines from 4.2 to 0.5 K.
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that, in fact, the current flows along the one-dimensional edge of the layer (Halperin
1982, Thouless 1982, MacDonald and Streda 1984).
Let us consider the noninteracting electrons of § 2.2 but now confined in a potential

V(x)=0, xe(—3iL,,iL))

. (38)
= + 00, otherwise.

Far from the boundary inside the sample, V(x) = 0 and the eigenstates are as derived
above. However, near the boundary, the energy eigenvalues deviate from the Landau
energy (7) and behave as in fig. 10, as a function of X. The total current carried by
the nth branch of the energy spectrum when all the bulk states for that branch are
occupied is given by (MacDonald and Streda 1984)

I,= %(u“ _ (39)

where p® is the chemical potential at the right (positive-x) edge of the sample and
p" is the chemical potential at the left edge.

In the equilibrium case, u® = p*, the bulk current which flows in the presence of
an electric field (in which case the above result also holds) is exactly cancelled by
the surface diamagnetic current. For noninteracting electrons all the current would
flow at the edges and the quantized Hall current would be just the difference between
the two edge currents. MacDonald and Streda (1984) also showed that these results
are unaltered by the inclusion of the random potential in the Hamiltonian (Apenko
and Lozovik 1985). The role of edge currents has also been studied by Smrcka (1984),
who derived the Hall current from the Kubo formula, taking into account the edge
states explicitly. He concluded that the IQHE is exclusively due to the edge currents.
It has been proposed that the edge currents might be observed from the oscillations
in the magnetic susceptibility (Azbel 1985). Several experiments exploring the current-
carrying edge states have been reported in the literature (van Wees et al. 1989, Miiller
et al. 1990).

E, X) /h o

- N W s
T

Fig. 10. Energy spectrum of a noninteracting electron in an infinite well confining potential.
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3.3.4. Further topics

Finally, we should also mention the work on the IQHE based on the Landauer
(1970) approach to transport theory in a two-dimensional system subjected to a
strong perpendicular magnetic field. In this approach the conductivity is related to
the transmission and reflection probabilities of electrons which are incident from the
leads. Streda et al. (1987) studied the transport in the case where the current is
incident from a disorder-free (ideal) lead on the left of the sample and is collected
by an ideal lead on the right. They argued that the magnetoresistance R and the
Hall resistance Ry satisfy the sum rule (R + Ry) ™' = (e?/h) Tr(t't), where ¢ is the
transmission matrix. Biittiker (1988) has proposed a theory of the IQHE in open
multiprobe conductors based on the formation of the edge states and the suppression
of backscattering (from one side of the sample to the other). Experiments on the
transport through narrow channels (Haug et al. 1989, Washburn et al. 1988) have
revealed interesting results but the literature on transport in narrow channels is too
numerous to cover in this general review and the interested reader is referred to an
excellent review by Beenakker and van Houten (1991).

The IQHE breaks down at a critical current density j, (the corresponding critical
Hall field Ey =60 V/cm at a magnetic field B =5 T) where the resistivity increases
abruptly by orders of magnitude and the Hall plateau disappears (Ebert et al. 1983,
Sakaki et al. 1984, Pudalov and Semenchinsky 1984a). A typical result is shown in
fig. 11. At a current density of j, = j, = 0.5 A/m, p,, at the center of the v = 2 plateau
increases dramatically. A pronounced hysteresis is observed near the breakdown
threshold.

In the literature several mechanisms are proposed as possible causes for the
breakdown.
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Fig. 11. Breakdown of the IQHE under quantum field effect conditions. The current—voltage characteristic

of a GaAs-heterostructure at a filling factor v =2. The device geometry and the p,,(B) curve are shown
as insets.
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(a) Transition between levels accompanied by the absorption or emission of pho-
nons (Streda and von Klitzing 1984). .

(b) Zener effect: tunneling of the carriers between occupied and empty Landau
levels (Cage et al. 1983).

(c) Heating instability associated with the breakdown of the balance between the
energy gained and released by electrons (Ebert et al. 1983, Komiyama et al. 1985).

4. Fractional quantum Hall effect

The FQHE was realized in the high-mobility 2DEG in GaAs/Al,Ga, _,As hetero-
structures (Tsui et al. 1982, Stormer et al. 1983b, Stormer 1984, Tsui and Stérmer
1986) and in high mobility Si-MOSFETs (Pudalov and Semenchinsky 1984b). It is
characterized by the fact that the Hall conductance has plateaus quantized to certain
simple fractions v of the unit e?/h and at the same place, the longitudinal resistivity
shows an almost dissipationless current flow. Here v is a rational fraction with an
odd denominator [in fact, an even denominator fraction has also been found to
exhibit the FQHE (Clark et al. 1986, Willett et al. 1987)].

Figure 12 shows the effect for a few values of the filling factor v. For v> 1, the
characteristic features of the integral QHE are clearly visible. However, in the extreme
quantum limit, i.e., for v< 1, and at low temperatures (T = 0.48 K), one observes a
clear minimum in p,, and a quantized Hall plateau at v=13. In later experiments
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Fig. 12. The Hall resistivity p,, and the diagonal resistivity p., as a function of magnetic field in a GaAs-
heterostructure with electron density ny = 1.23 x 10'! cm~2, where the FQHE was first discovered. The
scale on the top shows the filling factor, defined in the text.
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with higher mobility samples the plateau was found to be quantized to better than
three parts in 10° and p,, was lower than 0.1Q/J. A weak structure around v =%is
also visible at the lowest temperatures. Subsequent experiments with higher mobility
samples (Chang et al. 1984, Willett et al. 1987, Sajoto et al. 1990) revealed several
other fractions which are displayed in fig. 13 and summarized below:

¥ 2% 3 3% 3% 3% 4 4% 4% 5 6%
511 »7>11 513 517 59511 >13 »>11>13
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s 15

_____ 1
3%

13% 11 7% 8%
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~
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The fractions with an asterisk (*) have as yet shown structures in Pxx Only. The first
row of fractions are simply v = p/q (2p < q). The second row contains the fractions
v=1—p/q and the last row contains the other fractions v=1 + plg, 1+ (1 —p/q),
2+ p/q, etc. The arrangements of the fractions are made with the electron—hole
symmetry in mind which will be described below.

The major characteristics of FQHE, viz., the appearance of plateaus in p,, and
minima in p,,, are similar in nature to those of the IQHE. In spite of this apparent
similarity the physical origin of the former effect is different from the latter as can
be seen from the fact that:

(a) plateaus and minima appear at fractional filling factors where no structure is
expected in the single-electron density of states, and

(b) the effect is observed only in samples of very high mobility.

This leads us naturally to believe that the electron—electron interaction plays a
major role in the FQHE. The main theoretical step in explaining the FQHE, therefore,
is to determine the properties of an interacting 2DEG with a neutralizing background

Pxy [h/ez]
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Fig. 13. Overview of the observed fractions in the FQHE measurements.
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subjected to a strong perpendicular magnetic field such that only the lowest Landau
level is partially filled. :

In our attempt to explain the fractional Hall steps, we have to understand the
exceptionally stable states of the electron system at particular rational values of v.
The pinning of the density at those values of v would require that the energy versus
density curve shows a cusp-type behavior. A cusp would imply a discontinuity of
chemical potential, which would in turn, mean that the electron system is, in fact,
incompressible* at those stable states.

4.1. Ground state

As the fractional Hall steps are observable only in samples of very high mobility,
impurity potentials are not expected to be very important in comparison with
electron—electron interactions. The first step in the explanation of the FQHE, as
stated above, would, therefore, be to study the properties of a system of two-
dimensional interacting electrons in a uniform positive background with the magnetic
field strength such that only the lowest Landau level is partially filled. One could
then consider the effect of impurities as a perturbation. The unit of potential energy
is €2 /el,, which is taken to be the energy scale throughout. Here, ¢ is the background
dielectric constant. For a magnetic field B> 10 T, where the FQHE is generally
observed, using the values ¢ ~ 12.9 and m* & 0.067m, which are appropriate for GaAs,
it is easy to verify that e?/el, < ho,, the cyclotron energy. The admixture of states
in higher Landau levels can thus be safely ignored as a first approximation.

In the extreme quantum limit (no Landau-level mixing), the Hamiltonian describing
the two-dimensional electron gas can be written as

# =1Y V(QLp(q) p(—q) — pe 5], (40)

where p(q) is the projected density operator (discussed in § 4.3.1.) and p is the average
density of the particles in the system. In the absence of kinetic energy, the ground
state is expected to be a solid — which means that the Hamiltonian describes a set
of interacting classical particles. The operators p(q) do not commute with one another.
However, in the limit B— oo we get (Fukuyama et al. 1979), [p,, p—,]1— 1, and one
obtains a (presumably triangular) solid. The earlier attempts to explain the FQHE
were mostly centered on crystal-state calculations. Such calculations (Yoshioka and
Lee 1983, Yoshioka et al. 1983) however, did not find any singularity at v=3. It is
also difficult conceptually to understand how the crystal could carry electric current
with no resistive loss, since the charge-density wave (CDW) would be pinned by
impurities. Also, if the CDW is not allowed to move with a drift velocity E x Bc/B?,
the electron contribution to the Hall conductivity would vanish (Laughlin 1987).
The earliest numerical calculation of the ground state including Coulomb inter-
actions, was by Yoshioka et al. (1983). They investigated the eigenstates of an electron
system in a periodic rectangular geometry, by numerically diagonalizing the

* The compressibility x ~ [d?E/dv?]~! —0 at the point where the cusp appears.
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Hamiltonian. Their results, as we shall discuss in the following section, revealed
several interesting features; the most important result was, of course, that the ground
state has a significantly lower energy than that of a Hartree—Fock (HF) Wigner
crystal.

4.1.1. Theoretical work
In the lowest Landau level, the single-particle wave function is (except for the
normalization factor),

¢ =exp[iXy/I§ — (X — x)*/213], (41)

where X = k, I3 is the center coordinate of the cyclotron motion. Following Yoshioka
et al. (1983), let us now put a finite number of electrons in the cell and introduce
interactions among them. Consider the situation where there are a few electrons in
a rectangular cell of sides a and b, and a strong magnetic field perpendicular to the
x—y plane. The electrons are considered to be in the lowest Landau level and are
spin-polarized. Applying periodic boundary conditions in the y-direction, one obtains
k,= X /1§ =2mj/b for an integer j. For the periodic boundary condition along the
x-direction, let us write, for an integer m, X,, = a. Clearly, ab = 2nl3m, and from
eq. (13), m is the Landau-level degeneracy N,. For N, electrons in the cell, the filling
factor is easily calculated as v =2nlZN,/ab = N,/N,. The Hamiltonian for the finite-
electron system, suitably modified for the periodic rectangular geometry, is diagonal-
ized numerically to obtain the eigenstates. Details of the calculation can be found in
the literature (Yoshioka et al. 1983, Yoshioka 1984a, Chakraborty and Pietiliinen
1988a).

In fig. 14, we present the numerical results of Yoshioka et al. (1983), for the ground-
state energies per particle as a function of filling fraction in the lowest Landau level.
There are several interesting features noticeable in the result. Let us first consider
the case v = 3. The ground-state energy per particle for four-, five- and six-electron
systems are extremely insensitive to the system size. They are also very close to the
infinite system result to be discussed below.

The ground-state energies tend to have downward cusps for v =14 and 2. (A cusp
is also visible at v =73 but the ground-state energies at this filling fraction strongly
depend on the system size.) Cusps at the experimentally observed filling fractions are
quite naturally required, in order to describe the incompressible fluid state first
proposed by Laughlin.

In fig. 14, also presented are the energy of the crystal state for the N.=4 system
obtained in the exact diagonalization (closed squares) and HF approximation (open
squares) (Yoshioka et al. 1983). The long- and short-dashed lines show the energy of
the electron and hole crystals resulting from the HF approximation for the infinite
system. These crystal state results show a smooth behavior at v =1 and are not the
lowest energy state.

In the lowest Landau level, there is electron—hole symmetry. The system with N,
electrons in N sites is thus equivalent to that with (N, — N,) holes in N, sites. When
we choose the products of the single-electron eigenstates as a basis, the off-diagonal
matrix elements for v=N,/N, are the same as those for v=(l — N./N,) filling
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Fig. 14. Energies per particle for finite-electron systems in a periodic rectangular geometry, as a function

of filling factor in the lowest Landau level. The long- and short-dashed lines are the energy of the electron

and hole crystals within the HF approximation for the infinite system. Closed squares denote the crystal

state energies for the N, =4 system. Open squares show the energy of the crystal state for the N, =4
system obtained in the HF approximation.

fractions for the same J values. The diagonal matrix elements differ only by a
constant. The results for v > 4, shown in fig. 14, are obtained by the above arguments.

While these numerical results demonstrate that the ground state is not crystalline,
as Halperin (1983) pointed out, not much insight is gained about the ground-state
wave function. The crucial step in obtaining a ground-state wave function for a
translationally invariant liquid state, and the mechanism for stabilizing the system
at particular densities, was made by Laughlin (1983a, 1984b, 1987), and is described
below. It should be pointed out that similar finite-size calculations were also done
by Haldane and Rezayi (1985) in a spherical geometry.

In discussing Laughlin’s theory, we will closely follow the seminal paper by
Laughlin (1983a) as well as papers by other authors (Halperin 1983, Chakraborty
and Pietildinen 1988a). Let us consider the electrons to be confined in the x—y plane
and subjected to a magnetic field perpendicular to the plane. Considering the symmet-
ric gauge vector potential, 4 = 3 B(xy — yX), it is convenient to regard the x—y plane
as a complex plane. For the lowest Landau level, the single-particle wave functions
are eigenfunctions of orbital angular momentum

onlz)= m) —1——<5>me-'2'2/4'3, “2)

T eri22mm) 2\,
with z = x — 1y being the electron position. The many-electron system is described
by a Hamiltonian of the form

1
”=§[z—rne

where z; is the location of the jth electron and V(z) is the potential generated by a

2 2

—inV,— 4, ¢ (43)

+ V(zj)] + )

j<k|zj'“zk|’
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uniform neutralizing background. It is easy to verify (Laughlin 1983b) that
(m|r?|m)y =2m+ I3, (44

which means that the area covered by a single electron in state |m) moving in its
cyclotron orbit is proportional to m. This result might be considered as an indication
of the relation between the interelectron spacing and the angular momentum. From
eq. (13), it is readily noticeable that the degeneracy of a Landau level N is the upper
bound to the quantum number m. This is seen by requiring that, n{r?) < A, where
A is the area of the system. One then obtains from the above relations, m < N, —1,
where N is the Landau-level degeneracy. Therefore, the state space of an electron
in the lowest Landau level is spanned by 1,z, 22 ...,z ! times the exponential
factor e~ 11741,

The Jastrow-type many-electron wave function proposed by Laughlin for the v =
1/m state is

Ne Ne
V= (z;— z)™ [] e~ 1215, 45)
Jk=1 ji=1
i<k

For m being an odd integer, this wave function obeys Fermi statistics. The wave
function is entirely made up out of states in the lowest Landau level. It is also an
eigenstate of the angular momentum with eigenvalue M =N (N, — 1)m. The total
angular momentum M is the degree of the polynomial (conservation of angular
momentum). In order to gain more insight about the wave function, let us expand
the first product in powers of z,, keeping all other coordinates fixed. The highest
power would then be m(N, — 1), which must be equal to N,— 1. For large N, we
then obtain
A 1
MEMEN, TV (46)
The parameter m is thus fixed by the density and, unlike in conventional Jastrow
theory, we do not have a variational parameter in the trial wave function. For m = 1
(filled Landau level), the polynomial IT; ., (z; — z,) is the Vandermonde determinant
of order N.. As N.— oo, the particle density in this state tends to 1/2nl2 (Bychkov
et al. 1981).
For m > 1, the wave function vanishes as a high power of the two-electron separa-
tion, and thus tends to minimize the repulsive interaction energy. The probability
distribution of the electron for y,, is given by

[YUm|*> =€,

Hy=—2m Y Inlzj— 7] + Y |z,2/212. (“7)
i<k J

This is the Hamiltonian for a charge neutral two-dimensional classical plasma where

the particles are interacting via a two-dimensional Coulomb (logarithmic) interaction

with each other and with a uniform neutralizing background with particle density

pm = 1/2nl3m. Therefore, in order to achieve charge neutrality, the plasma particles

spread out uniformly in a disk with density p,,, corresponding to a filling factor v =
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1/m, and m is an odd integer. The classical plasma provides strong support that the
Laughlin state is indeed a translationally invariant liquid (Caillol et al. 1982).

The electrons however, in contrast to the classical plasma particles, interact via
the three-dimensional Coulomb interaction, and the expectation value of the potential
energy in a quantum state is given by

<>
N,

=3 f o(r) g(r) dr, (48)

where g(r) is the two-particle radial distribution function, which was calculated by
Laughlin using the classical plasma approach. In this calculation, Laughlin used the
hypernetted-chain (HNC) theory, which is a well-established technique for dealing
with the classical plasma and other quantum systems (Chakraborty and Pietildinen
1988a). The pair-correlation function in the Laughlin state shows a predominantly
short-range behavior: for small r, g(r) goes to zero as r>™ whereas for the crystal state
it goes as r2.

Immediately after Laughlin introduced his ground-state wave function (45),
Halperin (1983) gave a very interesting interpretation of the significance of this wave
function. Imagine freezing the positions of all but the first particles and let ¥ be the
wave function for z,, parametrized by the positions of the other particles:

x(zy) = l_[ (Zl_Zj)exp(_%Izllz)- 49)

j=1

From the theory of analytic functions one knows that the polynomial can be uniquely
defined by the set of its zeros {Z;; j =1, ..., L}. In fact, the zeros of the wave function
(45) look like two-dimensional Coulomb charges (in a plasma analogy) which repel
the particle at z,. These zeros must be uniformly distributed with density 1/27 in
order to balance the effect of the Gaussian term which is attracting the particles into
the origin. Halperin then observed that Laughlin’s wave function places these zeros
directly on the other particles. Each particle sees m zeros bound to the positions of
the other particles. Let us define a vortex as a point where the wave function is zero,
such that the phase changes by 27 as one circulates around the vortex in the negative
direction. The special feature of the Laughlin wave function is that there are exactly
m vortices at each electron position and no other wasted vortices elsewhere in the

plane.
The ground-state energy for the v =1 state, obtained in the HNC scheme is
E(v=1%)= —0.4056¢*/¢l,. This result is quite close to the exact results shown for

finite electron systems in the earlier section. There have also been very accurate
Monte Carlo studies to confirm these results on quantitative grounds. Levesque et al.
(1984) obtained the ground-state energy of the Laughlin wave function by evaluating
the pair-correlation functions for about 256 particles, using the method described by
Caillol et al. (1982). For the ground-state energy they obtained E(v=1)=
—0.4100 £ 0.0001 and E(v = §) = —0.3277 4 0.0002 (in units of e?/el,).
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4.1.2. Recent developments

The spectroscopic method, based on radiative recombination of two-dimensional
electrons with photoexcited holes, has generated considerable interest recently as a
route to study the FQHE. Magneto-optical experiments in the FQHE regime are
expected to reveal physics of the many-electron state that is not accessible in magneto-
transport. While transport measurements study the electronic properties close to the
Fermi energy, the method of radiative recombination provides information about
the whole energy spectrum of the electrons.

Buhmann et al. (1990) studied the spectra of the radiative recombination of two-
dimensional electrons in several GaAs—AlGaAs heterostructures with photoexcited
holes localized in a J-doped monolayer of acceptors (Be atoms) 25 nm away from
the interface. They observed anomalies in the luminescence spectrum at v=3%,3, 1,
1, and 3. This was the first observation of the filling factor 3.

Goldberg et al. (1990) also reported an interesting experiment which involved
simultaneous measurement of the transport resistivity components and photolumin-
escence spectra from one-side-doped GaAs/AlGaAs single quantum wells. They
observed a sudden shift of the luminescence peak and a minimum in peak intensity
at v=1%. Precisely at v =% the peak position was found to shift abruptly to the blue
by ~0.1 meV. In the high-field region about the FQHE states v =% and 4, Goldberg
et al. observed a splitting of the luminescence. Anomalies in the energy of photolumin-
escence near v =3 were also observed by Turberfield et al. (1990). A popular account
of these studies can be found in the article by Worlock (1990). Some theoretical work
on optical recombination in the FQHE regime has appeared in the literature
(Bychkov and Rashba 1989, Apal’kov and Rashba 1991, Chakraborty and Pietildinen
1991).

At very low electron density, i.e., for very small v, the ground state is expected to
be a Wigner crystal. It should be noted that the two-dimensional one-component
classical plasma has a crystallization transition which occurs at m ~ 70 (Caillol et al.
1982). Therefore, it would be interesting to estimate the filling factor at which the
liquid to solid transition takes place for the present quantum system. Most computa-
tions of the crystal energy have been within the HF approximation (Yoshioka and
Lee 1983, Yoshioka et al. 1983). Comparing the accurate Monte Carlo results for
the Laughlin liquid state with the HF crystal energies as a function of filling factor,
the critical filling was found to occur at v, ~ 5 (Levesque et al. 1984), an estimate
similar to that of Laughlin (1983a). With a variational wave function for a correlated
Wigner crystal the crossover point was estimated by Lam and Girvin (1984) to be
vo1=6.5+0.5.

A clear indication of the FQHE at v =% has been observed in the experiments of
Mallett et al. (1988), who determined the activation energy of this state [4 ~ 50 mK
at 19 T] for the first time (see § 4.2.4 for a discussion on the energy gap). They also
reported observation of weak p,, minima at v =%, and %, thereby providing experi-
mental confirmation of the £ hierarchy, which is different from the sequence of states
obtained from 4. Furthermore, the observation of the p,, minimum at 7 sets a lower
limit to which the FQHE is shown to persist.
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The difficulty of performing measurements in the low-v, low-temperature range
was greatly circumvented recently by Goldman et al. (1988). In recent magnetotrans-
port measurements they observed a structure near the filling factor v=173. It was
interpreted as evidence for a developing fractional quantum Hall state. The Wigner
crystallization is, therefore, expected to occur for v < 4. A structure in p,,, indicating
the FQHE state at v=4% in a magnetic field up to 18 T, was also observed by
Wakabayashi et al. (1988). In a recent experiment, Jiang et al. (1990) also found that
at filling factors below £ as well as in a narrow region above v=1%, p . diverges
exponentially as T'— 0. This is interpreted as indicative of a pinned solid-like phase
in the underlying electronic system. This electronic phase is reentrant in a narrow
region above v ~ %. The liquid state at v =% is apparently embedded within a solid
phase.

A two-dimensional electron solid has also been observed in very high-mobility Si-
MOSFETs at large filling factors (v > 1) and low magnetic fields (B < 5 T) (D’Iorio
et al. 1990, Kravchenko et al. 1992). Below a carrier concentration of ~10'! cm ™2,
the longitudinal resistance maxima near the filling factors 1.5 and 2.5 increases
sharply by more than four orders of magnitude. The magnitude of the resistance
maxima is thermally activated below 0.5 K and the activation energy at 8 x 10!° cm ™2
is about 1 K. In the range of concentrations and filling factors where the electron
solid is observed, the current—voltage characteristics show a sharp threshold at
~100 mV/cm (D’Iorio et al. 1992).

Spectroscopic measurements in the FQHE regime have been recently employed
to probe the Wigner crystallization in the strongly interacting electron system at low
filling factors. A qualitative phase diagram T;(v) proposed by Buhmann et al. (1991)
is shown in fig. 15 where the incompressible liquid state occurs at as low a density
as v=75 but for v<1% all these states are surrounded by Wigner-crystal-like states
(shaded regions).

TEMPERATURE

2

0 0.1 0.2 0.3
FILLING FACTOR

Fig. 15. Qualitative form of the phase diagram T,(v). Regions above the solid curve represent the incom-
pressible liquid state. Shaded regions represent a solid phase.



1008 T. Chakraborty
4.2. Elementary excitations

One important result of Laughlin’s theory was the observation that the elementary
charged excitations in a stable state v = 1/m are quasiparticles and quasiholes with
fractional electron charge of e* = +e/m. If one electron is added to the system, it
amounts to adding m elementary excitations and, hence, the discontinuity in slope
of the energy curve can be written as

oF
v, ON,

OE

W = m(ép + §h) = mEg, (50)

V-

where E, is the energy required to create one quasiparticle (with energy £,) and one
quasihole (with energy &,) well separated from each other. The pinning of the density
to v = § suggests that there will be no low-frequency phonon-type excitations at long
wavelengths. When the filling factor v is slightly shifted from the stable state 1/m,
with m being an odd integer, the ground state of the system is expected to consist
of a small density of quasiparticles or quasiholes, with charge + e¢/m and Coulomb
interactions. In the presence of impurities, these quasiparticles or quasiholes are
expected, for low concentrations, to be trapped in potential fluctuations.

4.2.1. Quasiholes and quasiparticles

For densities slightly different from v = 1/m, we cannot construct a wave function
with exactly m vortices tied to each electron. In order to have an electron density
slightly less than 1/m, either we add a few extra vortices not tied to electron positions,
or have some electrons with more than m vortices (recall Halperin’s interpretation
of the Laughlin’s wave function discussed above). Laughlin considered the first choice,
and the wave function is written (in units where I, = 1) as

wt;)=exp<—%; |z,|2> [1G=20) [ (=20 (51)

where z, = xo —iy,. This wave function has a simple zero at z; = z, for any j, as well
as m-fold zeros at each point where z; = z,, for k # j. Writing

W& 1P =e ", (52)
we obtain
Xi,,"=1fm+221n|zj—zo|, (53)
J

which is just the Hamiltonian of a classical one-component plasma in the presence
of an extra repulsive phantom point charge at point z,, whose strength is less, by a
factor 1/m, than the charges in the plasma. The plasma will neutralize this phantom
by a deficit of 1/m charge near z,, while elsewhere in the interior of the system, the
charge density will not be changed. However, the real three-dimensional electric
charge is carried by the electrons and by the uniform positive background, and not
by the phantom. As the electron charge density cancels the uniform background, a
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real net charge —e/m is accumulated in the vicinity of z,. The wave function (51),
therefore, describes a quasihole at point z,.

In the case where the electron density is slightly higher than the stable 1/m state,
the choice of the wave function is not so clear. In this case, one clearly needs a state
with one flux quantum (or equivalently, one zero of the wave function) missing. The
wave function proposed by Laughlin for the quasiparticle state is written

N, )
b= I [emei (2 ) | [ - ar 54
j=1 Z; i<k

In this case, the square of the wave function is not directly interpretable as the
distribution in a classical statistical-mechanics problem. However, Laughlin (1984a,b)
has provided a means to calculate the charge density. Laughlin (1984a,b) (and later
Chakraborty 1985) used a two-component HNC scheme to calculate the energy cost
associated with the creation of the elementary excitations. The energies evaluated
via the Monte Carlo scheme show a large discrepancy with the HNC results (Morf
and Halperin 1986). For details, see Chakraborty and Pietildinen (1988a).

The quasiparticle and quasihole size is the distance over which the one-component
plasma screens. For a weakly coupled plasma this distance is the Debye length

(Hansen and Levesque 1981), i, =1, /ﬁ. For the strongly coupled plasma relevant
in the present case, a better estimate is the ion-disk radius associated with charge
1/m, R= \/5 lo. In this sense, the quasiparticles have the same size as electrons in
the lowest Landau level.

4.2.2. Quasiparticle statistics
The fractional charge of the quasiparticles and quasiholes was derived by Laughlin
from the plasma analogy discussed above. Later, Arovas et al. (1984) presented a
direct method to determine the charge of excitations of the Laughlin state. Interes-
tingly, that approach also revealed some surprising features about the statistics of
the quasiparticles and quasiholes.

If the quasihole of charge e* is carried around a loop enclosing the flux @ it will
gain a change in phase of

* @
y=—§; -dl= 21re—— (55)

On the other hand, if we let the quasihole position z, move adiabatically around
this loop, the rate of this change can be calculated from

a0 _, /|40
dt Sdr

When we now substitute the time derivative
d./,( )

2 In[z— 2o (Y (56)

from eq. (51), we get
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dy . d
—V=1<¢1,,’ TLICEEY

o n/za:)>. (57

Introducing the one-particle density

P )= <ws;”2 8(z; —2) ws;>> (58)

of the quasihole state, this can be written as

% =i fdx dy p(_)(z)% In[z — z,(t)], (59)

where z = x + iy. We now expand p'~)(z) around the uniform density p, = v®/®, of
the ground state, i.e., we write p'~)(z) = po + 8p')(z). Let us first consider the p,
term. When we integrate z, around a circle of radius R the total variation of
In[z — zo(¢)] will be 2xi if | z| < R and zero if |z| > R. Thus, the corresponding change
of phase is given by

Yo =1 J dx dy po2mi
=k (60)
D
= —2ni{n)g = —2nv6;,

where (n)y is the mean number of electrons in a disk of radius R. The correction
3p'7)(2) is localized in the vicinity of z,, so its contribution to the change of phase
is of the order of size of the quasihole, i.e., of the order of /3. In comparison with
the constant term contribution, which is of the order R?, this can be clearly neglected.
From egs. (55) and (60) we can now deduce the charge of the quasihole to be e* =
—ve, in agreement with Laughlin’s theory. Similar arguments can also be made for
the quasiparticles.

Let us now consider two quasiholes located at z, and z,, a distance |z, — z,| =R
apart. When we carry the hole z, adiabatically around the circle of radius R centered
at the hole z, the analysis presented above is still valid provided the mean electron
number {n)y in the disk is counted correctly. We find that the quasihole at z, has
a charge —ve which we can interpret to mean that exactly v electrons are removed
from the disk, so we must substitute {n)y — v for the mean electron number. Hence,
an extra phase of amount Ay = 27nv is gained in the process. The interchange of two
quasiparticles can be achieved by letting each of them make a turn of 7 around the
other. From the treatment above it is obvious that the accumulation of this extra
phase is continuous and, therefore, the total change of phase will be vr. For v=1,
the quasiholes behave like fermions. For fractional fillings, however, we end up with
the striking conclusion that the quasiholes (and quasiparticles) obey neither Bose
nor Fermi statistics, but fractional statistics. The concept of anomalous statistics in
two dimensions was first introduced by Leinaas and Myrheim (1977). Indistinguish-
able quantum particles in two-dimensional space can, in general, have anomalous
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statistics. This is in contrast to three-dimensional space (and spaces of higher dimen-
sionality), where there are only Bose.and Fermi statistics. According to Wilczek
(1982), particles obeying anomalous statistics are called anyons because the inter-
change of any two of them can result in any phase.

4.2.3. Hierarchies of quasiparticles

Thus far we have discussed the theoretical work on the FQHE aiming at an explana-
tion of the behavior of the electron system at v = 1/m (and its electron—hole symmetric
fractions). But as shown in fig. 13, the FQHE appears at several higher order filling
fractions, notably, £, 3,4, etc. In order to explain the FQHE at these fractions,
Laughlin’s theory needs to be modified.

According to Haldane (1983), there is a hierarchical system in which p/q states
with 1 < p < q are formed from new generation of elementary excitations in the same
manner as the Laughlin state is formed by the electrons. Each new generation of
elementary excitations appears against a vacuum formed by the preceding generation.
In this picture, the elementary excitations are supposed to obey Bose statistics, unlike
the electrons which obey Fermi statistics. The chain of equations are

ng=mNy+oa, NY, (61a)
Ny =p,ND + 0, N@), (61b)
NO=p,N® 4 g, N3, (61c)
N1 = p N®. (61d)

where m > 1is odd if all p; # 0 are even and «; = +1 and n, = 1/2xl3 is the degeneracy
per unit area of the lowest Landau level. The above equations are understood as
follows: in the first equation the imbalance between the electron density N, and the
density of the incompressible state n,/m is compensated by the N* particles (a; =
—1) or holes (x; = +1). The next equation is the same except that it describes the
next generation with m replaced by an even quantity p,. The solution of egs. (61)
gives the continued fraction for v= N /n,:
1
V= v<1).
oy

m+

o
I T— (62)
o3

P2 —
p3—...
A new liquid [m, &, p,, ..., a;p;] does not form before the appearance of the preceding
liquid [m, oy py, ..., ;-1 pj—1 ]
The hierarchical scheme of Halperin (1984) is very much in the spirit of Laughlin’s
theory. In this scheme, the quasiparticles are required to obey fractional statistics. If
v, is a stable filling factor obtained at level ¢ of the hierarchy, the low-lying energy
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states for filling factors near to v, can be described by the addition of a small density
of quasiparticle excitations to the ground state at v,. There are two types of elementary
excitations: p-excitations (particle like) and h-excitations (hole like), with charges g,e
and — g, e, respectively. Halperin then constructed a pseudo-wave function (where the
coordinates are for quasiparticles),

a3 2
where Z; is the complex coordinate of the quasiparticle j and N, is the number of
quasiparticles. The polynomial P[Z;] is chosen to be symmetric,

P[Z;]1=[](Zi—Z;", (64)

i<j

W(Zy,.... Zy) = P[Z,]1 O[Z,] exp( _la '1 |Z,~|2>, (63)

where p,., is a positive integer, whose variational properties are known from
Laughlin’s theory. The function Q[Z;] determines the symmetry properties of ¥
under the interchange of quasiparticles. As mentioned above, in contrast to three-
dimensional space (and spaces of higher dimensionality), indistinguishable particles
in the two-dimensional space can, in general, have anomalous statistics. The bound
system of a spinless particle of charge g and an infinitesimally thin solenoid carrying
a flux @ and cutting through the plane of the motion of the particle [the system was
called an anyon by Wilczek (1982)] is such an example. The many-body wave function
of N, identical anyons is (Wu 1984a,b):

NS
l//*(rl 9 sssy er) = I_I exp <1;(pij lp(rl, sesy rN,)' (65)
i<j
In eq. (65), ¢;; is the azimuthal angle of the relative vector (r; —r;) and ¥(ry, ..., ry,)
is a single-valued wave function. According to eq. (65), a permutation of any two
anyons (Ag;; = n) multiplies y* by the phase factor e'. Therefore, when n = &/2n =
q®P/2d, is an integer, the anyons are bosons and when # is a half-integer, they are
fermions. Here @ is the usual magnetic flux.
In terms of the complex coordinates Z ; and Z%*, the multivalued wave function
(65) takes the form
v*= [1Z:—Z)" f(Z;, Z}), (66)

i<j
where f(Z;, Z}¥) = (r;;)" " Y(Z;, Z¥) is a single-valued function of the coordinates.
Let us now consider the first step of the hierarchy when the anyon quasiparticles
are derived from electrons. The phase change Ay of the wave function of a quasiparti-
cle in a closed adiabatic path around another quasiparticle is Ay = 2ng and for v =
1/m, |Ay| = 2n/m. Therefore, the change of phase that accompanies the interchange
of quasiparticles is Ay = v = & (see § 4.2.2). According to the general structure of
eq. (66), the factor Q[Z;] is now
0[Z;]= ,U, (Z,—Z)) ™. (67)
In eq. (67), « = *1, according to whether one is dealing with particle- or hole-type
excitations, and m, is a rational number >1.
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Assuming that at any stage of the hierarchy, the quasiparticles or quasiholes can
be treated as point particles with pairwise Coulomb interactions, an estimate for the
potential energy can be obtained. The resulting energy versus density curve was
generated by Halperin for various filling fractions as shown in fig. 16. In this figure,
the stable fractions appear with downward pointing cusps.

Finally, the hierarchical scheme described above has been employed by Zhang
and Chakraborty (1986) to study the condensation of the spin-reversed quasiparticles.

4.2.4. Energy gap

We have seen in §4.1.1 that the ground-state energy per electron in a finite-size
calculation shows a cusp-like behavior at v =1. As has already been discussed above,
the appearance of a cusp means a positive discontinuity in the chemical potential
(Halperin 1986) [see eq. (50)]:

Eg:%(ﬂ+ —u-) (68)

where the chemical potential is defined as

u=Eo+vee, (69)
dv
and E, is the ground-state energy per particle. In eq. (68), u+ corresponds to v, =
N./(NyF 1). The factor § corresponds to the fractional charge of the quasiparticles
discussed above.

The finite-size system result for the energy gap by Chakraborty et al. (1986) and
Chakraborty and Pietildinen 1986) is shown in fig. 17. Extrapolation of the results
for spin-polarized three- to seven-electron systems (plotted as solid circles) leads to
(approximately) E, ~ 0.1¢?/el,. These studies also indicate that in the absence of the
Zeeman energy, spin-reversed excitations cost even less energy (fig. 17) than the pure
Coulomb excitations proposed by Laughlin (1983a), and will be discussed below.
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Fig. 16. Potential energy E(v) per quantum of magnetic flux (in units of e?/el,) versus the filling factor v
of the lowest Landau level. The plasma energy E,, has been subtracted at each filling fraction.
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Fig. 17. The energy gap for different spin polarization of the quasiparticle (q.p.) and quasihole (q.h.)

excitations for three- to seven-electron systems, ignoring the Zeeman energy. In the case of spin-aligned

q.p. + q.h. gap (@), Monte Carlo (MC) results are from Morf and Halperin (1986). The other three cases

are: spin-aligned q.p. + spin-reversed q.h. (A); spin-reversed q.p. + spin-aligned q.h. (M); and spin-reversed

q.p.+q.h. (O). The ground-state energies (Yoshioka et al. 1983) at v=1 are given in the inset for
comparison.

In both the integer and fractional QHE, the vanishing of the diagonal resistivity
implies a gap in the excitation spectrum. In the case of the IQHE, the gap is in the
single-particle density of states, whereas in the FQHE, the gap lies in the excitation
spectrum of the correlated many-electron ground state. The energy gap is usually
obtained from the temperature dependence of the magnetoconductivity, o, [or p,,
since near the p,, minima, p,, <p,,, and 6. =p./(pi + pZ)~ p.c/pt], as
Ox OC Prx C €Xp(— W/ky T), where W =3E, is the activation energy and kg is the
Boltzmann constant. In the case of the IQHE, Tausendfreund and von Klitzing
(1984) found the energy gap obtained from activation energy measurements to be
close to the cyclotron energy. For the FQHE, similar measurements for the energy
gap have been undertaken by several experimental groups.

A systematic study of the energy gap for the filling fractions, v =14, %, 4, and § was
reported by Boebinger et al. (1985, 1987). The activation energies for these filling
factors are presented in fig. 18. The following features are noteworthy in these results:

(i) No apparent sample dependence was observed.

(i) The data for v =4 (solid symbols with error bars) and % (open symbols) overlap
at B~ 20 T. The data for v=4% and 5 (B at 5.9 and 7.4 T) are consistent with
the data for v=3% at similar magnetic fields. Collectively, the experimental
results therefore suggest a single activation energy (or gap E,), for all the filling
fractions mentioned above.
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Fig. 18. Activation energies for the p/3 fractions (in units of K) as a function of magnetic field. Also shown

are the theoretical results (solid lines) for the energy E, (K) versus magnetic field B (Tesla) for a five-

electron system. The open points on the theoretical curve (Chakraborty et al. 1986, Chakraborty and

Pietildinen 1986) are for spin-reversed quasiparticles and spin-polarized quasiholes, while the filled points
are for the fully spin-polarized case.

(i) E, does not follow the expected B'/> dependence. For B< 5.5 T, E, is vanish-
ingly small, but at higher magnetic fields, there is a roughly linear increase in
E,up to ~127T.

In our discussions of the electron system thus far, we have ignored the finite spread
of the electron wave function perpendicular to the two-dimensional plane. In the
real systems, the wave function of an electron has a finite spread in the z-direction.
It is well known that inclusion of the finite-thickness correction effectively softens
the short-range divergence of the bare Coulomb interaction, when the interelectron
spacing is comparable with the inversion layer width (MacDonald and Aers 1984,
Zhang and Das Sarma 1986). This causes a reduction in the energy gap calculated
for the ideal system. At low magnetic fields, mixing of the higher Landau levels also
influences the energy gap somewhat (Yoshioka 1984b). The activation energy for p/3
states has also been measured by Willett et al. (1988) in an ultrahigh-mobility (u=
5 x 10° cm? V™! s~ 1) quasi-two-dimensional electron system in GaAs—(AlGa)As, for
which the finite thickness of the carrier system is accurately known. The data are in
remarkably good agreement with the theoretical results for the energy gap when
Landau-level mixing and the finite-thickness effect are taken into account.

Finally, from the measurement of the activation energy, Clark et al. (1988)
made a very important observation. They reported a systematic study of
0% = 0xx(1/T=0):

oo = P Pix
(p5e) + P2 . g\ h |
Y (pxx)2+ ; 2

e
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which is valid at v=p/q and pS, is defined by p,, = pS.e " E*T. Clark et al. found
that, within experimental errors, a5, is constant for p/q fractions of the same ¢. In
fig. 19, the conductivity data o,, are plotted as a function of T~! at both integer
and fractional v. Straight-line fits to the linear region, which corresponds to thermal
activation of the quasiparticles and quasiholes across the energy gap, are shown and
extrapolated to T~'=0. The extrapolated o,, intercept is close to e2/h for the
IQHE, whereas for v=p/q, o5,~(1/h)(e/q)* =e*?*/h, which is consistent with
Laughlin’s prediction of the fractional charge of the quasiparticles and quasiholes
discussed above.

4.2.5. Spin-reversed quasiparticles

In most of the theoretical work a major assumption was that, because of the strong
magnetic fields involved, only one spin state is present. Halperin (1983) first pointed
out that in GaAs, the electron g-factor is one-quarter of the free electron value.
Therefore, the Zeeman energy is approximately sixty times smaller than the cyclotron
energy. It might then be possible to have some electrons with reversed spins when
the magnetic field is not too large. In the case when one half of the electrons have
spins antiparallel to the field, Halperin constructed a simple Laughlin-type state of
the form

b =1e—z) I] =z [Tz [Je P [T oot (70)

i<j

where Roman and Greek indices correspond to spin-up and spin-down electrons,

e%h integer v

p/q: =3 q=5 q=7

104

(e/3)%/n

(e/5)%/n

(e/7)%h

Tx(Q7'0)

YT (K="

Fig. 19. Conductivity o,, versus T~ ' results which measure the quasiparticle charge e* = e/q at the integer
and fractional filling factors v = p/q.
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respectively. Using the classical plasma approach, the filling factor is given by v =
2/(m + n). Halperin suggested a study of the particular case of m=3, n=2 (v=4%).
The wave function then has the following desirable properties:

(a) all electrons are in the lowest Landau level, so the kinetic energy is an absolute
minimum,

(b) electrons of the same spin are kept apart very well because the wave function
vanishes as the cube of their separation; electrons of opposite spin are kept apart
only slightly less well because the wave function vanishes as the square of the
separation, and

(c) the wave function is antisymmetric under interchange of two electrons of the
same spin, as required.

The wave function can also be shown to give a total spin S = 0 state.

For v =£%, the wave function given above was studied by Chakraborty and Zhang
(1984) to examine the importance of unpolarized spin and it was concluded that, at
a very low magnetic field, a spin-unpolarized state for v =% would be energetically
favored. In a later investigation, a systematic study of spin reversal in various filling
fractions was attempted by these authors (Zhang and Chakraborty 1984). The finite-
size calculations described in §4.1.1, were employed for this purpose and were
suitably generalized for various spin polarizations in a straightforward manner. The
energy spectrum for the Hamiltonian is classified in terms of the total spin S and its
z-component S,. For a given S, the spectrum is identical for different values of S,.

In table 1, we present the results for a finite electron system for the case of a
polarized state (S = 2), a partly polarized state (S = 1) and the unpolarized state (S =
0). As seen in table 1, except for v = §, the unpolarized states are energetically favored,
as compared to the fully polarized state. For v =14, the spin state S =2 is found to
be energetically favored compared with the other spin states, even in the absence of
Zeeman energy. This result is quite supportive of Laughlin’s state at v =1, which is
fully antisymmetric. For other filling fractions, the possibility exists that the energy
could be lowered by introducing the spin degree of freedom.

Table 1
Potential energy (per particle) for various filling fractions and spin polarization. The Zeeman energy is
not included in the energy values which are in units of e?/el,.

v Potential energy Ground state
§$=0 S=1 S=2 §=3

] —0.4135 —0.4120 —0.4152 - Polarized

H —0.5331 —0.5291 —0.5257 —0.5232 Unpolarized

2 —0.4464 —0.4410 —0.4403 - Unpolarized

% —0.3884 —0.3868 —0.3870 - Unpolarized

3 —0.5074 —0.5096 —0.5044 —0.50104 Partially polarized

% —0.4554 —0.4600 —0.4528 - Partially polarized

+ —0.4241 —0.4278 —0.4219 - Partially polarized

4

|

—0.3970 —0.3997 —0.3975 - Partially polarized
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In the preceding section, we discussed the results for the energy gap E, from finite-
size calculations in a periodic rectangular geometry and noticed that spin-reversal
for the quasiparticles cost less energy (in the absence of the Zeeman energy) compared
to fully spin-polarized quasiparticles and quasiholes. In the Laughlin approach, a
spin-reversed quasiparticle is best visualized in the following wave function for the
quasiparticles (Morf and Halperin 1986, Chakraborty 1986):

l/I= D:(Zj—zl)~ll/’m’ (71)

where ,, is the ground state given by eq. (45). Bringing in the plasma analogy one
can show that |/|? is the distribution function for a two-dimensional plasma in which
particle 1 has its charge reduced by a factor 1 — (1/m) in its repulsive interaction with
the other particles. Particle 1 has, however, the same interaction as the other particles
in its attractive interaction with the background. Particle 1 will, therefore, be attracted
to the center of the disk, while a two-dimensional bubble will be formed near the
origin of size 1 —(1/m). As a result, there will be an extra negative charge e/m near
the origin. Furthermore, when eq. (71) is considered to be a function of the position
of any electron other than the singled-out electron 1, there will be one less zero of
the wave function than in the case of the ground-state v,,.

The magnetic field dependence of E, for a five-electron system is shown in fig. 17,
where we have presented only the lowest energy results. For low magnetic fields, the
curve for the lowest energy excitations rises linearly as a result of the spin-reversed
quasiparticles, which include the dominant contribution from the Zeeman energy,
itself linear in magnetic field. As the magnetic field is increased, a crossover point is
reached, beyond which the B'/? dependence (somewhat modified due to the finite-
thickness correction) is then obtained due to the spin-polarized quasiparticles and
quasiholes (Chakraborty et al. 1986, Chakraborty and Pietildinen 1986). These theo-
retical predictions were made several years ago, the experimental evidence for the
presence of spin-reversed quasiparticles has been reported only recently and will be
discussed below.

The first clear-cut evidence for the existence of spin-unpolarized states in the
ground state of several filling factors was from the experiments by the Oxford group
(Clark et al. 1989, Clark and Maksym 1989) where the magnetic field was tilted from
the direction perpendicular to the electron plane. It is known that the exchange and
correlation contributions to the ground-state energy depend to a first approximation
on B, alone. The Zeeman energy, on the other hand, depends on the total magnetic
field B,,, (Haug et al. 1987, Chakraborty and Pietildinen 1989, Halonen et al. 1990).
They found that with increasing tilt angle, dramatic changes occur in the p,, minima
of various filling factors. In fig. 20 we present some of the experimental results of p,,
versus 0 by Clark et al. Clearly, the § state is first destroyed, followed by a reemergence
as 6 and hence the magnetic field is increased. The same effect was also observed for
v=%. In contrast, the p,, minima for 3 and % remain essentially unaltered with
increasing tilt angle.

An important clue to understand these experimental results is the fact that, allowing
for the spin degrees of freedom, the electron—hole symmetry (Zhang and Chakraborty
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Fig. 20. Diagonal resistivity p,, for various filling factors versus the tilted magnetic field.

1986) is not between v and 1 —v, as described earlier, but between v and 2 —v.
Therefore, the § and 3 filling factors which are the spin-polarized states even at low
magnetic fields, as predicted theoretically, remain unaffected by the tilted field. For
the % and % states, the increasing magnetic field destroys the reversed-spin states
(Maksym 1989) and, eventually, they reemerge as fully spin-polarized states.

Recently, the Cambridge group (Davies et al. 1991) reported very interesting
FQHE experiments in high-quality p-type heterojunctions with tilted magnetic field.
They found the same magnetic-field-dependent behavior of v=% as observed in
n-type heterojunctions by Clark et al. (1989). They also noted that for the two-
dimensional hole system one requires a smaller magnetic field to destroy and return
the % state which suggests that the Zeeman splitting is larger for that system.

The other important tilted-field experiment indicative of spin-reversed states was
by Eisenstein et al. (1989) who discovered a transition between two distinct FQHE
states at the same filling factor v =% (i.e, 2 —%). The transition is driven by tilting
the magnetic field and as discussed below, the data quite consistently indicate a
change from a spin-unpolarized fluid to a polarized fluid.

Eisenstein et al. then measured the activation energy W versus the tilt angle for
v=2%. Figure 21 depicts the angular dependence of the observed activation energy,
which is the most interesting result as far as the spin-reversed quasiparticles are
concerned. The results presented in fig. 21 are all obtained at a fixed filling factor
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Fig. 21. Activation energy of the FQHE state at v=$ versus B,,. Solid and open symbols refer to low-
field and high-field components, respectively.

v=2% and hence a fixed perpendicular magnetic field B, ~ 5.95 T. They are plotted
against total magnetic field, B,,, = B /cos 0. As 0 increases from zero, W decreases
linearly. Beyond about 30°, W begins to rise again, eventually exceeding its value at
0 =0°. For small angle (i.e., low magnetic field) the ground state is expected to be
analogous to the two-spin % state (see § 3.3). From the slope dW/dB,,, at small angles
in fig. 21, it was found that the g-factor is g ~0.4 in remarkable agreement with
recent spin-resonance measurements on two-dimensional electrons in GaAs (Dobers
et al. 1988).

At low magnetic fields, the ground state of v =$ is expected to be spin-unpolarized
and presumably the low-lying excitations involve spin-reversed quasiparticles. This
could explain the linear decrease of the activation energy as the tilt angle (or the
magnetic field) is increased. As the Zeeman energy at v =4 is increased by tilting the
magnetic field, the polarized state is energetically favored and eventually becomes
the new ground state. The low-lying excitations might still involve spin-reversed
quasiparticles. That could explain the linear increase of the activation energy
(Chakraborty et al. 1986, Chakraborty and Pietildinen 1986) discussed in the preced-
ing section. Further increase of the magnetic field would lead to a fully spin-polarized
ground state with Laughlin-type quasiparticle-quasihole excitations and we would
expect the usual B'/? behavior of the activation energy (Coulomb gap) seen in fig. 18.
There has been much theoretical and experimental work recently on the spin-reversed
ground state and excitations at various filling fractions (Buckthought et al. 1991,
Chakraborty and Pietildinen 1990, Chakraborty 1990, Maksym 1989, Clark et al.
1990, Eisenstein et al. 1990, Furneaux et al. 1989, Sachrajda et al. 1990, Engel et al.
1992).

4.2.6. Quantization condition

The Kubo formula approach for the quantization condition of the IQHE has been
discussed in § 3.2.3. There we discussed the topological approach by Niu et al. (1985).
In an important paper, Tao and Haldane (1986) presented arguments on the integral



The quantum Hall effect 1021

and fractional quantization which are quite general and related to the above
approaches. The arguments are, however, rather technical and cannot be reproduced
here in their entirety. Therefore, we will mention briefly the essential results and refer
the reader to the original article. For the electron system in a periodic rectangular
geometry, Tao and Haldane (1986) and Haldane (1985) showed that the many-body
Hamiltonian can be separated into two terms due to the center of mass motion and
the internal relative motion. The center of mass moves as a charged particle in a
periodic potential. If there is an energy gap at a filling factor, it is due to the relative
motion. The Hall conductance is associated with the quantum motion of the center
of mass and, therefore, the analysis of the quantization condition can be related to
the topological approach discussed in § 3.2.3. Tao and Haldane (1986) also noticed
that, in the presence of a weak concentration of impurities, the quantization condition
remains unchanged. The Hall conductivity is still expressed in the topologically
invariant form.

4.3. Other developments

4.3.1. Collective modes

In addition to the elementary charged excitations discussed in §4.2.1, the FQHE
system also supports collective excitations whose dispersion has been studied by
various theoretical methods. In a spherical geometry, the energy-level spectrum for
a finite-electron system at v = § in the lowest Landau level was calculated by Haldane
and Rezayi (1985) and Fano et al. (1986). In the case of a periodic rectangular
geometry, the major contribution to the collective excitation spectrum was also
calculated by Haldane (1985). He found that, at rational values of v, the states could
be characterized by a two-dimensional wave vector k, and, hence, the collective
excitation spectrum could be calculated in the periodic rectangular geometry.

The finite-size studies described in §4.1.1 were carried out in an infinite lattice
with a periodic rectangular geometry. The electrons in one cell of the lattice have
identical mirror images in all other cells. This infinite repetition will introduce a
symmetry which can be employed to classify the eigenstates of the Hamiltonian. This
classification has the further advantage that the size of the matrix to be numerically
diagonalized is reduced.

In the absence of a magnetic field, the symmetry analysis would be simple: we
would have a translational group in the periodic lattice and the eigenstates could be
labeled by the wave vectors in the inverse lattice. The physical interpretation of these
quantum numbers would, of course, be the momentum. The presence of the magnetic
field, however, slightly complicates the classification scheme. We could apply the
well-known apparatus of group theory which would lead us to the so-called ray
representation of the magnetic translation group (Brown 1968, Maksym 1985). The
reason why we do not obtain an ordinary representation is that the symmetry
operations of the group obey a noncommutative algebra where the product of
operators is an operator of the same group only to within a phase factor. For every
lattice vector L,,, there is a relative translation operator which commutes with the
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Hamiltonian. The eigenvalues of this operator are e2™™s*"™/N where N is the highest
common divisor of N, and N,. The quantum numbers s and ¢t (s,t =0, 1,..., N—1)
are related to the physical momentum by

1/2
t= () ts—s0, M- 1),
where the point (s, ¢,), corresponding to the state k =0, is required to be the most
symmetric point of the reciprocal lattice, and 1 is the aspect ratio.

In fig. 22 we present the dispersion for the density wave mode obtained for four-
to seven-electron systems in the lowest Landau level in a periodic rectangular
geometry. Only the three lowest excitation energies are shown. The spectrum is, in
fact, a function of the magnitude of the two-dimensional vector k. The ground state
is obtained at k=0, as expected. The lowest energy excitations are separated from
the ground state by a large gap, which reflects the incompressible nature of the
system and they clearly show a collective behavior with a minimum at finite kl,. For
small kly, the modes are not very well defined, as they are close to the continuum
of the higher energy states. The numerical calculations were done by Yoshioka
(1986a), but qualitatively similar results were also obtained earlier by Haldane (1985)
for a six-electron system in a square geometry. Yoshioka (1986b) and Chakraborty
and Pietildinen (1988a) also calculated the excitation spectrum for spin-reversed
systems.

The finite-size calculations discussed above provide quite accurate information for
the collective excitations and the energy gap in the FQHE. However, not much
physical insight is gained from these numerical calculations. The theoretical work by
Girvin et al. (1985, 1986), drawing analogies from Feynman’s well-known theory of
liquid *He, is very helpful in this respect.

Given the exact ground-state i, the density-wave excited state at wave vector k
is written as (Feynman 1972)

ox=N""2py, (72)

with the density operator p, =X e™*", where N is the number of particles. Let
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Fig. 22. Low-lying excitation energies for four- (A), five- (O), six- (O) and seven-electron (@) systems at
v=4.
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us define the oscillator strength as f(k) = N ™' (Y| pL(3# — Eo)px|¥), where # is the
Hamiltonian and E, is the ground-state energy. Let us also define the static structure
function s(k)= N ~1{y|plpx|¥). The excitation energy is then given by the well-
known formula

fk) Rk
s(k) ~ 2m*s(k)’

The above result can be interpreted as saying that the collective mode energy is the
single-particle energy h*k?/2m* renormalized by the static structure function repre-
senting correlations among the particles.

As is well known, for liquid *He there are no low-lying single-particle excitations
and the only low-lying excitations are long-wavelength density oscillations — the
phonons. The excitation energy versus wave vector curve vanishes linearly, its slope
corresponding to the velocity of sound. Near k =2 A ™1, the excitation energy shows
a roton minimum, which arises due to the peak of the static structure function.

In the case of the FQHE, if we insist that the excited state is entirely within the
lowest Landau level, the density-wave excited state becomes

o=N"""py, (74)

where p, is the projection of the density operator onto the subspace of the lowest
Landau level,

Ak) =

(73)

u 0
pr= Y, exp| —ik— |exp[—3ik*z;], (75)
j=1 aZj
where all derivatives operate to the left (Girvin et al. 1986). Also, the projected
potential energy is

— d 22
V=% jﬁv(q)(ﬁlﬁq—l)e_" fol2), (76)

where v(q) is the interaction potential [v(g) = 27/q in the present case]. The projected
oscillator strength is

f(k)=N""0|pL[#, p]10), (77)

where |0) is the ground state. Since the kinetic energy is constant, one can replace
the Hamiltonian by the potential energy. Let us also define the projected static
structure factor (k) as

§(g) = N~"<01p}pwl0). (78)

In the single-mode approximation (so named because of the assumption that the
density-wave alone saturates the full projected oscillator strength sum), the excitation
energy is A4(k) = f(k)/5(k). For small k, f(k) vanishes like |k|* and then for a gap to
exist, §(k) must vanish as ~|k|*.

Using the Laughlin wave function for the ground state, the structure factor and
the function f(k) can be computed numerically from the above relations. The resulting
excitation energy obtained by Girvin et al. (1985, 1986) is presented in fig. 23 for
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Fig. 23. Collective excitation curve in the single-mode approximation for v =1, 1 and 1 filling fractions.

v=14, {and 4. The low-lying excitation energy curve reveals several interesting features.
The first thing to note is that, unlike *He, the collective mode has a finite gap at
k=0, i.e, the mode is not a massless Goldstone mode. It should be pointed out,
however, that this gap is not due to the charged particles, since the Coulomb force
is not sufficiently long-ranged to provide a finite plasma frequency in two dimensions
(the plasma frequency goes to zero with a square root dependence on the wave
vector). The finite gap originates from the incompressible nature of the electron
system at some particular filling fractions. The collective mode also shows a minimum
at a finite k. This minimum is due to the peak §(k) and is thus analogous to the roton
minimum in liquid *He. For large wave vectors (kly > 1) the density wave is no
longer a suitable excitation and the single-mode approximation is no longer
appropriate.

Unlike the elementary excitations discussed in § 4.2.1, no experimental results are
available, as yet, for the collective mode described in this section. It should, however,
be mentioned that roton-type structures expected in the inter-Landau-level excit-
ations at integer filling factors (Kallin and Halperin 1984) have been observed by
inelastic light-scattering experiments (Pinczuk et al. 1988, 1990). Similar excitations
for a fractional filling of the lowest Landau level have also been studied theoretically
(MacDonald et al. 1985, Pietildinen and Chakraborty 1988, Pietildinen 1988).

4.3.2. Even-denominator filling fractions

In our discussion of the theoretical work so far, we have only described the filling
fractions with odd denominators. The fact that all investigations focused their atten-
tion mostly on these fractions is hardly surprising, because the experimental results
clearly demonstrated that for the FQHE to occur, the odd denominators were
apparently favored exclusively. As we recall, Laughlin’s approach explains such a
fact by the requirement of antisymmetry under interchange of particles and in the
hierarchical scheme such filling factors are taken as the starting point in developing
the higher-order filling factors with odd denominators. The possibility of observing
the FQHE for even denominator filling factors is not excluded, however, in these
theories.
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The simplest filling factor with even denominator is v = 7. In this case, the Laughlin-
type wave function would describe a system of particles obeying Bose statistics.
However, one can group the electrons into bound pairs, and the pairs can then
transform as bosons under interchange of their positions (Halperin 1983) and a
Laughlin-type wave function could still be used. For the finite-size system in a
periodic rectangular geometry (§ 4.1.1), with particles obeying Bose statistics, a cusp
at v=1 was, in fact, observed by Yoshioka (1984a). Finite-size studies in a spherical
geometry were also performed by Fano et al. (1987). The pairing idea of Halperin
has been recently revived in the theoretical work of Greiter et al. (1991, 1992) for
this filling fraction.

The ground-state energy (per electron) at v = 3, calculated for four- to ten-electron
systems in a periodic rectangular geometry (Chakraborty and Pietildinen 1988a) is
shown in fig. 24. In contrast to the case of v =13, the results in this case show strong
dependence on the electron number. The extrapolation of the results in the thermo-
dynamic limit leads to the energy ~ —0.472¢*/el,. The results are, of course, lower
compared to the Wigner crystal (WC) energy in the HF limit: the energy difference
is ~0.028, while for v =1, the corresponding energy difference is ~0.025. However,
the energy difference is much smaller (~0.01) for the crystal energies obtained for
the four-electron system by Yoshioka et al. (1983) (see fig. 14). Given such a small
difference, it is not possible to entirely rule out the crystal state at v =3. The Laughlin
state energy at v =3, which corresponds to the boson system, is also given in fig. 24.

The excitation spectrum at this filling fraction bears no similarity to that for an
incompressible fluid. Here the ground state appears at a finite k and varies strongly
with the particle number and geometry of the cell. The whole spectrum is, in fact,
particle-number- and geometry-dependent. No general conclusion can be drawn from
those numerical results (Chakraborty and Pietildinen 1988a).

Experimentally, the possibility of observing the FQHE at even denominator filling
factors was indicated by several groups. A minimum in p,, at v =3 was first observed
by Ebert et al. (1984). Clark et al. (1986) observed minima in the diagonal resistivity
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Fig. 24. Ground-state energy per electron at v =74 (in units of e?/¢l,) as a function of electron number in

a periodic rectangular geometry. The closed and open squares correspond to the crystal energies of fig. 14,

and the HF energy is given for comparison. The energy of the Laughlin state (depicted as L) and the
extrapolation of the finite system results to the thermodynamic limit [depicted as (co)] are also given.
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in the second Landau level at v=%, 3, and 4. Correct quantization of p,, to these
fractional values was not achieved, however.

A thorough analysis of these filling factors has been performed by Willett et al.
(1987). Their results for v < 1 (fig. 13) do not show any sign of the FQHE for even
denominator fillings. While some features in p,, were seen at v =3, two higher-order
odd denominator fillings, v =% and v = 3, seem to converge toward this even denomi-
nator filling factor. For v=14, p,, follows the classical straight line, while the broad
minimum in p,, is thought to be caused by, as yet, unresolved higher-order odd
denominator filling factors.

For 3> v> 2 (the Landau level n = 1), however, the situation is entirely different.
This region of filling factors in fig. 13 is presented in more detail in fig. 25. The Pxy
curve shows a plateau at the magnetic field which corresponds to v =3, centered at
Pxy = (h/€*)/3 to within 0.5%. In the same region of magnetic field, a deep minimum
is observed in p,,.

There have been a few theoretical attempts to explain the experimental findings
discussed above. Haldane and Rezayi (1988) proposed a spin-singlet wave function
for an incompressible state which occurs at v=3. From small-system calculations
(six electrons) with model pseudopotentials, they concluded that such a state might
be responsible for the § effect. Numerical calculations were performed for the Cou-
lomb interaction by Chakraborty and Pietildinen (1988b). The calculations were also
based on finite-size systems (up to six electrons in a periodic rectangular geometry),
and do not support the conclusions of Haldane and Rezayi. In table 2, we present
the ground-state energies for four- and six-electron systems at v=1 in the second
Landau level for different spin polarizations. The system has a fully spin-polarized
ground state, even in the absence of the Zeeman energy. The energy difference
between the various spin states is very small. However, for a spin-reversed system to
be energetically favored, the energy of this state must be larger than that of the spin-
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Fig. 25. The region of filling factors 3 > v > 2 of fig. 13 shown in detail at T =25 mK.
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Table 2
Ground-state energies (in units of e?/el,) for four- and six-electron systems
at v=3 for various values of the total spin S. The Zeeman energy is not
included in the energy values.

N, §=0 S=1 §=2 $=3
4 —0.3644 —0.3655 —0.3849 -
6 —0.3782 —0.3783 —0.3785 —0.3797

polarized state by at least the Zeeman energy contribution. Such a situation might
occur for larger systems than the ones considered here, as the even-denominator
system results are known to be very system-size dependent.

In a tilted-field measurement on the 3 state, Eisenstein et al. (1988) observed that
the FQHE collapses rapidly at this filling factor. This indicates that the spin degree
of freedom is perhaps playing a role. However, from the above discussions, it is fair
to conclude that finite-size calculations performed so far are unable to provide a
suitable explanation of the FQHE at this interesting filling factor.

Some recent experiments have unearthed several puzzling facts about the filling
factors v =} and § whose origins are far from clear. Jiang et al. (1989) observed deep
low-temperature minima in p,, at these filling fractions. Although their strength
exceeds the strength of neighboring FQHE states, there are no plateaus nor any
discernible indication of plateau developments visible in p,,. The states at half-filling
are distinctly different from the FQHE states because of the unusual T-dependence
in p,, and the lack of plateaus in p,,. Transport measurements in tilted magnetic
fields seem not to alter the above features.

4.3.3. Multiple layer systems

In this section, we present the theoretical and experimental work on the FQHE in
a layered electron system. Multilayer electron systems have been studied earlier quite
extensively as an anisotropic model for an electron gas. Let us consider a model
where two layers with equal density of electrons are embedded in an infinite dielectric.
We consider the delta-function-localized electron density in each plane. The electrons
move freely in each plane and the interaction of electrons in different planes is
considered to be Coulombic. Tunneling of electrons between the two planes is not
allowed. The electrons are also considered to be in their lowest subband. This model
is often referred to in the literature as the Visscher—Falicov model (Visscher and
Falicov 1971).

In fig. 26, we have presented the excitation spectrum for a two-layer system (layers
separated by a distance C) with four electrons per layer in a periodic rectangular
geometry (Chakraborty and Pietildinen 1987, 1988c), with an aspect ratio A = 1.25.
The first important result is that the ground state is obtained uniquely at k& =0. It
remains so for different aspect ratios. The other interesting result is that a gap
structure in the spectrum is obtained with a characteristic minimum at a finite kI,
similar to that of the magnetoroton minimum, discussed in § 4.3.1.
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Fig. 26. Excitation energy (in units of e?/el,) of an eight-electron system in a two-layer geometry at
v =1 for a dimensionless layer separation parameter C, = C/l, = 2.0.

A comparison of the layered-system results with those of the single layer indicates
that the introduction of an interacting electron layer has helped to reorganize the
excitation energies of the system, particularly the k=0 state (Chakraborty and
Pietildinen 1988a). The observation of the roton-type minimum is also quite interes-
ting. The results indicate the possibility of the occurrence of an incompressible fluid
state at v =13 in a multiple layer system.

There have been a few other calculations on the two-layered systems. Yoshioka
et al. (1989) obtained the ground-state wave functions for finite-size systems on a
sphere and compared them with the Jastrow-type wave functions at filling factors
v=1,%,%, and 4. Halperin’s two-spin state wave function, eq. (70), was employed in
that work. Fertig (1989) investigated the excitation spectrum of two- and three-layer
systems with filling factors v =% and v = §, respectively, in each layer. The excitation
spectra were calculated following the scheme of Kallin and Halperin (1984) for
magnetoplasmon work. He found that the excitation spectrum has soft modes when
C > 1.211, for the two-layer system and C, > 0.92],, C, > 1.51l, for the three-layer
system. This indicates that the system undergoes a phase transition as the layer
spacing is increased through these critical separations.

Experimental attempts to explore the FQHE in two-layer systems have been
reported recently. Lindelof et al. (1989) reported an interesting observation of v=73
in each of the two parallel layers of a selectively doped double heterostructure. Other
experimental results with that sample indicate that the system indeed consists of two
parallel and independent two-dimensional electron layers. Experiments performed
by Eisenstein et al. (1992) also show results in agreement with the theoretical results
discussed above.

4.3.4. Nature of long-range order in the Laughlin state

The analogy of the FQHE state with liquid *He has been quite apparent in the
study of collective excitations discussed in §4.3.1, in particular, the presence of
magnetorotons in the excitation spectrum. It is, therefore, quite natural to look for
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some other interesting properties in the FQHE state which are known to exist in
*He, notable among which is the so-called off-diagonal long-range order (ODLRO)
in the density matrices (Sears 1985).

In the case of the QHE, the off-diagonal elements of the one-body density matrix
in real space exhibit Gaussian decay (MacDonald and Girvin 1988)

py(r,¥) = 2Le ~lz=2'|2/4 g% ~ 22 )4 (79)
T

Therefore, no ODLRO exists in the one-body density matrix of the two-dimensional
electron system.

To exhibit ODLRO, a fermionic system has to form at least pairs. This is the case
in the BCS theory of traditional superconductivity where the two-body density
matrix has extensive eigenvalues (Yang 1962). Some years ago, Thouless (1985)
investigated, in the context of the FQHE, the corresponding density matrix

pml,mz(n)z <aI+m1aZ—m1an*mzan+mz>s (80)

where, for fixed n, the eigenvalues were determined for finite-electron systems in a
spherical geometry, as well as for the Laughlin wave function on a square with
periodic boundary condition in one direction. The existence of Cooper pairs with
wave number 2n is expected to be indicated by a large eigenvalue of p(n). The largest
eigenvalues in those calculations, however, were found to decrease rather than
increase with the number of electrons. The results, therefore, indicate that there is
no sign of any order in the two-body density matrix for the FQHE.

Although electrons in a strong magnetic field do not exhibit ODLRO, it seems
likely that there might be some order hidden in the space of those quantum states.
In the pursuit of such an order a singular gauge field ./; used in the study of anyons
(see §4.2.2), has been considered /j(z;) = (A®,/2m)Z;,;V; & In(z; — z;) (Girvin and
MacDonald 1987), where @, is the flux quantum and 4 is a constant. It corresponds
to a vector potential that would be included in the Hamiltonian if each particle had
attached to itself a solenoid carrying 3/ flux quanta. It should be noted that adding
this vector potential to the Hamiltonian we do not make a true gauge transformation
since a flux tube is attached to each particle. However, if A =m, an integer, the net
effect is to change the phase of the wave function,

‘//new=eXP|:“im z_g’ln(zi_zj)] Youa- (81)
i<j
If 44 is the Laughlin wave function (45) we get the transformed state
‘ﬁ(zx,u-aZN): H.|Zi—zj|meXp<_%;|Zk|2>, (82)
i<j

which is purely real and is symmetric under particle exchange for both even and odd
m. This is truly a remarkable result that both fermion and boson systems map onto
bosons in this singular gauge.



1030 T. Chakraborty

Making use of the plasma analogy discussed in § 4.1, one obtains
v ‘ _
plz,z')= <£> exp[—BAf(z,2)]|z— 2|72, (83)

where f =2/m and Af(z, z') is the difference in free energy between the two impurities
of charge 4m (located at z and z’) and a single impurity of charge m (with arbitrary
location). The asymptotic value of Af can be computed using thermodynamic integ-
ration of the screening charge density. For general values of m the screening charge
distribution can be found using the ion-disk approximation or linear response based
on the known static structure factor of the plasma (Caillol et al. 1982). As the plasma
screens the impurities completely, the free energy difference Af(z,z') rapidly
approaches a constant (fig. 27) as the separation |z — z’| —» c0. The one-body density
matrix, therefore, shows a power-law decay in the long-range. This implies that there
is no ODLRO even in the transformed Laughlin state. It should be remembered that
in the ground state the density matrix should attain a finite value for infinite separation
if the ODLRO exists in that system even in two dimensions (Reatto and Chester 1967).
A physical interpretation of the power-law decay of the one-body density matrix
for the transformed Laughlin state has been provided by Chakraborty and von der
Linden (1990). In determining the one-body density matrix for the modified Laughlin
wave function for N electrons, one can map the wave function onto a classical plasma
with N — 1 plasma particles and two additional phantom particles residing at sites z
and z'. These particles have charges half as large as the original plasma particles and
experience an interaction with the plasma particles but not with each other. The
one-body density matrix can then be related to the difference in free energy AF(z, z')
between this system and the N-particle classical plasma, with inverse temperature
B=1/m: p(z,2) = po €#2¥*2) and p, = 1/2nm being the plasma density. In a two-
component system, the one-body density matrix is, in fact, related to the pair-
correlation function of the phantom particles in the zero-concentration limit,

plz, 2') = ‘l,i% {[8,,(0,017" g,,(z, )}, (84)

where y stands for the phantom particles. For systems like *He, with interactions

1.0 T T T
—— IDA
osl "° Exact
il LRA m=5
E m=3
- 0 m=l T 3
<
L= I —
! /’:_:;':; \\\\\\ m
05§ D
___________ r-n_ __5_______
-10 1 ] ]
-1 0 1 2 3
tn(r)

Fig. 27. Plot of — B Af(z, z')/m versus r = |z — 2’| for filling factor v = 1/m. LRA is linear response approxi-
mation. IDA is ion-disk approximation.
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Fig. 28. Plot of —Q(x) versus the interparticle separation x, measured in units of the mean electronic

separation ro =./2ml,. The HNC results (solid lines) are compared with the Monte Carlo data (solid
circles).

vanishing at large distances, the asymptotic value of g(z, z’) is unity and, therefore,
the asymptotic value of p(z, z') is given by the inverse of the pair-correlation function
at the origin. This is not true for systems with increasing interactions like the classical
plasma in two dimensions.

Chakraborty and von der Linden (1990) performed both HNC calculations and
Monte Carlo calculations for up to 1000 particles, in the case of logarithmically
increasing interactions. The numerical results of the HNC and Monte Carlo studies
are plotted in fig. 28, the conventional definition of the density matrix is used in the
HNC scheme: p(z,z') = n, e~ 2177="), where n,=g,,(0,0)" " is the conventional con-
densate fraction and Q(z, z') is related to the pair-correlation functions via the HNC
equations (Puoskari and Kallio 1984, Lam and Ristig 1979, Fantoni 1978). The
interparticle separation in these calculations is large enough that the asymptotic
behavior of g for various m can be extracted very accurately. From this plot we
readily obtain the power —m in agreement with eq. (83). The values for — BAf,, /m
are 0.02 for m=1 and 0.24 for m=3 and are in fairly good agreement with the
earlier results (Girvin and MacDonald 1987). The screening length is of order
\/2_m lo. The values of n_ obtained in the HNC scheme are 0.121 for m =1, 0.014 for
m=2, 0.0015 for m=3, and ~0 for m=5. The comparison of the density matrix
results via HNC with the corresponding Monte Carlo data show once more that
HNC is a highly accurate approximation scheme, even in the case of increasing
interactions.
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