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PACS. 73.20Dx – Electron states in low-dimensional structures (including quantum wells,
superlattices, layer structures, and intercalation compounds).

PACS. 71.45Gm– Exchange, correlation, dielectric and magnetic functions, plasmons.
PACS. 73.20Mf – Collective excitations (including plasmons and other charge-density excita-

tions).

Abstract. – We have studied electron correlation effects in quantum dots and rings which
include a repulsive scattering centre and are subjected to a perpendicular magnetic field.
The results for the dipole-allowed absorption spectrum show good qualitative agreement with
the observed magnetoplasmon dispersion in similar systems. This work provides a unified
description of the electron correlations in quantum dots and quantum rings in a magnetic field.
We also demonstrate that optical absorption is a direct route to explore the effects of impurity
and interactions in a quantum ring.

Quasi–zero-dimensional electron systems, or quantum dots, in a magnetic field have been
under intense investigations in recent years [1]-[6]. These systems exhibit phenomena reminis-
cent of atoms (and are therefore commonly called artificial atoms) and yet their size, shape, etc.
can be controlled in the experiments. Theoretical results on the electronic properties of these
quantum-confined few-electron systems [4], [5] have been generally in good agreement with the
experimental results [6]. The electronic and optical properties of these systems are essential
elements in developing the mesoscopic devices in the future [7]. Ever since the first theoretical
work on interacting electrons in quantum dots subjected to a magnetic field was reported [4],
a large number of papers on variations of such systems have been published in the literature [3],
[5]. Almost all of these theoretical studies involve impurity-free quantum-confined few-electron
systems. Here we report on the results of our work on dipole-allowed absorptions of a quantum
dot and a quantum ring with a repulsive scatterer at the centre.

Experimental work on the magnetoplasma resonances in a two-dimensional electron system
confined in a ring geometry has been reported recently [8], and transport properties of the
quantum dots with an impurity which can be controlled independently are also under active
investigations [9]. Interestingly, such systems are related to another system called antidot array
—a two-dimensional electron system with a periodic array of scatterers, whose transport [10],
[11] and optical properties [12] are also of much current interest. Finally, in a mesoscopic ring,
the most common problem studied so far, both experimentally [13] as well as theoretically
[14], [15] has been the persistent current. We have recently developed a model for a quantum
ring [15] where in addition to the persistent current, other electronic properties can also be
studied very accurately. The energy spectrum calculated earlier by us for such a system
with and without an impurity can be used to explore the dipole-allowed absorption spectrum.

c© Les Editions de Physique
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Our present work, therefore, unifies our understanding of electron correlations in two very
interesting systems: a quantum dot with a repulsive scatterer and a quantum ring. We also
demonstrate here that in optical-absorption studies one makes a direct probe of impurity and
correlation effects in such systems.

We model the quantum dots and rings like in the earlier works [4], [5], [15]. We consider
electrons of effective mass m∗ moving in the (x, y)-plane confined by a parabolic potential and
subjected to a perpendicular magnetic field. The single-electron Hamiltonian is written as

H =
1

2m∗
(
p− e

c
A
)2

+
1
2
m∗ω2

0(r − r0)2 , (1)

where r0 is the radius of the ring (r0 = 0 for the dot). We use the symmetric gauge and the
vector potential is A = 1

2 (−By,Bx, 0). The impurity is modelled by a Gaussian potential

V imp (r) = V0 exp[− (r−R)2
/d2], (2)

where V0 is the potential strength, d is proportional to the width of the impurity potential
(the full width at half-maximum is ≈ 1.67d), and R is the position of the impurity. In the
present work the position of the impurity is located such that |R| = r0.

We apply the exact diagonalization method by constructing the basis using the single-
particle wave functions of the Hamiltonian (1). These wave functions are of the form

ψnl = Rnl(r) exp[ilθ], n = 0, 1, 2, . . . , l = 0,±1,±2, . . . , (3)

where n and l are the radial and orbital angular-momentum quantum numbers, respectively.
For parabolic quantum dots (r0 = 0) the radial part can be expressed explicitly as

Rnl (r) = C exp[−r2/(2a2)]r|l|L|l|n (r2/a2), (4)

where C is the normalization constant, a =
√
h̄/ (m∗Ω), Ω =

√
ω2

0 + ω2
c/4, and Lkn(x) is the

associated Laguerre polynomial. In our quantum ring model (r0 6= 0) the radial part Rnl has
to be determined numerically.

Intensities of the optical absorption are calculated within the electric-dipole approximation.
If the single-particle matrix elements are defined as

dλλ′ = 〈λ′|r exp[iθ]|λ〉

= 2πδl+1,l′

∫ ∞
0

r2Rλ′(r)Rλ(r) dr ,

where λ represents the quantum number pair {n, l}, the dipole operators can be written as
X = 1

2

∑
λλ′

[dλ′λ + dλλ′ ] a
†
λ′aλ ,

Y = 1
2i

∑
λλ′

[dλ′λ − dλλ′ ] a†λ′aλ.
(5)

The probability of absorption from the ground state |0〉 to an excited state |f〉 will then be
proportional to the quantity

A = |〈f |r|0〉|2 = |〈f |X|0〉|2 + |〈f |Y |0〉|2 . (6)

In the figures for the absorption spectra presented below, the areas of the filled circles are
proportional to A.
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Quantum dots. – In the numerical calculations that follow, we have used material param-
eters appropriate for GaAs, i.e. ε = 13 and m∗ = 0.067me. We have included spin in our
quantum dot calculations but ignored the Zeeman energy. The confinement potential strength
is chosen to be h̄ω0 = 4 meV and the parameters for the repulsive Gaussian potential at the
dot centre are V0 = 32 meV and d = 5 nm. With these parameters the electrons are confined
in a wide ring. Both the effective radius and the width of this ring are about 20 nm for a
single electron.

Figure 1 shows electromagnetic absorption energies and intensities of the system with one,
two and three electrons as a function of the magnetic field. The one-electron results reveal
four distinct modes. The strongest of the upper two modes can be interpreted as a bulk
magnetoplasmon mode according to its asymptotic behaviour, i.e. its energy approaches h̄ωc

as the magnetic field is increased. The origin of the discontinuities near 5 and 8 teslas can be
traced back to the fact that the potential forming the ring, in our case, is highly asymmetric.
We have a steep Gaussian potential near the centre of the dot and the outer edge is formed by
a soft parabolic potential. For a symmetric potential we expect that the bulk magnetoplasmon
mode is a smooth function of the magnetic field.

If we ignore the above-mentioned discontinuities, the two upper modes of the one-electron
spectrum behave clearly the same way as seen in the experimental results of Dahl et al. [8].
However, the two lower modes behave quite differently (in the one-electron case) when com-
pared with those experimental results. The lower modes, i.e. edge magnetoplasmon modes,
reveal a periodic structure similar to the results of a parabolic ring [15] (see below). That is,
however, true only for the one-electron system.

When the number of electrons in the system is increased, the periodic structure of the edge
modes (the two lowest modes) starts to disappear. This is, of course, due to the electron-
electron interaction. The Coulomb interaction is very important in wide rings. It should be
emphasized that because the spin degree of freedom is also included in these calculations, the
difference between the one- and two-electron results is entirely due to the Coulomb force. The
model quantum rings we have studied so far [15] are extremely narrow and the interaction does
not play an important role. The lowest mode (which is also the strongest) behaves (even only
for three electrons) much the same way as does the lowest mode in the experiment [8] (where
the system consists of the order of one million electrons). It is quite safe to speculate that the
second lowest mode would be the same as the second lowest mode in that experiment. It is
interesting to note that this mode is also similar to the observed magnetoplasma resonance in
antidot arrays [12]. In the high-field regime, the upper mode observed in antidot systems is
also qualitatively reproduced in the quantum dot case.

Quantum rings. – We have demonstrated earlier [15] that our model in the appropriate
limit, correctly reproduces the behaviour of an ideal one-dimensional ring [13] and that of
a two-dimensional electron gas. The energy spectrum in the case of non-interacting and
interacting electrons, magnetization and the susceptibility have been studied earlier in this
model. The two-body Coulomb matrix elements were evaluated numerically, with the result
that in the lowest Landau level and for an impurity-free system, the Coulomb interaction simply
shifts the non-interacting energy spectrum to higher energies [15]. There is no discernible effect
of interaction on the magnetization which was explained as due to conservation of angular
momentum in the system. The impurity potential is found to lift the degeneracies in the
energy spectrum and the persistent current is then reduced from the impurity-free value.
The effect of the Coulomb interaction on the persistent current even in the case of impurity
interactions is, however, still insignificant [15].

In our ring model the length is measured in units of r0 (radius of the ring). The energy and
impurity strength V0 are expressed in units of h2/2m∗πA, where A = πr2

0 is the area of the
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(b)

Fig. 1. Fig. 2.

Fig. 1. – Absorption energies and intensities of a quantum dot including a repulsive scatterer with
one, two and three electrons as a function of the magnetic field. The areas of the filled circles are
proportional to the calculated absorption intensity.

Fig. 2. – Dipole-allowed absorption energies of a single electron in a quantum ring vs. Φ/Φ0 for α = 20
and a) V0 = 1.0, d = 0.2; b) V0 = 4.0, d = 0.5. The areas of the filled circles are proportional to the
calculated absorption intensity.

ring [15]. In these units the confinement potential is

U(r) =
1
2
m∗ω2

0(r − r0)2 = 4α2(x− 1)2,

where α = ω0m
∗A/h, x = r/r0. The parameter α is related to the width of the ring. For

α = 20, the single-electron energy spectrum closely resembles that of an ideal one-dimensional
ring, while for α = 5, it has the characteristics of a two-dimensional electron gas [15]. In
our present work we have used r0 = 10 nm and α = 20. Given these parameters, electrons
are confined in a narrow ring whose radius is about four times its effective width. The other
parameters are the same as in the quantum dot case, namely, ε = 13 and m∗ = 0.067me.

In a pure one-electron ring the dipole-allowed absorption from the ground state can happen
with equal probability to the first two excited states and all other transitions are forbidden.
An impurity in the ring will mix the angular-momentum eigenstates of the pure system into
new states between which dipole transitions are allowed. In the case of an impurity of medium
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Fig. 3. Fig. 4.

Fig. 3. – Dipole-allowed absorption energies for four non-interacting electrons in a quantum ring vs.
Φ/Φ0 and α = 20, where only the impurity potential is included. The other parameters V0 and d are
the same as in fig. 2.

Fig. 4. – Same as in fig. 3, but with Coulomb and impurity potential included.

strength, as shown in fig. 2 a), an appreciable part of the transition probability still goes to the
first two excited states while in the case of a strong impurity, absorptions taking the electron
to the lowest excited state become more favourable (fig. 2 b)). One very important result here
is that, in a system with broken rotational symmetry the transition probability depends strongly
on the polarization of the incident light. That is, if instead of unpolarized light considered in
this work we were to consider the case of light polarized for example along the diameter passing
through the impurity (which is the case in [16]), the absorption would prefer the second excited
state. Another prominent feature observed in fig. 2, i.e. the periodic behaviour of absorption
energies as functions of the applied field, follows closely the behaviour of the persistent current.
The blocking of this current caused by a strong impurity is reflected as the flat behaviour of
absorption frequencies as a function of the magnetic field. Finally, as we pointed out earlier,
the oscillatory behaviour in fig. 2a) is indeed qualitatively similar to that seen in the quantum
dot with the repulsive scatterer at the centre (fig. 1).

In order to study electron correlations, we consider rings with four spinless electrons. The
main difference to the pure single-electron ring is that the dipole transitions to the first
excited state are forbidden (|∆L| > 1). Just as in the one-electron ring discussed above,
the introduction of an impurity will permit transitions to the previously forbidden states. In
general, the effect of an impurity and the behaviour of the absorption spectrum as a function of
the external magnetic field can be qualitatively explained by the single-particle properties. For
example, when we compare fig. 3 a) and b) we notice that the lifting of the degeneracy in the
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energy spectra of non-interacting electrons is reflected by a smoother behaviour as a function
of the applied field. The sole effect of the Coulomb interaction on the energy spectrum is to
shift it upwards and to increase the gap between the ground state and the excited states [15].
Consequently, as shown in fig. 4, the Coulomb interaction moves the absorption to higher
frequencies. The intensities clearly show the effect of the electron-electron interaction: In the
non-interacting system (fig. 3) the intensity of each absorption mode does not depend on the
magnetic field at all, whereas in the interacting system (fig. 4) there is a strong variation of
intensity as a function of the field.

In closing, we demonstrate here that the optical-absorption spectra in a quantum ring not
only reflects the behaviour of the persistent current, but it also reveals the subtle effects of the
interaction and broken symmetry caused by an impurity. Quite clearly, the magnetoplasma
excitations in the quantum dots and rings with a repulsive scatterer in the middle provide an
ideal ground for a detailed study of the impurity and correlation effects in low-dimensional
electron systems.
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Pietiläinen P., Phys. Rev. B, 45 (1992) 5980; Maksym P. A., Physica B, 184 (1993) 385;
Bolton F., Phys. Rev. Lett., 73 (1994) 158; Oaknin J. H. et al., Phys. Rev. B, 49 (1994) 5718;
Madhav A. V. and Chakraborty T., Phys. Rev. B, 49 (1994) 8163; Halonen V., Solid State
Commun., 92 (1994) 703; Ugajin R., Phys. Rev. B, 51 (1995) 714.

[6] Ashoori R. C. et al., Phys. Rev. Lett., 71 (1993) 613; Zrenner A. et al., Phys. Rev. Lett., 72
(1994) 3382; Sikorski Ch. and Merkt U., Phys. Rev. Lett., 62 (1989) 2164.

[7] Thornton T. J. , Rep. Prog. Phys., 58, (1995) 311; Weisbuch C. and Vinter B., Quantum
Semiconductor Structures (Academic, New York, N.Y.) 1991; Reed M. A. (Editors) Nanostruc-
tured Systems (Academic, San Diego) 1992.

[8] Dahl C. et al., Phys. Rev. B, 48 (1993) 15480.

[9] Sachrajda A. S. et al., Phys. Rev. B, 50 (1994) 10856.

[10] Weiss D. et al., Europhys. Lett., 8 (1979) 179; Surf. Sci., 305 (1994) 408; Kang W. et al., Phys.
Rev. Lett., 71 (1993) 3850; Chakraborty T. and Pietiläinen P., Phys. Rev. B, February 15,
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