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Abstract – We have studied the tachyonic excitations in the junction of two topological insulators
in the presence of an external magnetic field. The Landau levels, evaluated from an effective two-
dimensional model for tachyons, and from the junction states of two topological insulators, show
some unique properties not seen in conventional electrons systems or in graphene. The ν = 1

3

fractional quantum Hall effect has also a strong presence in the tachyon system. Experimental
confirmation of these unusual magnetic properties will confirm the presence of tachyons in the
system.

Copyright c© EPLA, 2012

The surface state of recently discovered three-
dimensional topological insulators [1] contains a single
Dirac cone and as a result, the charge carriers on the
surface are characterized as massless Dirac fermions. Some
of the properties of these particles are well known from
another topological system, the graphene [2]. We have
shown earlier [3] that the dispersion relation of the surface
excitations in a junction between two such topological
insulators (TIs) show several very unique properties. Most
importantly, under certain conditions these excitations
exhibit tachyon-like dispersion relation [4–6] correspond-
ing to superluminal propagation of Dirac fermions along
the interface of the two TIs. In addition to the tachyonic
dispersion, the junction states can also support the
usual massless relativistic dispersion relation of the Dirac
fermions [7]. Here we report on the properties of these
tachyonic excitations in an external magnetic field. We
discuss the unique nature of the Landau levels (LLs) of
these tachyons and the interaction properties of tachyons
in a strong magnetic field, which leads to the fractional
quantum Hall effect (FQHE) of tachyons. We consider the
surface states in a junction between two TIs insulators.
The system of two TIs is shown schematically in fig. 1,
where the flat junction surface is at z = 0. The junction
surface states are localized in both positive and negative
directions of the z axis. The two TIs, TI-1 and TI-2,

(a)E-mail: tapash@physics.umanitoba.ca

Fig. 1: (Colour on-line) A schematic view of the TI junction
considered here.

have different parameters and are in direct contact with
each other. This type of junction between two TIs can
be realized, for example, for the same type of TI but
with different orientations of crystallographic axes in
regions 1 and 2.
Effective two-dimensional (2D) model of tachyonic exci-
tations : The tachyons in the junction of two TIs can be
described by an effective 2D matrix Hamiltonian HAC
(proposed by Apalkov and Chakraborty [3]) for Dirac
fermions but with imaginary Fermi velocity (instead of
the imaginary proper mass commonly attributed to the
tachyons [4], e.g., to the neutrinos [8])

HAC =

(

Δ0 ivIp+

ivIp− −Δ0

)

=Δ0σz + ivI(�σ�p ), (1)

where p± = px± py is the 2D momentum, Δ0 is the
effective mass of the tachyons, ivI is the imaginary Fermi
velocity, and �σ are the Pauli spin matrices. This effective
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Hamiltonian has the tachyon-like dispersion, ETach(p) =

±
√

Δ20− vIp2, where p=
(

p2x+ p
2
y

)
1
2 . Typical values of the

parameters are Δ0 ∼ 0.3 eV and vI ∼ 106 m/s [3].
We subject the tachyon system to an external magnetic

field, B, pointing along the z-direction, i.e., perpendicular
to the junction between the TIs. The Hamiltonian describ-
ing such a system in a magnetic field can be found from the
Hamiltonian (1) upon replacing the tachyonic momentum,
(px, py) by the generalized momentum, (πx, πy) and intro-

ducing the Zeeman energy, Δz(B) =
1
2gsμBB. Here μB is

the Bohr magneton and gs ≈ 8 is the effective g-factor of
the tachyons, which we assume to be equal to the g-factor
of the TI surface states [9,10]. The tachyonic Hamiltonian
is then

HAC(B) = [Δ0+Δz(B)]σz + ivI(�σ�π). (2)

The LL energy spectrum corresponding to the Hamil-
tonian (eq. (2)) is characterized by an integer number
n� 0 (the LL index), and is defined as

En=0 = Δ0+Δz(B),
(3)

En�1,s = s [Δ0+Δz(B)] [1−nB/B∗(B)]
1
2 .

Here s=±1 and we introduced the effective magnetic field
B∗(B) = e

2�c [(Δ0+Δz(B))/vI]
2.

The wave functions corresponding to the LLs (eq. (3))
can be expressed in terms of the functions φn,m, which
are wave functions of the conventional (“non-relativistic”)
LLs with index n and the intra-LL index, m, for example,
the z component of the angular momentum. The LL wave
functions of the tachyons are

Ψ
(Tach)
n=0 =

(

φ0,m

0

)

, Ψ
(Tach)
n�1,s =

(

cosαn,s φn,m

sinαn,s φn−1,m

)

, (4)

where αn,s = arcsin[
1
2 (1− s

√

1−nB/B∗)]1/2.
The LL energy spectrum obtained from eq. (3) is shown

in fig. 2. The energy spectrum for tachyons exhibits a few
distinct features: i) The LL energy spectrum is mainly
restricted within the energy interval −Δ0 <En,s <Δ0.
ii) At a given magnetic field B, only the LL with index n<
B∗/B can be observed. Therefore, for a given magnetic
field, only a few LLs exist in the system and, for a large
enough magnetic field (e.g., B > 32 tesla in fig. 2(a)), only
the n= 0 LL survives. This behavior of the LL of tachyonic
excitations is totally different from that in conventional
semiconductors with the LL energy spectrum En ∝ nB,
and in graphene, where En ∝

√
nB [2]. However, there

is one similarity between the tachyonic LL dispersion
relations and those in graphene. In both cases there is
one n= 0 LL, whose energy is independent of the strength
of the magnetic field (without the Zeeman splitting). In
graphene, the energy of this LL is En=0 = 0, while for
tachyons, En=0 =Δ0. In both cases the corresponding
wave functions are φn=0,m. In the above analysis we

Fig. 2: (Colour on-line) (a) The LLs of the effective 2D tachyon
Hamiltonian (1) are shown as a function of the magnetic field.
The numbers next to the lines are the LL indices. The n= 1 LL
wave functions at points A and B are identical to conventional
“non-relativistic” LLs with indices 0 and 1, respectively. At
point G, the LL wave function of the tachyon system is identical
to the n= 1 LL wave function of graphene. (b) ν = 1

3
gap (see

footnote 1) is shown for the n= 0 and n= 1 LLs of tachyons.
The gap is calculated for a finite-size system with N = 9
particles in a spherical geometry with parameter S = 12. The
red and blue lines correspond to the n= 1 LL branches shown
in panel (a). The gap is measured in units of the Coulomb
energy, ǫC = e

2/κℓ0. The dashed curve is explained in the text.

assumed that the effective g-factor of tachyons is gs ≈ 8,
which corresponds to the g-factor of the surface state of
isolated TI. The variation of the g-factor changes the scale
of the magnetic fields shown in fig. 3. With increasing
gs the range of magnetic fields at which the LLs can be
observed, decreases. For a relatively large g-factor, the
corresponding LLs cannot be realized. For example, if
gs > 70 then the tachyon dispersion does not have the
n= 1 LL.
To address the similarities and differences between the

LL wave functions of the tachyon system and those of
graphene (or even conventional semiconductor systems),
we consider the interaction properties of tachyonic exci-
tations in a given LL. To characterize the strength of
the inter-tachyonic interactions we study the strength of
the FQHE, i.e., the magnitude of the gap1. In the FQHE
regime the electrons partially occupy a single LL and the
properties of such a system are characterized by the inter-
particle interactions within the corresponding LL [11].
The interaction strength within a given LL is determined
from the Haldane pseudopotentials, Vm [12], which are the
interaction energies of two particles with relative angular

1In what follows, by “gap” we mean the quasiparticle quasihole
gap in a FQHE filling factor [11].
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Fig. 3: (Colour on-line) (a) The LL energy spectrum of an
electron in a junction between two TIs is shown as a function
of the magnetic field for a few lowest LLs. The numbers
next to the lines are the LL indices. The TIs have the same
Hamiltonian parameters, except for A1, A1 = 2.2 eV·Å for TI-1
and A1 = 4.0 eV·Å for TI-2. (b) The width in the z-direction
of the LL wave functions is shown for n= 0 and n= 1 LLs.

momentum m,

V (n)m =

∫ ∞

0

dq

2π
qV (q) [Fn(q)]

2
Lm(q

2)e−q
2

. (5)

Here Lm(x) are the Laguerre polynomials, V (q) =
2πe2/(κℓ0q) is the Coulomb interaction in the momentum
space, κ is the dielectric constant, ℓ0 =

√

e�/cB is the
magnetic length, and Fn(q) is the form factor for the n-th
Landau level. The form factors for tachyons are

Fn=0(q) =L0
(

1
2q
2
)

, (6)

Fn�1(q) = cos
2 αnLn

(

1
2q
2
)

+sin2 αnLn−1
(

1
2q
2
)

. (7)

The form factor of the n= 0 LL (eq. (6)) is identi-
cal to that of graphene and also to that of the non-
relativistic systems. However, for n� 1 the form factor
of the tachyon system becomes unique. For graphene and
for the non-relativistic systems, the corresponding form

factors are F
(NR)
n =Ln and F

(Gr)
n = 12 (Ln+Ln−1), respec-

tively. In both cases the form factors are independent of
the magnetic field. For tachyons, on the other hand, the
form factor (7) depends on the magnetic field through
the effective angle αn(B). With increasing magnetic field
the tachyon form factor, Fn�1, changes from the non-

relativistic value, F
(NR)
n (point B in fig. 2(a)) or F

(NR)
n−1

(point A in fig. 2(a)), in a small magnetic field, B→ 0, to
the form factor of graphene [13], for B =B∗.
The FQHE with an incompressible ground state can be

observed only in the LL with strong short-range repulsion,

i.e., a fast decay of the corresponding pseudopotentials,
Vm, with m. Such a strong repulsion is realized only in
the LL with a strong admixture of φ0,m. Therefore, in a
tachyonic system the FQHE is expected only in the n= 0
and n= 1 LLs. To study the strength of the corresponding
FQHE we numerically evaluate the energy spectrum of
a finite N -electron system in a spherical geometry [12]
with the radius of the sphere

√
Sℓ0. Here 2S is the integer

number of magnetic fluxes through the sphere in units of
the flux quantum. This determines the filling factor ν of
the system. For example, ν = 1/q (q is an odd integer)
corresponds to S = ( q2 )(N − 1) [11].
In fig. 2(b) the energy gap for ν = 13 is shown for

n= 0 and n= 1 LLs of the tachyonic system [14]. For the
n= 0 LL, the gap does not depend on B and is exactly
equal to the gap for the n= 0 non-relativistic LL. This is
because the n= 0 tachyonic LL wave function consists of
only φ0,m. For the n= 1 LL, however, the wave function
is the B-dependent mixture of φ0,m and φ1,m. As a result
the gap depends on the magnetic field and changes from
the n= 0 non-relativistic LL value for B→ 0 (point A)
to the n= 1 graphene LL value for B =B∗ (point G) and
finally to n= 1 non-relativistic LL value at point B (in the
thermodynamic limit such a state becomes compressible).
The maximum gap in a non-relativistic system corre-

sponds to the green line in fig. 2(b), while the maximum
gap in graphene corresponds to point G in fig. 2(b). There-
fore, comparing the data in fig. 2(b), we conclude that
within some range of the magnetic fields (which is shown
in fig. 2(b) by an oval curve), the gap in our model tachyon
system is the largest compared to all other available
2D systems. The tachyon dispersion relation provides an
unique possibility to study, within a single tachyonic n= 1
LL, the properties of the n= 0 non-relativistic LL (point A
in fig. 2(a)), n= 1 graphene LL (point G in fig. 2(a)), and
n= 1 non-relativistic LL (point B in fig. 2(a)).
Three-dimensional (3D) model for the junction states
between two TIs : Until now, we have discussed the
magnetic-field effects via an effective Hamiltonian for
tachyons. The tachyonic dispersion can be realized also
in the junction of two TIs [3]. The junction dispersion
relation in this case is approximately described by the
effective Hamiltonian (1). The realization of the tachyonic
excitations as the junction states bring additional factors
into consideration. For example, the junction states have
a finite width in the z-direction which can reduce the
interaction strength in that system.
We consider the junction at z = 0 between two TI

insulators: TI-1 for z < 0 and TI-2 for z > 0. The electronic
properties of both TIs are described by the same type of
low-energy effective 3D Hamiltonian [9,15] of the matrix
form

HTI = ǫ(�p )+

(

M(�p )σz − iA1σx∂z (A2/�)p−σx

(A2/�)p+σx M(�p )σz + iA1σx∂z

)

,

(8)
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where ∂z = ∂/∂z, and

ǫ(�p ) =C1−D1∂2z +(D2/�2)(p2x+ p2y), (9)

M(�p ) =M0+B1∂
2
z − (B2/�2)(p2x+ p2y). (10)

We assume that for both TIs, all parameters in eq. (8) are
the same as for Bi2Se3, except A1 which is 2.2 eV for TI-1
and 4.0 eV for TI-2. For these parameters, the junction
states exhibit the tachyonic dispersion [3]. The four-
component wave function corresponding to (8) determines
the amplitudes of the wave functions at the positions of
Bi and Se atoms: (Bi↑, Se↑, Bi↓, Se↓), where the arrows
indicate the direction of the electron spin.
The Hamiltonian of the TI in an external magnetic

field, pointing along the z-direction, can be obtained
from (8) by replacing the 2D momentum (px, py) with the
generalized momentum (πx, πy) [16] and introducing the

Zeeman energy, Δz =
1
2gsμBB. For the Hamiltonian (8) in

a magnetic field, the wave function in the n-th LL has the
general form

Ψ
(TI)
n�1(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

χ
(n)
1 (z)φn−1,m

χ
(n)
2 (z)φn−1,m

χ
(n)
3 (z)φn,m

χ
(n)
4 (z)φn,m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

Therefore, the wave function Ψ
(TI)
n�1 is again a mixture of n

and n− 1 non-relativistic LL functions. For the n= 0 LL,
only χ

(n=0)
1 and χ

(n=0)
2 are zero.

To find the LL junction states, we follow the same
procedure as for the LL surface states of a TI [3,16–18].
For each TI we find the general bulk solution of the

Schrödinger equation in the form of Ψ∝ eλ(m)z, where λ(m)
is a complex constant, and m= 1 and 2 for TI-1 and TI-
2, respectively. This solution has a given energy, E, and a
given LL index, n. The corresponding λ(m) are determined

from a secular equation, det[H(m)TI (�k, λ(m))−E] = 0, for
each TI. For each energy E and the LL index n, the secular

equation provides eight values of λ
(m)
j (n,E), j = 1, . . . , 8

with the corresponding wave functions. Second, since we
are searching for the localized LL junction states, we

need to choose (for each TI) only four values of λ
(m)
j

out of eight with the properties: Reλ
(m)
j > 0 for TI-1

(z < 0) and Reλ
(m)
j < 0 for TI-2 (z > 0). We then choose

the corresponding four wave functions (for each TI) as
the basis and expand the solution for the LL junction
state in this basis. Finally, the energy of the LL junction
state is found from the condition of continuity of the wave

function, Ψ
(TI)
n (z), and the current [δHTI/δkz]Ψ

(TI)
n in the

junction.
The spectrum of the LL junction states corresponding

to the tachyonic dispersion is shown in fig. 3(a). The
spectrum is qualitatively similar to that (see fig. 2(a))

Fig. 4: (Colour on-line) The energy gap at ν = 1
3
for n= 0

(green line) and n= 1 (red line) LLs in the junction of two TIs.
The corresponding LLs are shown in fig. 3(a) by green and red
lines, respectively. The gap is calculated for a finite-size system
with N = 9 particles in a spherical geometry with S = 12. The
gap is given in units of the Coulomb energy, ǫC = e

2/κℓ0.

obtained from the model 2D Hamiltonian. In both cases,
the LLs exist only for a limited range of magnetic fields
and energies. In weak magnetic fields, the LL spectra of
the junction states and for the 2D model are different. For
a given LL index n, there are no junction states for weak
magnetic fields. These junction states are delocalized in
the z-direction. To illustrate this delocalization we show
in fig. 3(b) the width of the n= 0 and n= 1 LL wave
functions in the z-direction. At a singular point of the
LL spectrum, i.e., for B =B∗, where the derivative of
the LL energy with respect to the magnetic field becomes
infinitely large, the LL wave functions have the smallest
width. This width increases with decreasing magnetic field
and finally the LL junction states are delocalized in the
z-direction. A similar behavior is observed for n= 0 LL,
but there is no singular point in this case. Therefore, the
LL energy spectrum of the junction states in the regime
of tachyonic dispersion can be well described by the 2D
effective model near the singular point B ∼B∗.
As long as the finite size of the localized modes, i.e.,

the spatial width of the mode in the z-direction, does not
introduce additional dynamics in the z-direction, these
modes are the 2D junction states. The dynamics in the
z-direction is introduced, for example, through scattering
by impurities or by additional boundaries of TIs. In this
case the surface junction states are mixed with the bulk
states, which results in broadening of the junction states,
and they cannot be identified as the states localized at a
junction.
We have evaluated the gaps for the n= 0 and n= 1

junction LLs. We have used the same approach as for the
2D model of the tachyonic excitations, discussed above.
The results are shown in fig. 4. Quantitatively the behavior
of the gap as a function of the magnetic field is similar
to that of the 2D model of the tachyonic excitations
(fig. 2(b)). Due to a finite width of the LL wave functions
in the TI junction, there is a reduction of the inter-electron
interaction strength and correspondingly the gap. This
reduction is visible for n= 0 LL, where a smaller gap and
the magnetic-field dependence of the gap is shown in fig. 4.
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Although for the 2D tachyon model the gap is the largest
for the n= 1 LL, for the junction LLs the gap is the largest
for the n= 0 LL, due to the non-zero spin polarization of
the n= 1 junction LL. This spin polarization is clearly
visible from the general property of the LL wave function

(eq. (11)); only the components χ
(n=0)
3 and χ

(n=0)
4 of Ψ

(TI)
n=0

are non-zero and these components correspond to the spin-
down polarization. The numerically found n= 1 LL wave
functions also show partial spin-down polarization. As a
result, the LL wave function have larger contribution from
the φn=1 non-relativistic LL function, which reduces the
inter-electron interaction strength and also the gap. The
spin polarizations of the surface states and corresponding
spin symmetry breaking occur even for the surface states
of isolated TI (within the effective approach the surface
states are described by effective relativistic massless Dirac
Hamiltonian). Such surface states have spin chiral nature
without double spin degeneracy. This is different from
graphene, which has chiral nature in terms of pseudospin
and still have double spin degeneracy. In a TI, the chiral
nature of the states and lifting of spin degeneracy occurs
due to strong spin-orbit interactions.
The energies of the surface states in a junction between

two TIs lie in the bulk band gap of both TIs. The
coupling of the junction states to the bulk TI states is
introduced through irregularities in TIs, such as impurities
or defects in the bulk of TIs. Such a coupling results
in broadening and finite lifetime of the junction states.
For strong coupling the broadening becomes so strong
that the junction states cannot be defined. Therefore the
well-defined junction states can be introduced only for
weak coupling between the surface and the bulk states.
The coupling is weak for a small spatial extension of
the junction states in the z-direction and for large bulk
band gap of TIs. Therefore, to observe the junction
states one needs to employ the TIs with large bulk
band gaps and consider well-localized, i.e., with small
spatial extension, junction states. Among all the TIs
that are realized experimentally at present, the Ti2Se3
has the largest bulk band gap of 0.3 eV. But even for
Ti2Se3 there are many defect states in the bulk, which
results in electron transport through TI not through the
gapless surface states but through the gapped bulk of the
material. To observe the junction states by the transport
measurements, the quality of TIs need to be improved.
Another requirement on the properties of two TIs is that
the parameters of TIs should be quite different. This
difference can be introduced even for a single TI, where the
junction states are realized at the boundary between two
regions with different orientations of the crystallographic
axes. The possibility of realization of tachyonic dispersion
in this case requires additional analysis. To probe the
specific features of tachyonic LLs the magnetic field should
be relatively large and up to 30T (see figs. 3 and 4).
In addition to unique properties of the LL spectrum of

tachyonic excitations, the tachyons can be also detected

in the transport measurements. If the transport through
the junction surface states can be realized experimentally,
then such transport, for example, in time resolved experi-
ments, should reveal the specific tachyonic dispersion rela-
tion.
To summarize: we have investigated the magnetic-field

effects of tachyons along the interface of two topological
insulators. We used an effective two-dimensional model
Hamiltonian for tachyons and the three-dimensional
model for the junction states of the two TIs, both devel-
oped by us in ref. [3]. The Landau levels in both these
models show very similar behavior. Unlike in graphene
or in conventional electron systems, only a few LLs are
found to exist for tachyons. Only one LL (n= 0) survives
in large magnetic fields. The ν = 13 FQHE state is the
strongest (within a limited range of the magnetic field)
when compared with that for conventional 2D electron
systems and in graphene. Interestingly, the FQHE in
the n= 1 LLs for tachyons describes the FQHE of the
n= 0, 1 LLs of the non-relativistic electron system and
that of the n= 1 graphene LL in different regions of the
magnetic field. Experimental confirmation of these unique
properties of the Landau levels would provide very strong
evidence for the existence of elusive tachyons.
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