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Abstract – We have considered a system of two topological insulators and have determined
the properties of the surface states at the junction. Here we report that these states, under
certain conditions exhibit superluminous (tachyonic) dispersion of the Dirac fermions. Although
superluminal excitations are known to exist in optical systems, this is the first demonstration of
possible tachyonic excitations in a purely electronic system. The first ever signature of tachyons
could therefore be found experimentally in a topological insulator junction.
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Topological insulators (TIs), a new class of materials
rich with new concepts and promises, have attracted
considerable attention in the condensed-matter physics
community [1]. In the bulk, the system is electrically insu-
lating, driven by the strong spin-orbit coupling present in
the system. The three-dimensional (3D) TIs host at least
one Dirac cone in the surface states that was confirmed
experimentally by angle-resolved photoemission spec-
troscopy. Dirac fermions are also present in graphene [2].
However, in the strong TIs, unlike in graphene, there
exists only an odd number of non-degenerate Dirac cones
with spin-momentum locking that results in helical Dirac
fermions [3] without spin degeneracy. This spin chirality
of Dirac fermions prevents them from backscattering
and localization [4]. This makes those systems ideal for
spintronics applications or for quantum computing [1].
Until now, most of the attention has been heaped on the
surface states of a single TI. Here we show that the junc-
tion surface states of two TIs, in certain situations, exhibit
superluminal (tachyonic) dispersion of Dirac fermions.
Tachyons have eluded detection until now, despite diligent
efforts by the particle physicists worldwide. However,
as we have demonstrated below, they could perhaps be
found in the present solid-state system.
We consider a junction between two topological insula-

tors. The junction surface is described by z = 0, and we
assume that the system of TIs is isotropic in x and y
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directions. Therefore, the surface states are characterized
by the x and y components of the wave vector, kx and ky,
and the surface wave functions depend on the z-coordinate
and decay in both directions, i.e., the positive and nega-
tive directions of the z-axis (see inset in fig. 1(b)). We
label the topological insulator at z < 0 as TI-1, and the
topological insulator at z > 0 as TI-2. We have found that
for a general variation of parameters of TI-2, the junc-
tion surface states exhibit one branch with unique tachy-
onic dispersion relation. Although, they are not yet found
experimentally, these “Überlichtgeschwindigkeitteilchen”
(faster-than-light particles) discussed by Sommerfeld [5]
in 1905, and many others [6] since then, have always been
vigorously pursued (e.g., in the case of the neutrinos [7,8])
by the particle physics community for many decades [9,10].
We assume that the electronic states of both TIs are

described by the same type of low-energy effective 3D
Hamiltonian [11,12], which has the 4× 4 matrix form and
can be expressed as

HTI = ε(�k)+

(

M(�k)σz − iA1σx∂z A2k−σx

A2k+σx M(�k)σz + iA1σx∂z

)

,

(1)
where σi (i= x, y, z) are the Pauli matrices, ∂z = ∂/∂z,
�k= (kx, ky) is a two-dimensional (2D) wave vector, k± =
kx± iky, and

ε(�k) =C1−D1∂
2
z +D2(k

2
x+ k

2
y), (2)
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Fig. 1: (Colour on-line) (a) Dispersion relation of the junction
states. The parameters of the TI-2 are the same as the
parameters of TI-1 except for A

(2)
1 = 4.0 eV · Å. Near point

B the dispersion relation shows the tachyonic behavior with
superluminal group velocity. (b) Localization length of the
junction states shown in panel (a). Near the tachyonic point
(point B) the junction states are strongly localized with
localization length ≈ 10 Å. At the edge of the tachyonic branch
(near points A and C) the states become delocalized. Inset:
the junction (red line) between two TIs (schematic). Here the
z-axis is perpendicular to the junction surface, and x and y are
in the plane of the junction.

M(�k) =M0+B1∂
2
z −B2(k

2
x+ k

2
y). (3)

For a topological insulator of the type Bi2Se3, the
four-component wave functions, Ψ, corresponding to
the matrix Hamiltonian (1) determine the amplitudes
of the wave functions at the positions of Bi and Se
atoms: (Bi↑,Se↑,Bi↓,Se↓), where the arrows indicate the
direction of the electron spin. In the case of Bi2Se3 TI, the
constants in the Hamiltonian (1) are [12] A1 = 2.2 eV · Å,
A2 = 4.1 eV · Å, B1 = 10 eV · Å

2, B2 = 56.6 eV · Å
2,

C1 =−0.0068 eV, D1 = 1.3 eV · Å
2, D2 = 19.6 eV · Å

2, and
M0 = 0.28 eV.
The unique property of the bulk Hamiltonian (1) is

that, for a single TI, it can produce surface states with
massless relativistic dispersion relation, E ≈ vFk, where
vF =A2

√

1− (D1/B1)2 [13] is the Fermi velocity. In the
case of two TIs, at the junction we expect a coupling
between two surface states belonging to different TIs.
Within a simple model which includes phenomenological
coupling between massless relativistic states of the two
TIs, it was shown earlier that the properties of the junction
surface states strongly depend on the relative sign of the
Fermi velocities of the two TIs, i.e., on the relative sign
of A2 for TI-1 and TI-2 [14,15]. Here we show that for

a realistic 3D model (eq. (1)) of the TI, one can observe
new and unique features in the dispersion relation of the
junction states.
In what follows, we study the junction surface states

within the realistic 3D model of the TI. For two TIs, we
assume that both TIs are described by the Hamiltonian
of the same type (1) but with different constants. To
distinguish the constants corresponding to different TIs,
we introduce superscripts (1) and (2) for TI-1 and TI-2,
respectively. We first determine for each TI the general
bulk solution of the Schrödinger equation of the form

Ψ∝ eλ
(m)z ei

�k�ρ, where m= 1 and 2 for TI-1 and TI-2,
respectively. Substituting this form of solution in the
Schrödinger equation, HTI(�k, ∂z)Ψ=EΨ, we obtain a

secular equation, det
[

H
(m)
TI (
�k, λ(m))−E

]

= 0, for each TI
(m= 1, 2). For each energy E, which is in the bulk

gap, this equation defines four values of λ
(m)
α (k,E), α=

1, . . . , 4. Each λ
(m)
α (k,E) is doubly degenerate, which

finally generates eight wave functions for each TI, m= 1

and 2, Ψ
(m)
s,α (k,E) eλ

(m)
α
zei
�k�ρ (see refs. [13,16]), where s=

1, 2, α= 1, . . . , 4, and Ψ
(m)
s,α (k,E) is a four-component wave

function.
Our goal here is to determine the surface states localized

at the junction of the two TIs. Therefore, out of the four
values of λ(m) (for each TI), we choose only two values:

for TI-1 (z < 0) with Reλ
(m)
α > 0 and for TI-2 (z > 0) with

Reλ
(m)
α < 0. After the selection of these λ

(m)
α (α= 1, 2),

our junction surface states then take the form

Φ(�ρ, z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

s=1,2
α=1,2

C
(1)
s,αΨ

(1)
s,α eλ

(1)
α
zei
�k�ρ, z < 0,

∑

s=1,2
α=1,2

C
(2)
s,αΨ

(2)
s,αeλ

(2)
α
z ei
�k�ρ, z > 0.

(4)

This type of wave function determines the localized junc-
tion surface states. The energy of the junction state is
found from the condition of continuity of Φ(z), and the

corresponding current, [δH
(m)
TI /δkz]Φ(z), (kz = i∂z) at the

junction between the two TIs. The solution of the conti-
nuity equations determines the dispersion relation, E(k),
of the junction surface states.
We keep the parameters of TI-1 fixed as for Bi2Se3 (as

given above) and vary the parameters of TI-2. Our results
indicate that for the general variation of the parameters of
TI-2, the junction surface states show one branch with a
unique dispersion relation that resembles the dispersion
of the tachyons [17]. This dispersion exists only for a
finite region of wave vectors with a turning point where
the group velocity is infinitely large. In fig. 1 we show
the dispersion relation for the junction state when only
one parameter, A1, of TI-2 is different from TI-1. In
this case there is only one type (tachyonic) of dispersion.
The group velocity, vg = ∂E(k)/∂k, corresponding to the
tachyonic dispersion becomes infinitely large at k≈ k0
(point B in fig. 1(a)). The tachyonic dispersion does
not show any localized states for k > k0; for k > k0 all
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Fig. 2: (Colour on-line) The electron density along the z-
direction for the tachyonic branch shown in fig. 1(a). The
density is shown for the junction surface state at k= 0.084 Å−1.
The arrows next to the lines are the directions of the electron
spin. The junction between the TIs is at z = 0.

states are delocalized at least in one direction away from
the junction. Similar superluminal dispersion was known
to be present for propagation of optical pulses through an
inverted two-level system of atoms [17], in metamaterial
photonic crystals [18] with folded bands, two-dimensional
hexagonal photonic crystals [19], and in various other
situations [20–22]. In these cases, the tachyonic dispersion
is found for the propagation of light pulses through
a specially designed medium. In contrast, our system
consists of just the electronic degrees of freedom and the
propagation of electronic excitations exhibits tachyonic
dispersion. If confirmed experimentally, this would be the
first example of superluminal tachyonic dispersion in an
actual semiconductor (electronic) system.
In fig. 1(b) we show the localization length in the z-

direction of the junction states of the tachyonic branch.

The localization length is defined as lz =min{1/|Reλ
(m)
s,α |}.

Clearly, the maximum localization of the surface states
occurs near the tachyonic point B with localization length
≈ 10 Å. These strongly localized states are less sensi-
tive to the bulk disorder of the TIs, which can help
with the experimental observation of the tachyonic states.
Away from the tachyonic point the junction states become
weakly localized and finally, near the ends of the tachyonic
branch (points A and C) the junction states become delo-
calized. The actual distribution of the electronic density
for the two (up and down) spin components, is shown
in fig. 2 for one of the junction states near point B (see
fig. 1(a)). Both spin components are occupied with final
non-zero spin polarization of the junction tachyonic states.
Exactly at the tachyonic point the junction state is spin
unpolarized.
The existence of a tachyonic branch in the disper-

sion relation of the junction states means that the
energy dispersion becomes a non-analytic function of
the 2D surface momentum, i.e., the group velocity
vg = �

−1∂E(k)/∂k is infinitely large. Due to the analyti-
cal dependence of the Hamiltonian (1) on the wave vector
�k, the non-analyticity in the dispersion relation is possible
only if the Hamiltonian is non-Hermitian [22–24]. In our

case the junction states are decaying states, i.e., Φ∝ eλαz,
where the real part of λα is non-zero. For these states
the Hamiltonian becomes non-Hermitian and tachyonic
branches are therefore allowed. The existence of tachyonic
dispersion does not violate Einstein’s causality principle.
The reason is that the superluminal group velocity
describes the propagation not of a signal but of an
analytical wave packet. The propagation of a singularity,
i.e., the signal, is not described by the group velocity,
and there is no violation of the causality principle, see
refs. [17,19–21,25,26].
The tachyonic excitations can be described by an effec-

tive 2D Hamiltonian. This effective Hamiltonian should
have a 2× 2 matrix form, which takes into account the
electron spin degrees of freedom. In addition, the Hamil-
tonian should also support the non-analytical tachyonic
dispersion relation and should be non-Hermitian [22–24].
The tachyonic Hamiltonian can be constructed, for exam-
ple, by introducing the imaginary proper mass in the Dirac
equation [6,8,27]. In our present system the tachyonic
Hamiltonian is obtained by introducing imaginary Fermi
velocity in the massive Dirac equation. More precisely, the
effective Hamiltonian which describes the tachyonic junc-
tion surface states has the form

HTach =

(

Δ0 i�vIk+

i�vIk− −Δ0

)

=Δ0σz + i�vI(�σ�k), (5)

where Δ0 is the effective mass of the tachyons, and ivI
is the imaginary Fermi velocity. This effective Hamil-
tonian produces a tachyonic branch with dispersion rela-
tion of the form ETach(k) =±

√

Δ20− �
2v2I k

2. Therefore,
k < k0 =Δ0/�vI and the group velocity at k= k0 becomes
infinitely large. For the tachyonic branch shown in fig. 1
the parameters of the effective Hamiltonian (5) are Δ0 =
0.313 eV and vI = 5.7× 10

5m/s.
The wave function corresponding to the Hamiltonian

(5) with energy spectrum ETach(k) has the following
form:

ΨTach =

(

eiφ/2 cosα(k)

ie−iφ/2 sinα(k)

)

, (6)

where k=
√

k2x+ k
2
y, φ= cos−1kx/k, and α(k) =

sin−1
√

∆0−ETach(k)
2∆0

. The corresponding direction, �n, of

the electron spin is characterized by an angle 2α relative
to the z-axis and is given by �n= (nx, ny, nz) =
(sin 2α sinφ, sin 2α cosφ, cos 2α). Therefore, for a given
tachyonic state, the z-component of the electron spin is
cos2α(k), i.e., the state is spin polarized. At k= k0, i.e.,
at a singular point of the tachyonic branch, the angle
α= 45◦ and the electron state is spin unpolarized. This
behavior is consistent with the exact distribution of the
electron density shown in fig. 2, which illustrates finite
spin polarization of the tachyonic state away from the
singular point B (k= k0).
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Fig. 3: Energy dispersion curves for the junction states. The
parameters of the TI-2 are the same as the parameters of TI-
1 except (a) A

(2)
1 = 3.0 eV · Å and A2 = 5.1 eV · Å; (b) A

(2)
1 =

3.0 eV · Å and A2 =−4.1 eV · Å. Branches A and C correspond
to the tachyonic dispersion, while branch B describes massless
relativistic Dirac fermions.

The results shown in fig. 1 illustrate the existence of
tachyonic branches under variation of just one parameter,
A1, of TI-2. By varying the other parameters, we can
introduce additional junction states with more than one
tachyonic branch. If the signs of the constants A2 for
two TIs, i.e., the signs of the Fermi velocities for two
isolated TIs, are the same, then usually we observe two
tachyonic branches as shown in fig. 3(a). If the signs of A2
are opposite then the junction states usually have one or
two tachyonic branches and one massless relativistic Dirac
branch (see fig. 3(b)). This massless relativistic branch
was predicted earlier within a 2D model Hamiltonian of
the junction states [14], where the interaction between the
surface states of TIs were introduced phenomenologically
as an additional parameter in the Hamiltonian. The
existence of new tachyonic excitations in our system is
related to a strongly non-perturbative interaction between
the surface states of the two TIs. This interaction, which
cannot be independently tuned and is built into the system
through the boundary conditions at the junction between
two TIs, strongly modifies the properties of the system
resulting in the tachyon-like dispersion.
As the topological insulators with different Fermi veloc-

ities are already available in the laboratories, perhaps we
could propose ways to detect the elusive tachyons in these
systems. One possible physical manifestation of tachyonic
dispersion relation in our system would be the display of a
singularity in the time-resolved measurements of 2D ballis-
tic electron transport [28] along the junction between the
TIs. Under the ballistic condition the electron wave packet
with analytical shape propagates with a group velocity,

Fig. 4: (Colour on-line) Ballistic propagation (schematic) of
tachyonic excitations (electrons with positive group velocity
and holes with negative group velocity) through the junction
layer between two TIs. At the point of diverging group velocity,
the ballistic travel time as a function of electron energy shows a
cusp-like singularity (solid line). The finite width of the electron
wave packet results in smearing of this singularity (dotted line).
Point B corresponds to the singular point in fig. 1.

which is determined by the corresponding dispersion rela-
tion. Within the effective model of a tachyonic branch this
group velocity is

vg = �
−1∂ETach(k)/∂k=±

�v2I k
√

Δ20− �
2v2I k

2
,

where the positive (negative) group velocity corresponds
to electron (hole) excitation. Therefore, the ballistic trans-
port time through a finite distance, Lb, is tb =Lb/vg ∝
√

k20 − k
2. At a point k= k0, i.e., where the group veloc-

ity is infinitely large (point B in fig. 1) the transport time
becomes very small. Here the transport time as a function
of the energy would exhibit a cusp-like singularity. This
means that at that energy the time of electron transport
will have a sharp minimum. The actual singularity will be
smeared due to a finite width in the k-space of the electron
wave packet. Just as for the superluminal propagation of
light [19,20], this fast transport of the electron packet does
not violate the principle of causality.
In conclusion, we have shown here that for a general set

of parameters for the topological insulator Hamiltonian,
the surface states at the junction between two TIs have at
least one unique tachyonic branch, which describes the
propagation of Dirac fermion excitations with superlu-
minal group velocity. Although excitations propagating
with superluminal velocity are known to exist in optical
systems, we show here that such excitations can indeed
be realized in purely electronic systems. The tachyon-like
excitations are well localized at the junction between the
TIs and are susceptible to direct experimental observa-
tion. It would indeed be a remarkable feat for condensed
matter and the materials sciences if the first ever signature
of elusive tachyons is actually detected experimentally in
a topological insulator junction.
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