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The study of the properties of nuclear matter within the variational or correlated
wave function theory is at present of great interest (1). Vigorous efforts have been
partienlarly addressed to a reliable numerical evaluation of the ground-state energy
employing realistic nucleon-nucleon potentials (24). The correlated-basis functions (CBF)
approach may provide an efficient method for an accurate treatment of that problem (5-6).
A straightforward « compromise program » has been described in detail in ref. (7) which
takes appropriate account of the crucial noncentral correlations due to the 3§—3D
tensor force. However, the numerical applications (5-%) have been hitherto confined
to potentials of the form

vg(12) = 26: V) (1y,)04(12) ,

§=1

where o,= 1, @,°Gy, Ty" Ty, 65°6,7Ty" Ty, Sy, S1,7T;° T,, respectively.
In this letter we ecxtend the CBF procedure described in ref. (°-%) to deal with
potentials of the more general v,-class,

(1) vg(12) = i v6(ry5)04(12)

§=1

which include the spin-orbit components 0,(12) = L+S, 05(12)= L-Sx,;-1,. We begin
with a brief summary of the formalism needed. The trial ground-state wave function
is of the form ¥,= F®,, &, heing the normalized ground-state wave function of a
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66 T. CHAKRABORTY and M. L. RISTIG

system of A noninteracting fermions. The correlation operator F(I ... A) is considered
to be symmetric with respect to the particle labels and obeys the cluster property (39).
The energy expectation value Fy= (W |H|¥>/{¥,|¥,> 1is then developed into the
series (7)

(2) Hy= By + (AE), + (AE); + ...,

where Ep is the ground-state energy of A noninteracting nucleons. The two- and three-
body contributions to the factor cluster expnasion (2) are

3) (AE), = 3 <ijloy(12)}i] — ji>

i<j
and
(AB), =3 <ijk|w,(123)[tjk —ikj + jki — jik + kij —kji> —
i<ji<k

— 3 k| FH(12) — Uik — ki> G wy(12) i — o> -

ijk

The labels 4, j, k indicate normalized plane-wave orbitals occupied in the Fermi sea.
The effective potentials w,(12) and w,(123) appearing in egs. (3) are defined by

(4) w,(12) = %[F2(12), [2(1) + 1(2), Fy(12)]] -+ Fo(12)v(12) Fy(12)
and
w(123) = 3 [F;(123), [1(3), Fy(123)]] + Fy(123)0(12) F,(123) —wy(12) 4 cyel .

Equations (3) and (4) involve the correlation operators F,(12) and F,(123) for the two-
and three-body subsystems. In accordance with the prescription of ref. (8-%) we adopt
the expressions

(8) Fy(12) = f(ryy) + [frlryy) — f(rp)] P2(12) P*(12) [1 —Q(12)]
and
Fy(123) = f(ri9) f(r3) f(r1g) + {F(r4) F(rag) [frr(rys) — f(r10) ] P3(12) P2(12) [1 — Q(12)] + eyel.} .

In keeping with the notation of earlier work we use the spin triplet (singlet) pro-
jector P3 (P'), the isospin triplet (singlet) projector P? (Pl) and the tensor projector
Q(12) = ri7(S-ry)2 = (8, 4+ 4P?). Choice (5) takes proper account of the most im-
portant spatial and tensor correlations present in nuclear matter (7).

Explicit expressions for the effective potentials (4) of the class ¢4 based on ansatz (5)
have been given in ref. (7). Writing the spin-orbit components, s= 7, 8, of poten-
tial (1) as

(6) v(12) = Vig(ry) P1L-S + Vig(rp) PXL-S
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the associated two-body effective potential is

(7N wy%(12) = — §[fr(ry) — flr) I V;s(rm)PiPs +
+ §[2fp(ryy) + fri)] falriz) — f(712)] Vis(r1s) Py 81a +
+ f(r1p) f(rsa) Vf.;(”m)P;L'S + f2(r30) VI—,H(le)P::L'S .

In deriving relation (7) we have exploited the operator identities (19) QL-SQ=—@
and QL-S+ L-SQ=L-S—30Q+ 2P3. We note that the even-gstate portion of the
spin-orbit force contributes to the diagonal matrix elements (ijlws(12)éj —ji>. The
odd-state part can only contribute to the exact ground-state energy value through the
perturbation corrections to the expectation value. An explicit expression for the effec-
tive three-body potential (4) corresponding to the spin-orbit interaction (6) and correla-
tion operators (5) may also be derived by elementary algebraic manipulations. The
result is available but rather lengthy and will be given in a more detailed publication.

To improve upon our description of the nuclear matter ground-state we next apply
perturbation theory, formulated in terms of a basis of dynamically correlated states
arriving at

(9) Bo= E,+ SE)®+ ...

for the exact ground-state energy (7). In two-body cluster approximation the second-
order perturbation correction (3E)® is given by (78)

(10)  GCE)O~EB)P=—3 Y (e,+ e—e—e) 7

p<g i<j

< [Kijlwy(12)[pg — qp)> + 3 (e, + £g— &;— &) <8 F3(12) — 1{pg —gpD|2.

Here, p, g(4, §) denote particle (hole} orbitals and the quantity s, represents the single-
particle (hole) energies

KK

a

11 =
(11) =g

+ ¥ ialw,(12)|ia — ai) .

i

For a numerical study of the spin-orbit effects we select the Hamada-Johnston (HJ)
potential (1) stripped of the quadratic L-S-component. Further, we employ the
« optimal » correlation functions f(r) and f,(r) which have been determined by a con-
strained Euler-Lagrange procedure for the HJ potential sans spin-orbit components (7).
To caleulate the perturbation correction we follow MacKenzie’s procedure (12} which
has been already employed in earlier works (6-2). We use a partial-wave decomposi-
tion of the effective two-body potential truncated at the D-state level together with
the angle-averaging approximation. A free spectrum has been adopted for single-par-
ticle states and an effective mass approximation for hole states.

As a first step we have repeated the calculations of the quantities (AE),and (3E)
performed by KURTEN et al. (57) for the HJ potential v,. Our results are collected in

(2)
2
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table I. The two- and three-body cluster contributions (the latter data are taken from
ref. (%)), and the perturbation correction are gives as functions of the Fermi wave number
kg for various values of the healing distance d. The values of the correction terms SE)Y
given in ref. (87), differ from those listed in table I because of a computational error
detected in the previous work. (Kiirten’s corrected data for the HJ potential vs reported
in ref. (8), agree now with the data of table I within numerical accuracy.)

TaBLE I. — Two- and three-body cluster contributions (AE), and (AF); to the expectation
value By, and approximation (10) to second-order perturbation correction (SE)®, for HJ
potential vy and various choices of Fermi wave number ky and healing distance d (energies
in MeV per particle).

ke (fmY) 1.3 1.4 1.5 1.6 1.7 1.8
d=2.2fm (AE), —27.14 —31.88 —36.79 —41.73 —46.77 —50.72
(AR), 1.36 2.13 3.36 5.29 8.27 12.77
BE)® — 234 — 2.87 - 361 — 463 — 620 — 8.8l
d=2.5fm  (AR), —27.48 —32.46 —37.74 —43.21 —4887 —54.55
(AE), 1.01 1.65 2.72 4.44 7.15 11.26
BE)® — 162 — 1.86 — 215 — 2,57 — 321 — 4.31
d=3.0fm  (AE), —27.31 3229 —.37.65 —43.46 —49.17 —55.24
(AE), 0.61 1.04 1.80 3.04 5.01 8.04
(3E)® — 133 — 141 — 149 — 138 — 176 — 2.15

TABLE II. — Two- and three-body cluster contributions (AE)}® and (AE)L® to the empecta-
tion wvalue E,, second-order perturbation correction in two-body cluster approximation
(3E)'™, and net energy change E5S = (AE)ES + (AE)ES + (3E)PES induced by the spin-
orbit component of HJ potential vg for various choices of Fermi wave number ky and healing
distance d. (Energies in MeV per particle.)

kp (fm-1) 1.3 1.4 1.5 1.6 1.7 1.8
d=2.2fm (AE)E —0.24 —0.31 —0.38 —0.46 —0.56 —0.69
(AE)S —0.39 —0.61 —0.92 —1.35 —1.92 —2.75
(E)PS  —264  —3.27 —393 —4535 —501 —541
EL 327 418 —523 —636 —749 _ 885
d=2.5fm (AR)S® —0.21 —0.27 —0.33 —0.41 —0.49 —0.59
(AR —0.35 —0.54  —0.81 —1.18 —1.70 —2.38
(3EHPEs  _260 —3.28 391 —4.57 —510 —5.64
By —316 404 —505 —6.15 —17.30 —8.61
d=3.0fm (AE)Z® —0.18 —0.23 —0.29 —0.35 —0.43 —0.51
(AB)ES —0.30 —047 —0.71 —1.08  —1.47 —2.05
(GE)P® 258 —3.23 392 459 —519 579

E —3.07 - 3.93 —4.92 —5.98 —17.08 —8.35
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The additional spin-orbit contributions to the various quantities (AK),, ete. induced
by the L-S components (6) of the HJ potential vy are called (AE)3, ... and are listed
in table II. The absolute value of the quantity BZ° = (AE)E + (AE)Z + (3E) P gives
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Fig. 1. — Energy per particle as a function of Fermi wave number ky at various healing distances,
for the HJ potential v;. Dashed curves: three-body cluster approximation to energy expectation
value. Solid curves: energy estimate Eg = Ep + (AE), + (AE), + SE){" including two-body cluster
approximation to second-order perturbation correction. © d =2.2fm, o d =2.5fm, A d =3.0 fm.

the net increase in nuclear binding energy due to the spin-orbit potential (6). We note
that the various contributions are insensitive to the choice of the separation distance d.
The two- and three-body cluster contributions are rather small; the main gain in
energy is essentially coming from the spin-orbit perturbation correction.
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Figure 1 depicts our results for the energy expectation value in three-body cluster
approximation Ey ~Egn+ (AE),+ (AE), and for the energy estimate Egq ~ Fp + (AE), +
+ (AE), + (3E)y based on the vgmodel of the HJ potential. As expected from the
earlier studies of the v4,-model we find that, except at the highest densities considered,
the values of the quantity Eg are almost independent of the separation distance d in
contrast to the expectation value E,. The estimate Eg indicates saturation at too
high a density, ky~ 1.7 fm-1. However, once the repulsive effect due to the quadratic
spin-orbit component of the nuclear force has been taken into account, the saturation
density might shift to some extent, towards a more realistic density.



