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5.1 Introduction

As the scientific activities of the biology, chemistry, and physics communities
meet at the nanometer scale, interdisciplinary works are the most efficient
avenues to explore many mysteries in science and technology that has been
appreciated only in recent decades. One of these mysteries is a deeper un-
derstanding and efficient manipulation of charge migration in DNA. Charge
migration or the redox process in DNA is directly related to the damage and
repair of DNA occurred in the cells of human beings [1]. As we know now,
the DNA damage is responsible for many neurological diseases, and plays an
important role in aging and many forms of human cancer. On the other hand,
molecular electronic devices are believed to be the most promising technology
in the near future. DNA has the property of self-assembly and DNA based
devices have the advantage of large-scale industrial production. Construction
of the artificial DNAs and understanding of charge migration in them then
become crucially important [2,3]. Furthermore, DNA sequencing, the process
of deciphering the exact order of the 3 billion base pairs that make up the
DNA of 24 different chromosomes, has the potential to revolutionize explo-
ration of human biology and medicine. Currently the main concern here is the
efficiency of the sequencing process. Study of the transverse charge transport
in DNA may result in an efficient tool for rapid DNA sequencing [4, 5] as
well as fundamental understanding of charge migration across the DNA. In
the last decade, charge migration in molecules and DNA has been addressed
by many authors which has established a basis for further developments in
this field [2, 3, 6–17]. In this chapter, we investigate some aspects of it from
a physical point of view.

5.2 DNA Model for Charge Migration

5.2.1 Molecular Structure

DNA (deoxyribonucleic acid) is the molecule responsible for the storage of
genetic information in the cells. The primary structure of DNA as shown in
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Fig. 5.1 consists of two chain polymers of the nucleotide units, and is called
the DNA duplex. Each nucleotide contains three components: a heterocyclic
base, a deoxyribose sugar (pentose), and a phosphate (phosphoric acid). The
sugar and phosphate of the successive nucleotide units along each chain are
connected in an alternating sequence and form the backbone of the chain.
The base of each nucleotide attaches to the sugar on one side and to its
counterpart base from the other chain on the other side. The two chains are
held together through pairing of their bases by hydrogen bonds. There are
four kinds of bases, two purine derivatives, guanine (G) and adenine (A),
and two pyrimidine derivatives, cytosine (C) and thymine (T). The pairing
occurs only between G and C by three hydrogen bonds or between A and
T by two hydrogen bonds, i.e. there are only two kinds of base pairs, (G:C)
and (A:T). Along each backbone, the phosphate connects the carbon 5′ of
one sugar with the carbon 3′ of the next sugar (Fig. 5.1a) [18].

The secondary structure of DNA is a double helix with the duplex nu-
cleotide strands twisted around each other. The two strands of the nucleotide
polymer in a DNA are oriented in opposite directions, one from carbon 5′

to 3′ and the other from carbon 3′ to 5′ [18]. The antiparallel orientation
helps to align the hydrogen bond donors and acceptors. Along the double
helix, the two strands of the backbone wrap around the stacked base-pair
layers. There are three classes of structures, called the B, A, and the Z forms.
The form of the B-DNA commonly exists in living beings where the environ-
ment is humid. Its helix is about 2 nm in diameter with a vertical distance of
about 0.34 nm between layers of the base pairs and about 10 base pairs for
each complete turn of the helix (Fig. 5.1b). This is the prototype of DNA for
many theoretical works including this work.

Fig. 5.1. a The primary structure of a DNA duplex with four nucleotides. The
elliptical loops show the overlap of the π bonds along the base stacking direction;
the dashed lines between the (G:C) and (A:T) base pairs are the hydrogen bonds;
the numbers around each sugar denote the numbers of the sugar carbons. b The
DNA double helix. c Illustration of the π bond HOMO energies and π∗ bond LUMO
energies of the G, C, A, T bases
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From the viewpoint of quantum mechanics, the charge migration in DNA
occurs via electronic transitions among states near the chemical potential.
The characteristics of charge transfer is then mainly determined by the prop-
erties of the highest occupied molecular states (HOMO) and the lowest un-
occupied molecular states (LUMO) of the nucleotide in the cases of hole
transfer and electron transfer respectively. At zero temperature the chemical
potential separates the LUMO from the HOMO. In Fig. 5.1c, the HOMO and
LUMO energy levels for the bases G, A, T, and C are also illustrated (ap-
proximately). In a DNA with all the bases present, the HOMO-LUMO gap
is about 3 – 4 eV but the exact value is still an open question [13,19–21]. The
HOMO and LUMO states are mainly composed of molecular states of the π
and π∗ bonds, i.e. the pz orbits of the carbon-carbon double bonds, in the
purine and pyrimidine bases. The wave function overlap of the π (π∗) bonds
between the neighboring bases allows holes (electrons) to jump from one base
to another and results in the charge migration along the DNA duplexes.

5.2.2 The Tight-Binding Model

In order to describe the charge migration in DNA quantitatively, both mi-
croscopic and macroscopic models have been reported in the literature [7].
In the former case, the system is handled via the first principle; the outer-
shell orbits of all atoms in the system and the coupling between them are
taken into account explicitly and the transport properties of the system are
obtained by the ab initio calculations. For the macroscopic models, crucial
physical information is extracted from the ab initio calculations and are pa-
rameterized to simplify the system in the hope of being able to handle bigger
systems and also obtain more physical insights than those available from the
ab initio calculations.

Based on the existing experiments and the ab initio results, it has been
suggested that the charge migration in DNA is a hole transport via the
HOMO states of the bases and the energy gap between the HOMO and
LUMO states in each base is about 4 eV [13]. In the zeroth order approxi-
mation for a macroscopic model, the system is composed of a series of sites
where each site corresponds to a HOMO state of a base. A tight-binding
model of the hole transport can then be established with on-site energies for
the HOMO energies of the bases and the coupling parameters between the
sites for coupling of the HOMO states between the bases.

The on-site energy of each base is then the energy to create a hole in the
HOMO state of the base, viz., the ionization energy. The ionization energy is
sensitive to the existence of other bases around and also to the environment.
This value for the single bases can be calculated by the quantum chemical
ab initio methods and were confirmed by measurements in the bases’ gas
phase. The calculated HOMO hole energies for the isolated single bases G,
C, T, and A are EG = 7.75, EC = 8.87, ET = 9.14, and EA = 8.24 eV
respectively [19, 20, 22, 23]. It is to be noted that these values may depend
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on the method used [24]. Just as for the on-site energies of the bases, the
coupling parameters between different sites (bases) in principle, can also be
calculated by the ab initio methods. Usually, this effective coupling parame-
ter depends on how the macroscopic model is established. While the intrinsic
value comes from the overlap of the π orbit wave functions between the
bases, the effective one should be adjusted if other factors (see below) are
not explicitly taken into account in the macroscopic tight-binding model.
Until now, the calculated coupling parameter from different ab initio models
are very scattered in a range of 0.01 – 0.4 eV [19, 25, 26]. Nevertheless, some
common qualitative characteristics of the coupling have been extracted from
these calculations. Although the purine and pyrimidine bases within each
Watson-Crick base pair are strongly coupled by the hydrogen bonds [27],
the hydrogen bonds do not participate in the carrier transport because they
have a lower energy than the HOMO states. As a result, the interstrand cou-
pling parameter for the HOMO states between them is much weaker than
the intrastrand coupling parameter between the neighboring bases along the
DNA strands [25,26]. Because the π bond is highly anisotropic, the coupling
parameters are sensitive to the relative position of the two bases in ques-
tion and a twist of the DNA duplex may modify the coupling parameters
significantly [13].

In the above primary picture of the system, we have neglected some other
factors which can affect the charge transfer in DNA. In reality, the HOMO
states of the bases are not isolated from but are coupled to the other com-
ponents of the system. First, the HOMO state in a base is coupled to the
other outer-shell electronic states with lower or higher energies. The hydro-
gen bonds, for example, can influence the HOMO states [28]. Second, it is
coupled to the inner-shell electronic states and the nuclear states, which in-
troduce the electron-phonon or vibronic coupling [11]. Third, it is coupled
to the electronic states in the backbone [29]. Fourth, the charge transfer
is affected by the environment, including the static and dynamic screening
and random impurities [11]. Fifth, when a finite potential bias is applied
over the system, the modification of the potential profile along the DNA
duplex and other nonlinear effects will become important [30]. Sixth, spin
effects may also be important in some situations [31–33]. Finally, if there
is more than one hole present in the DNA, correlation between them may
play an important role in the behavior of the charge migration in the sys-
tem [34].

Different strategies are used to handle these factors. Obviously, a complete
and straightforward way would be to take all of these factors into account
explicitly. However, this is not very practical because few of these factors are
well studied and the corresponding parameters are far from being established.
A model with too many uncertain parameters will be confusing and useless.
Fortunately, from the mathematical point of view, many characters of these
factors can be integrated into the renormalized on-site energy or the coupling
parameter. In some cases, even the on-site energy and the coupling parameter
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can in turn, be represented by each other [35]. Based on this fact, in the
numerical calculation of this work, we have used the fixed HOMO energies of
the isolated single bases as the on-site energies but leave the effective coupling
parameters flexible. However, to which extent and under which condition the
parameterization process is valid are still subject of further theoretical and
experimental studies.

In the following, we shall discuss only the distance dependence of the
charge transfer and neglect the reorganization energetics involved in the
charge transfer process, which affects mainly the temperature dependence [11,
16, 36].

5.3 Evaluation of the Electron Transfer Rate
in a Chain Model

5.3.1 The One-Dimensional Chain Model

In the simplest single-particle tight-binding model, we assume that the system
can be parameterized into a chain model in which an effective on-site energy
is used for the HOMO energy of each base pair and an effective coupling
parameter between any two nearest neighbor sites [37]. For a homogeneous
DNA duplex, such as the Poly(G:C) polymers, this model should be very
effective because the charge migration occurs along the purine strand in case
of the hole transport.

In the chain model, the Hamiltonian of a N -base-pair DNA as shown in
Fig. 5.2a reads

HDNA =
N∑

n=1

εnc
†
ncn −

N−1∑

n=1

tn,n+1(c
†
ncn+1 + c†n+1cn)] . (5.1)

Here, c†n is the creation operator of holes on site n of the DNA chain (for
1 ≤ n ≤ N) and −tn,n+1 is the coupling parameter between nearest neighbor
sites n and n + 1 [38]. In this tight-binding model, the creation operator
c†n corresponds to the local electronic state |n〉 on site n and we assume
that all the states are orthogonal to each other, i.e. 〈m|n〉 = δm,n with δm,n

the Kronecker delta function. In the matrix form, the secular equation then
reads |ĤDNA − EÎ| = 0 with Î the unit matrix. In a real DNA, the HOMO
states, |ñ〉, of different bases are not orthogonal to each other and the overlap
matrix Ŝ with elements Sm,n = 〈m̃|ñ〉 is not the unit matrix. As a result,
the secular equation should be |ĤDNA −EŜ| = 0. Here an orthogonalization
process is assumed to have been done to transform the HOMO molecular
states |ñ〉 to the on-site states |n〉 and to construct the site representation
of the DNA system [39]. The Hamiltonian is transformed accordingly but
the modification to the on-site energy by the orthogonalization process is
neglected.
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Fig. 5.2. a A schematic illustration of the one-dimensional chain model. The left
and right ends of the DNA is connected to the electrode L and R and each site
coupled to the dephasing reservoir of the backbone and the environment. b The
dephasing reservoir for the site n is approximated as a semi-infinite chain and is
renormalized as a self energy Σn

Any single-particle eigenstate can be expressed by the envelope wave func-
tion ψn in the site representation as |Ψ〉 =

∑
n ψn|n〉 and the Schrödinger

equation HDNA|Ψ〉 = E|Ψ〉 reads:
⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

ε1 − E −t1,2 · · · 0 0 0 · · · 0
−t1,2 ε2 − E · · · 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · εn−1 − E −tn−1,n 0 · · · 0
0 0 · · · −tn−1,n εn − E −tn,n+1 · · · 0
0 0 · · · 0 −tn,n+1 εn+1 − E · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · εN − E

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

ψ1

ψ2

· · ·
ψn−1

ψn

ψn+1

· · ·
ψN

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

= 0 .

This is an equation group of N equations having the recursive form

−tn−1,nψn−1 + (εn − E)ψn − tn,n+1ψn+1 = 0 , (5.2)

and in principle, can be solved exactly for a closed system with a finite N .
For a long homogeneous chain with εn = ε and tn,n+1 = t, we have a periodic
system and a Bloch type of wave function ψn = ψ0e

ikna exists for the system.
For the periodic boundary condition, i.e. |N + n〉 ≡ |n〉 and ψN+n ≡ ψn, the
energy E = εn − tn−1,nψn−1/ψn − tn,n+1ψn+1/ψn in (5.2) becomes

E = ε− 2t cos(ka) (5.3)

with ka = �2π/N for integer �. This is an energy band centered at the on-site
energy ε with a band width of four times the coupling parameter 4t. The
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Brillouin zone is −π/a ≤ k ≤ π/a and the corresponding density of states
(DOS) is Na/(2π)(dk/dE) = N/[4πt sin(ka)].

5.3.2 The Transfer Matrix Method

In an open system with a source of charge at one end of the DNA molecule
and a drain at the other end (Fig. 5.2a), the system becomes infinitely large
and the boundary condition for a closed system is no longer valid. The direct
diagonalization of the Hamiltonian described above for the closed systems can
not be used to find the transport properties. The transfer matrix method [40,
41] and the non-equilibrium Green’s function theory [42] have been developed
to solve the problem. The transfer matrix method is straightforward but it
is not always the convenient choice for the complicated cases that involve
taking into account many physical factors. In contrast, the Green’s function
theory appears more sophisticated for the simple cases but has the technical
advantage when many physical factors are to be taken into account. Using
simple examples like the homogeneous DNA chain, we can show that they are
equivalent [23,42]. In what follows, we have used the transfer matrix method.

One example of the open systems is a DNA duplex that is connected to
a circuit via metal electrodes. Here the longitudinal charge migration from
the source to the drain through the DNA duplex occurs when a voltage
drop is applied between the electrodes. To facilitate the transport calcula-
tion in this system, the electrodes can be modelled as semi-infinite periodic
one-dimensional tight-binding chain with uniform parameters of the on-site
energy εe, the band width of 4te, and the Fermi energy εF

e measured from εe.
Furthermore, the contact properties between the DNA duplex and the left
(right) electrode are described by the contact parameter tLde (tRde). The total
Hamiltonian then reads

H =
∞∑

n=−∞
εnc

†
ncn −

∞∑

n=−∞
tn,n+1(c

†
ncn+1 + c†n+1cn)] . (5.4)

Here the sites for n ≤ 0 represent the left electrode and for n ≥ N + 1 the
right electrode; t0,1 = tLde and tN,N+1 = tRde are the coupling parameters
between the electrodes and the DNA chain.

The transport property of this open system is the electronic response of
the drain (right) electrode to an injection of charge from the source (left)
electrode. If the phase coherence length in the DNA is longer than the DNA
length, we can assume a plane wave current injection and calculate the output
plane wave function employing the recursion relation of the wave function in
DNA (5.2). Rewriting (5.2) with the identity ψn ≡ ψn in a recursion matrix
form (

ψn+1

ψn

)

=

⎛

⎝
εn − E

tn,n+1

−
tn−1,n

tn,n+1

1 0

⎞

⎠

(
ψn

ψn−1

)

, (5.5)
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we obtain the above 2 × 2 transfer matrix M̂n to derive the wave functions
on sites n + 1 and n from those on sites n and n − 1. Note that (5.5) is
a general form of the Schrödinger equation for any systems and the eigenstates
of a closed system can be derived from it with proper boundary conditions.
From (5.5), we can derive the wave function of the whole system once we
know the wave functions of any two successive sites. For example, if we know
the wave functions of sites 0 and −1 in the left electrode we can derive the
wave functions of sites N + 1 and N in the right electrode as

(
ψN+1

ψN

)
= M̂T

(
ψ0

ψ−1

)
(5.6)

with M̂T =
∏N+1

n=0 M̂n and evaluate the transmission of an electronic wave
package from the left to the right electrode. Any propagating wave package
can be expanded into a series of plane waves by the Fourier transform, and we
can evaluate the transmission of the plane waves to get the overall transport
properties. We consider that the hole wave functions in the source electrode
has the general propagating form ψL

n = A eikLna + Be−ikLna (n ≤ 0) with
A being the incident wave amplitude and B the reflected wave amplitude,
and in the drain electrode ψR

n = CeikRna + De−ikRna (n ≥ N + 1) with
C the transmitted wave amplitude. As the probability of carriers is propor-
tional to the density of states, we choose the normalized incident amplitude
A = 1/

√
| sin(kLa)|. Here D represents the current injection from the right

electrode and does not contribute to the current in this case. Nevertheless,
we keep it here for the sake of generality of the formalism.

Substituting the wave function ψL
n and ψR

n into (5.6), we get

ŜR

(
D
C

)
= M̂TŜL

(
B
A

)
(5.7)

with

ŜL =
(

1 1
eikLa e−ikLa

)
(5.8)

and

ŜR =
(

e−ikR(N+2)a eikR(N+2)a

e−ikR(N+1)a eikR(N+1)a

)
. (5.9)

We then have the transfer matrix for the amplitude M̂A,
(

B
A

)
= M̂A

(
0
C

)
; M̂A = Ŝ−1

L M̂−1
T ŜR =

(
M11 M12

M21 M22

)
. (5.10)

Using C = M−1
22 A and the group velocity v = dE/dk = 2ta sinka for the

tight-binding band, we arrive at the following expression for the transmission

T (E) =
|C|2
|A|2

vR

vL

=
|C|2 sin(kRa)
|A|2 sin(kLa)

. (5.11)
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The conductance at an ideal transmission, i.e. 100%, through a quantum
one-dimensional channel is the conductance quanta e2/h = (25.8 kΩ)−1 and
in general, the current through the system is evaluated by the Landauer-
Büttiker formula

I =
2e
h

∫ ∞

−∞
dE T (E)[f(E − μL) − f(E − μR)] . (5.12)

Here, f(E − μX) = 1/ exp[(E − μX)/kBTe] is the Fermi function with the
chemical potential μX of the electrode X for X = L or R and Te is the
environment temperature.

5.4 Charge Migration Through DNA

5.4.1 Charge Transfer Measurement

Both the chemical and physical techniques have been successfully used to
measure the charge transfer rate in DNA. Usually, the conductance is mea-
sured indirectly in the chemical techniques such as the fluorescence quenching
and the poly(G) trap methods. In the former case, a fluorescent molecule com-
plex is inserted into the DNA and its fluorescence spectrum is measured after
it is excited. The time-dependent fluorescent quenching is used to determine
the transfer rate of the excited electrons in the fluorescent molecule [43]. In
the latter case, a charge is injected into a single G base optically or electri-
cally and the trapping rate at a double GG or a triple GGG trap is mea-
sured by water cleavage of the DNA strand [44]. In recent years, the con-
ductance of DNA was also measured directly by physically connecting it to
a circuit [3, 45, 46]. However, the conductance of the DNA extracted from
different measurements appears to be very different [3, 45] and a consistent
explanation of these results requires a systematic study and understanding of
the mechanism of the charge transfer in different systems used in the exper-
iments [47]. A reliable conclusion from any specific measurement depends on
the understanding of the corresponding mechanism for the system in ques-
tion, including the understanding of the charge transfer process in the DNA
itself, the boundary condition or the contact effect, and participation of the
environment.

5.4.2 Charge Transfer Via the DNA Molecule

In a long DNA complex, several mechanisms have been known to contribute
to the charge transfer. Generally, we are considering a hole initially introduced
to the DNA by the oxidation of a G base [43, 44]. Because the HOMO state
of the G base has a lower ionization energy than the other bases, the G
bases in DNA can work as charge stops and charge may hop back and forth
from one G base to another during its long-distance migration [48–50]. In
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a poly(G:C) DNA, an energy band forms in this periodic system and a charge
can transport quickly through this band from one end to the other.

In DNA with a mixed (A:T) and (G:C) base pairs [51, 52], the (A:T)
base pairs work as barriers for charges with energy of the G-base being the
HOMO energy. A charge can tunnel from one G base to the next G base
through the (A:T) barrier bridge between them. If the temperature is high
enough, the charge can also gain thermal energy and oxidize the A bases so
the charge can migrate through the DNA by thermal hopping. The role of
the (A:T) bases in charge migration is a major focus of recent activities in
the field.

Conventionally, a DNA is treated as a polymer chain of the base pairs
when the charge transport is considered. Since the HOMO state in a (G:C)
base pair is located at the G base and in an (A:T) base pair at the base
A, charge is believed to migrate along a channel composed of the G and
A bases. For the tunneling mechanism [53–57] the (A:T) base pairs located
between the (G:C) base pairs are the tunneling potential barriers and the
tunneling current should decay exponentially with the number of the (A:T)
base pairs that are in the middle. For the thermal hopping mechanism [58–60],
on the other hand, once an A base is oxidized with the help of the thermal
energy, the other A bases can be easily oxidized. As a result, the hole can
transport freely through the poly(A) channel and reach to the other end of
the DNA without much resistance. In this case, the total resistance comes
mainly from the first hop from the G base to an A base and the transfer
rate is almost independent of the number of the (A:T) base pairs in the
bridge.

In the above DNA chain model, each base pair is a unit. This picture is
natural when discussing the entire electronic energy of the system stored in
both inner and outer shell electronic states. The two paired bases in each
base pair is strongly coupled with each other by the hydrogen bonds of the
sigma orbits. In contrast, two stacked bases along the DNA chain are more
weakly coupled by the overlap of the π orbits similar to the coupling between
stacked graphene layers in a graphite. However, as far as the longitudinal
charge transfer is concerned, the contribution of the σ orbits to the HOMO
state and the participation of electrons in the σ orbits in the charge transfer
process are negligible. This is due to the fact that the σ orbits have a much
lower energy than that of the π orbits in the DNA bases. Accordingly, the
charge transfer between the bases in a base pair is determined by the overlap
of the π orbits between them. The ab initio calculations have shown that the
overlap of the HOMO states between the two neighboring bases in the same
strand is much stronger than that in different strands [25].

Based on the above considerations, the geometry of DNA (in a form of
ladder network of the bases) may play an important role in the charge transfer
and in some cases, it is more accurate to view a conducting DNA as two paired
base strands rather than a chain of stacked base pairs. In that respect a DNA
duplex is modelled as a ladder network [61–64] instead of a chain of HOMO
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sites. When the geometry of the DNA molecule is taken into account, a charge
can tunnel or thermally hop through different one-dimensional channels in
the two-dimensional network.

5.4.3 Contact Effect

The contact property between the electrodes and the DNA duplex depends
on the material of the electrode, the geometry of the contact, and the en-
vironment, and is by itself an active field of research in both physics and
chemistry [65, 66]. How a DNA duplex makes contacts to the charge source
or drain determines the efficiency of the charge injection and affects the meas-
ured results in the experiments. Unfortunately, in many cases, the details of
the contact especially between the metal and DNA in direct transport mea-
surements are not very clear. In the tight-binding model, an effective contact
parameter is used to phenomenologically describe the contact. When a fixed
voltage is applied between the source and the drain [30], the contact may
significantly modify the potential profile across the DNA and the on-site
energies vary accordingly. In the quantum tunneling-transport process, the
charge injection efficiency is not a linear function of the contact parameter
because of the phase interference. It has been shown that when a periodic
DNA base chain with a uniform nearest-neighboring coupling parameter t
is connected to a metal electrode of band width 4te, an optimal injection is
achieved at tde =

√
td × te in the linear transport regime [22].

5.4.4 Dephasing Effect

It has been widely accepted that an electron in the HOMO state of a base
in DNA can not only interact with the electrons in other bases but also with
the background including the backbone and the environment, as illustrated
by the dotted lines in Fig. 5.2a. The electron or the hole can jump out of the
base to the background through the overlap of the outer-shell atomic orbits
and through the electron-phonon interaction (coupling with the inner-shell
atomic orbits and the nuclear states). As a simple approximation, the effect of
the background on site n can be integrated into a self energy Σn = ΣR

n +iΣI
n,

in which the real part offers the energy correction to the on-site energy and
the imaginary part to the dephasing effect. Just as for the electrodes, we
can model the background as a semi-infinite one-dimensional tight-binding
chain as depicted schematically in Fig. 5.2b. The effective Hamiltonian for the
coupling between the site n and the background reservoir can be simplified
as a 2 × 2 matrix for a two-level system [42]

Ĥdph
n =

(
εn −ηn

−ηn εb + Σb

)
, (5.13)

where ηn is the coupling parameter between the site n and the background,
εb is the on-site energy of the first site in the semi-infinite chain of the back-
ground, and the self energy Σb represents the effect from the other sites of
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the dephasing chain. We have to keep in mind that here again we are con-
cerned with the response of the system to a wave package of any energy E
rather than the eigenstates of a closed system and the Schrödinger equation
Hdph

n |ϕ〉 = E|ϕ〉 requires (εn −E)(εb −Σb −E) = η2
n. The self energy on the

site n in the DNA chain due to the dephasing reservoir, Σn = E − εn, for
a carrier of energy E then reads

Σn =
η2

n

(E − εb −Σb)
. (5.14)

Similarly, Σb can be obtained self consistently using this expression by replac-
ing Σn with Σb and ηn with tb, the nearest neighbor coupling parameter for
the dephasing chain. We have Σb = (E−εb)/2+i[t2b−(E−εb)

2/4]1/2 [67,68].

5.5 Understanding the Weak Distance Dependence

The possibility of charge transfer in DNA has been proposed soon after the
atomistic DNA structure was established [8, 9]. However, quantitatively the
distance dependence of charge transfer in DNA was measured systematically
only several decades later [69]. It has been well established that the charge
can transfer from the donor to the acceptor through the intermediate bridges
(molecular clusters) of higher energy via the electronic superexchange interac-
tion along a molecular chain. In this picture, the bridges work as a tunneling
barrier and the donor and acceptor are treated as charge traps. With the
help of the electron-phonon (vibronic) interaction, the tunneling can occur
when the donor and the acceptor states are not degenerate. A perturbation
theory based on the tight-binding model has been developed to describe this
charge transfer mechanism as early as the first proposal of charge trans-
fer in DNA [53]. Exponential decay of the transfer rate with the distance
was predicted. This strong exponential distance dependence in the molec-
ular chain has been confirmed by many experiments and also by different
theoretical formalisms in the years that followed. However, many measure-
ments have also shown a weak distance dependence of charge transfer in
the DNA [43, 44, 69–72]. This means that charges may transfer along a very
long distance and indicate the possible importance of the thermally-induced
hopping between the G and G’s bases [58–60]. In order to clearly identify
the regimes for the validity of the different mechanisms, Giese et al., carried
out a systematic measurement of the charge transfer between the (G:C) and
(G:C)3 charge traps over (T:A)M bridges of higher energy [44]. That experi-
ment demonstrated an exponential decay rate versus the distance for M ≤ 3
and an almost flat distance dependence for M > 3 with a crossover around
Mc = 3 as shown in Fig. 5.3.

Naturally, this flat distance dependence was connected qualitatively to
the thermally-induced hopping mechanism. Based on this proposal, many
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Fig. 5.3. Logarithm of the efficiency of the charge transfer (filled circles), measured
by the ratios of the irradiation products PGGG/PG in [44], from the (G:C) to triple
(G:C) base pairs, plotted as a function of the number M of (A:T) base pairs in
a (G:C)(A:T) M(G:C)3 DNA duplex. The linear fit to the results for 1 ≤ M ≤ 3
is log(PGGG/PG) = 3.3–0.9M as shown by the dotted line and for 4 ≤ M ≤ 16 is
log(PGGG/PG) = 0.5–0.01M as shown by the solid line

authors have contributed to a quantitative explanation of the experimental
result. Berlin, Burin, and Ratner [37] used a tight-binding (Hückel) model
for a one-dimensional chain with each base pair as a site and derived the
crossover number when the tunneling transfer rate is equal to the transfer
rate by the activation process to the (T:A) tight-binding band. For a barrier
height of 0.46 eV (between the site energies of (G:C) and (T:A) or (A:T) base
pairs) and the coupling parameter in the range from 0.1 eV to 0.4 eV, the
crossover number is found to lie between 3 and 4, in agreement with the ex-
periment. Bixon and Jortner [73, 74] emphasized the difference between the
intra- and interstrand couplings for different base sequences and proposed
that the charge transfer occurs along a dominant path. They applied the
kinetic-quantum mechanical model for the thermally-induced hopping pro-
cess and fitted the experimental result. However, they noticed some inconsis-
tency in the theory and concluded that the theory does not explain the re-
sult. Renger and Marcus [75] proposed that the flat distance dependence can
be explained by integrating the variable-range hopping concept into the ki-
netic model. In addition, describing the system with the Su-Schrieffer-Heeger
model and the Hubbard Hamiltonian, Cramer, Krapf, and Koslowski [76]
obtained the energy potential surface in the atomistic level for evaluation
of the transfer rate based on the Marcus theory. They also explained the
crossover from the exponential to the flat distance dependence in the pic-
ture of tunneling and thermal hopping transition. Basko and Conwell [77]
emphasized the importance of phonons in the process and proposed that
the formation of polarons [78–82] in the system is key for the flat distance
dependence.

It is known [39] that the quantum interference can play an important role
in a system with multi-tunneling channels and a resistance ladder network has
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very different properties than a series of resistance. In this work, we explore
the transport properties of a DNA duplex that is treated as a tunneling ladder
network [83].

5.6 Electron Tunneling Through Multi-Path Barriers

5.6.1 The Double-Stranded Model

In order to take into account the duplex geometry of the primary structure,
we consider a DNA duplex chain of N Watson-Crick base pairs connected
to four semi-infinite one-dimensional electrodes with one for each end of the
first and the second strand as illustrated in Fig. 5.4. The four electrodes
are assumed independent of each other since in many cases the charges are
injected into one base and trapped in another bases at the ends. The tight-
binding Hamiltonian of the system is

H =
∞∑

n=−∞
[εnc

†
ncn − tn,n+1(c

†
ncn+1 + c†n+1cn)]

+
∞∑

n=−∞
[und

†
ndn − hn,n+1(d

†
ndn+1 + d†n+1dn)]

−
N∑

n=1

λn(c†ndn + d†ncn) .

Here c†n (d†n) is the creation operator of holes in the first (second) strand on
site n of the DNA chain (for 1 ≤ n ≤ N), the left electrodes (n ≤ 0), and the
right electrodes (n ≥ N + 1). The coupling parameter of the first (second)
strand tn,n+1 (hn,n+1) is equal to the intra-strand coupling parameter td

Fig. 5.4. Schematic illustration of the two-stranded model. The first strand (filled
circle) has a DNA base sequence G(T)MGGG and the second strand (empty circle)
a sequence C(A)MCCC. The four gray areas indicate the four virtual electrodes
connected to the DNA chain. Current is injected into the first strand through the
left electrode L1 and measured at the right electrode R1
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between neighboring sites n and n + 1 of the DNA for 1 ≤ n ≤ N − 1,
one-fourth of the conduction band-width in the electrodes te for n ≤ −1 and
n ≥ N + 1, and the coupling strength tde between the electrodes and the
DNA strands for n = 0 and n = N . The inter-strand coupling between the
sites in the same Watson-Crick base pair is described by λn.

In the site representation, the Schrödinger equation is an equation group
with two inequivalent form of equations

tn−1,nψn−1 + (E − εn)ψn + λnφn + tn,n+1ψn+1 = 0
hn−1,nφn−1 + (E − un)φn + λnψn + hn,n+1φn+1 = 0 ,

where ψn (φn) is the wave function of the first (second) strand on site n. The
wave functions of the sites n+ 1 and n are related to those of the sites n and
n− 1 by a 4 × 4 transfer matrix M̂n,

⎛

⎜
⎜
⎝

ψn+1

φn+1

ψn

φn

⎞

⎟
⎟
⎠ = M̂n

⎛

⎜
⎜
⎝

ψn

φn

ψn−1

φn−1

⎞

⎟
⎟
⎠ , (5.15)

with

M̂n =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

(εn − E)
tn,n+1

−λn

tn,n+1

−
tn−1,n

tn,n+1

0

−λn

hn,n+1

(εn − E)
hn,n+1

0 −
hn−1,n

hn,n+1

1 0 0 0
0 1 0 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

.

Assuming the plane wave injection and transmission in the electrodes and fol-
lowing the same process as described in (5.6)–(5.12) for the one-dimensional
chain model, we can evaluate the charge transfer rate to any electrode from
one injection electrode in the double-stranded model.

5.6.2 Charge Transfer Through a (G:C)(T:A)M(G:C)3 DNA

We now apply the double-stranded model to describe the intra-molecular
hole transfer along the DNA duplex chain (G:C)(T:A)M(G:C)3 measured by
Giese et al. and described in Sect. 5.5. To minimize the contact effect intro-
duced by the virtual electrodes we introduced to facilitate the calculation,
we assume a strong coupling (of coupling parameter t0,1 = tN,N+1 = h0,1 =
hN,N+1 = tde ≥ 1.5 eV) between the electrodes and the sites at the ends of
the DNA strands, and choose a band width (4te) in the electrodes such that
the optimal injection condition td × te = t2de [22] is satisfied. The result is
found to be independent of the choice of the value of tde once it is much larger
than the coupling parameter between the sites inside the DNA. In this case,
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the added electrodes do not become a bottleneck of the system for the charge
transfer and the calculated result predominantly reflects the properties of the
DNA duplex.

To evaluate the transfer rate or current of a charge (hole) from the donor
at the left-end site to the acceptor at the right-end site of the first strand, we
need to know the chemical potential at each end. In the experiment of [44],
a hole was injected to the left-end site. This means that the left chemical
potential is approximately the on-site energy of this site while the right one
is less. During the charge transfer process, the hole may retain the same en-
ergy if no inelastic scattering occurs or loose energy via the electron-phonon
scattering or other inelastic collisions [17]. Real electron-phonon scattering at
the donor and acceptor contributes to the reorganization energy and affects
the temperature dependence of charge transfer [11, 36, 84] while the virtual
electron-phonon interaction may affect the electronic coupling between dif-
ferent sites [85]. In the case of strong electron-phonon coupling, the charge
may be dressed by the phonon cloud and transforms into a quasiparticle,
the polaron [78, 79]. Here we assume that the virtual phonon effect and the
polaron effect can be simplified as an adjustable to the coupling parameter
between sites. Since we are concerned with distance dependence of the trans-
fer, we do not deal with the inelastic scattering mechanisms at the donor
and the acceptor sites explicitly but analyze two limiting situations, between
which the real charge transfer process would occur. Since our results for the
distance dependence of the transfer rate from the two limits converge (see
below), we conclude that our results are reliable.

In the first limit, we assume that there is no inelastic scattering involved
and the hole energy is conserved during the transfer process. The transfer
rate is proportional to the conductance of the system at equilibrium. For
a small electric potential difference kBTe/e, the current is

I =
2e
h

∫ ∞

−∞
dE T (E)[1 − f(E − μ)]f(E − μ) , (5.16)

with μ equal to the on-site energy of site 1 in the first strand and Te = 300 K.
In the second limit, we assume that the hole can lose energy freely during

the charge transfer process before or after the tunneling, and the transfer
rate is proportional to the total current via all channels of energies below the
hole’s initial energy. This corresponds to an infinitely low chemical potential
at the right electrode and the current is

I =
2e
h

∫ ∞

−∞
dET (E)f(E − μ) . (5.17)

We now calculate the distance dependence of the transfer rate using (5.16)
and (5.17) in a DNA duplex, where the first strand has the base sequence
G(T)MGGG as in the experiment of [44]. For the sake of simplicity and
to focus on the geometry effect, a uniform intra-strand hopping parameter
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tn,n+1 = hn,n+1 = td (1 ≤ n ≤ N − 1) and a uniform inter-strand hopping
parameter λn = λd (1 ≤ n ≤ N) between any two neighboring bases in the
DNA are used.

First we switch off the inter-strand coupling and calculate the dependence
of the current I on M as shown in Fig. 5.5a, for different values of the intra-
strand coupling parameter td. We find an exponential dependence of the
current

I = IM ∝ e−βMa (5.18)

when td is much smaller than the bridge barrier height ET − EG. We then
extract the values of β for different td and plot in Fig. 5.5c as β versus ln(td)
calculated via (5.17). The curves are almost linear, very similar to the results
of (5.16), and converge to the approximate formula

β =
2
a

∣
∣
∣∣ln

td
ET − EG

∣
∣
∣∣ . (5.19)

This is the well-known one-dimensional superexchange result in the literature
and has been derived in many different ways [37, 39, 53, 73].

In the next step, we fix td and switch on the inter-strand coupling by
varying λd. The result is displayed in Fig. 5.5b where we choose td = 0.5 eV
and plot I versus M for a series of λd. Note that the charge transfer occurs
via π-electrons and generally λd < td [25]. For finite λd, the current drops

Fig. 5.5. a Current I versus M for td = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 eV (from lower to
upper curves) for zero inter-strand coupling. The displayed results are from (5.17)
and identical results are obtained from (5.16) in all the panels. b Same as in a
at fixed td = 0.5 eV but for λd = 0, 5, 20, 40, 80, 100 meV corresponding to curves
counted from the bottom. c The β value calculated from the slope of the lines in a
versus ln td. d ln(I10/I1), where IM is the current for a chain with M (A:T) base
pairs, versus ln λd. The unit of td and λd is eV and tde = 1.5 eV [83]
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exponentially with increasing M for small M and then becomes almost flat
with oscillations around a limiting current I∞ for large M. The crossover
number Mc depends on the strength of the inter-strand coupling parameter.
The weaker the inter-strand coupling is, the bigger the Mc. The dependence
of I∞ on λd is approximately illustrated in Fig. 5.5d, where the normalized
current I10/I1 of the DNA chain at M = 10 is plotted versus ln(λd). Again,
two almost identical straight lines are found corresponding to the two limiting
situations based on (5.16) and (5.17) and can be approximately expressed as

ln(I10/I1) = 5.7 + 3.9 ln(λd) . (5.20)

From (5.18)–(5.20), we estimate the ratio of inter- and intra-strand coupling
from the crossover number Mc. Since the environment can change λd/td, we
predict that the transition number may vary and be different from 3 when
the experimental environment changes.

Calculating the current I before and after adding a (T:A) base pair at site
n with zero or nonzero inter-strand coupling λn, we find that the distance-
dependence crossover has a topological origin, e.g., from the one-dimensional
chain charge transport to a partly two-dimensional ladder network. When
a new (T:A) base pair is inserted into the DNA chain, a new superexchange
channel is opened through its inter-strand coupling and the corresponding
contribution compensates the loss of charge transfer rate that would incur
because of an extra barrier to the existing channels [83].

In Fig. 5.6, we fit the M dependence of the charge transfer rate observed
in [44] using intra- and inter-strand coupling parameters td = 0.52 eV and
λd = 0.07 eV respectively. (5.17) is employed in the calculation. The agree-

Fig. 5.6. Normalized transfer rate measured in [44] (filled circle) and theoretical fit
using this model (open circle), log(IM/I1), are plotted as functions of M (T:A) base
pairs between the (G:C) and the triple (G:C) base pairs. Inset : The corresponding
transmission T versus energy E for M = 1 (solid line), 2 (dotted line), 3 (dot-dashed
line), and 7 (dashed line). Here tde = 3 eV is used [83]
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ment between the experimental and theoretical results are very good except
for a small oscillation in the theoretical result near Mc. This oscillation re-
sults in the deviation of the empty circle from the filled circle at M = 4.
When (5.16) is used, similar result is obtained but with a stronger oscil-
lation. The oscillations reflect the fact that we have treated the system as
a coherent system by neglecting the dephasing effect from the environment
and the relaxation process from phonons.

To get a clear picture of the process, we plot as inset in Fig. 5.6, the
transmission T as a function of the hole energy E for systems with M =
1, 2, 3, and 7 in an energy range near and below the G base HOMO energy EG.
In the T spectrum, each peak represents a transport channel and there are
more fine structures or peaks when more base pairs are added to the system.
When M varies from 1 to 3, the one-dimensional chain transport dominates
and only one principal transmission peak is important. The principal peak
shifts when M varies due to the shift of energy of the channel; its height
drops rapidly leading to an exponential decrease of charge transfer rate. If
we add more (T:A) base pairs to the DNA duplex, the principal T peak drops
to a level comparable to that of other peaks and results in a crossover from
the one-dimensional chain transport to a two-dimensional network transport.
In the absence of any inelastic scattering the charge transfer rate versus
M oscillates as a result of the energy shift of the transport channels and
the energy conservation of the charge. With the assistance of the phonon,
however, the charge can use channels of energy different from its initial energy
and phonons may play an important role in assisting the charge transfer.

In the above analysis, we also neglect the dephasing effect and the inter-
strand coupling between two neighbor base pairs. The dephasing effect exists
in a real system and can help damp the oscillation of the current observed in
Figs. 5.5 and 5.6. It has been shown by the ab initio calculation that the inter-
strand coupling between two nearest neighbor base pairs is also important.
This coupling can be easily integrated into the transfer matrix by adding
non-zero elements. This coupling has similar effects on charge tunneling as
λn and similar curves as in Fig. 5.5b are obtained if replace λn by it.

5.7 Transverse Tunneling Current

In this section, we provide a detailed review of charge transport in single-
stranded DNA in the direction perpendicular to the backbone axis [6, 86].
As pointed out in [4], this approach might be useful in providing a low-cost,
but rapid DNA sequencing. We also discuss the conditions for formation of
bipolarons in DNA, and possible experimental manifestation of bipolarons in
transverse tunneling experiments.

5.7.1 Rate Equation

The longitudinal transport along the DNA molecule is determined by the
properties of the whole DNA, which consists of many basic elements, viz.
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the base pairs. In this sense longitudinal charge transfer is the tool to probe
the properties of the whole molecule. In what follows, we address another
problem, namely, how to study the local properties of the DNA molecule.
We discuss here the method to extract the local energy characteristics of the
molecule. The only way to measure the local characteristics of an extended
DNA molecule is to study the transport in the direction perpendicular to the
backbone axis, i.e. the transverse tunneling current [6, 86]. Since the most
important local parameters of DNA are the characteristics of electron and
hole traps, below we consider only transverse tunneling through electron or
hole DNA traps. In this case, if the electrodes have a relatively small width,
the tunneling occurs through a single DNA base pair. The linear (unstruc-
tured) tunneling conductance then depends on the particular type of base
pair [6]. This fact can be used to discover the sequence of DNA by scanning
it with conducting probes. We demonstrate below that not only the linear
conductance of the tunneling current but also the structure of the I–V curves
can provide important information on the properties of the DNA, in particu-
lar, about the trapping spots. This is because the tunneling current through
the system is determined by its density of states (DOS). For a finite system,
the DOS has peaks corresponding to discrete energy levels. These peaks will
result in a staircase structure of the tunneling current as a function of the
applied voltage whenever the Fermi levels align with a new state of the sys-
tem and thereby open an additional channel for tunneling. Therefore, from
the staircase structure of the I–V curve one can learn about the energy spec-
tra of the system. For DNA the trapping spots consist of a finite number of
base pairs. Hopping between the base pairs within the traps determines the
energy spectra of the spots. In addition to the energy scale due to hopping,
there is also an energy scale due to the hole-phonon (or electron-phonon)
interaction. Finally, for DNA trapping spots, the I–V dependence has two
types of staircase structure; one due to the hopping and the other due to the
phonons.

The tunneling transport through a single molecule or a quantum dot
with electron-phonon coupling has been extensively studied in the litera-
ture [87–90]. The main outcome of these works is the staircase structure of
the I–V curves due to the phonon sidebands. The heights of the steps in
this structure depend on the strength of the electron-phonon interactions,
temperature, and on the equilibrium condition of the electron-phonon sys-
tem. These studies were mainly restricted to a molecule with a single-electron
energy level, although a general approach to a many-level system is also for-
mulated [89]. The DNA trap can be considered as a system of a few molecules
(base pairs) with the hopping between them and the electron-phonon cou-
pling. Below, we consider only the hole traps and the tunneling current of
holes, but the analysis is also valid for electron traps and electron transport.
Whether it is a hole transport or electron transport depends on the gate po-
tential, i.e. on the position of the chemical potential at the zero source-drain
voltage Vsd.
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At first, we study a single-hole transport through the DNA molecule and
disregard the effects related to the Coulomb blockade [91] or to a double
occupancy of the DNA traps, assuming that the repulsion between the holes is
strong enough. In the next section we will analyze the possibility for formation
of a bound state of two holes in a trap due to the bipolaronic effect and discuss
the manifestation of such a bound state in the transverse tunneling transport.

For a single hole in the trap, the Hamiltonian of the DNA trap and the
electrodes consists of three parts: (i) the DNA trap Hamiltonian which in-
cludes the tight-binding hole part with hopping between the nearest base
pairs (one-dimensional chain model discussed in Section 5.2.1) and the
Holstein’s phonon Hamiltonian with diagonal hole-phonon interaction [78],
(ii) the Hamiltonian of the two leads, left (L) and right (R), and (iii) the
Hamiltonian corresponding to the tunneling between the leads and DNA
traps

H = Htrap + Hleads + Ht , (5.21)

with

Htrap =
Nt∑

n=1

ε c†ncn − t
∑

i

[
c†ncn+1 + h.c.

]
+

+ �ω
∑

n

b†ibn + χ
∑

n

c†ncn

(
b†n + bn

)
, (5.22)

Hleads =
∑

k,α=L,R

εk d
†
α,kdα,k, (5.23)

Ht = −t0
∑

α=L,R,k

[
c†n0

dα,k + h.c.
]
, (5.24)

where ci is the annihilation operator of the hole on site (base pair) n, ε is
the on-site energy of the hole in the trap (same for all base pairs within
the trap and is determined by the gate voltage or doping of DNA), bi is
the annihilation operator of a phonon on site i, t is the hopping integral
between the nearest base pairs, ω is the phonon frequency, χ is the hole-
phonon coupling constant, and dα,k is the annihilation operator of a hole in
the lead α = L,R with momentum k. The index n = 1, . . . , Nt in (5.22) labels
the sites (base pairs) in the trap and Nt is their total number. Tunneling from
the leads to the trap occurs only to the site n0 with the tunneling amplitude
t0. In the hole-phonon part of the DNA Hamiltonian Htrap, we include only
the optical phonons [92] with diagonal hole-phonon interaction.

We describe the process of tunneling through the trap as a sequential tun-
neling [93]. In the weak lead-trap coupling regime, the tunneling Hamiltonian
Ht can be considered as a perturbation which introduces the transitions be-
tween the states of the trap Hamiltonian, Htrap. We denote the eigenstates
of the trap Hamiltonian without coupling to the leads as |0,m〉 with energy
E0,m for the trap without any holes, and |1, p〉 with the energy E1,p for a trap
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with a single hole. In the weak lead-trap coupling limit, the master equation
for the density matrix of the trap reduces to the rate equation [88] for prob-
ability P0,m to occupy the state |0,m〉 and probability P1,p to occupy the
state |1, p〉,

dP1,p

dt
=
∑

m,α=L,R

W 0→1
α,mpP0,m −

∑

m,α=L,R

W 1→0
α,pmP1,p−

− 1
τ

[

P1,p − P eq
1,p

∑

n′
P1,p′

]

, (5.25)

dP0,m

dt
=
∑

n,α=L,R

W 1→0
α,pmP1,p −

∑

n,α=L,R

W 0→1
α,mpP0,m−

− 1
τ

[

P0,m − P eq
0,m

∑

m′
P0,m′

]

. (5.26)

In the above equations the distributions P eq
1,p and P eq

0,m are the corresponding
equilibrium distributions with temperature T ,

P eq
1,p = exp (−E1,p/kT )/

∑

p′
exp (−E1,p′/kT )

and

P eq
0,m = exp (−E0,m/kT )/

∑

m′
exp (−E0,m′/kT ) .

Here τ is the relaxation time which is assumed to be the same with or without
a hole in the trap. The transition rate W 1→0

α,pm is the rate of hole tunneling
from the state |1, p〉 of the trap to the α = L,R lead leaving the trap in the
state |0,m〉. Similarly, the rate W 0→1

α,mp is the rate of hole tunneling from the
lead α to the state |1, p〉 of the trap, while originally the trap was in the state
|0,m〉. These rates can be found from Fermi’s golden rule

W 1→0
α,pm = Γ0fα (E1,p − E0,m)

∣
∣〈0,m| cn0

|1, p〉
∣
∣2 , (5.27)

W 0→1
α,mp = Γ0 [1 − fα (E1,p − E0,m)]

∣∣
∣〈0,m| cn0

|1, p〉
∣∣
∣
2

, (5.28)

where Γ0 = 2πt0ρ/� and ρ is the density of states in the leads, which is
assumed to be the same in “L” and “R” leads, and fα(ε) is the Fermi distri-
bution function of the lead α with a chemical potential μα. The rate equations
(5.25)–(5.26) also assume that the temperature is high enough, i.e. kT � Γ .
This means that during the tunneling, the hole state loses its coherence, so
the system can be characterized only by the diagonal elements of the density
matrix, i.e. by the probabilities to occupy the states in the trap.

For the stationary case, the time derivatives of P1,p and P0,m are zero
and (5.25)–(5.26) become a system of linear equations with the normalization
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condition
∑

p P1,p +
∑

m P0,m = 1. The corresponding stationary current can
be calculated as

I =
∑

p,m

[
P0,mW 0→1

L,mp − P1,pW
1→0
L,pm

]
. (5.29)

The procedure of finding the I–V dependence is the following: At first we
calculate the energy spectra and wave functions of the hole-phonon trap
system. Then at a given bias and the gate voltages, we calculate the tunneling
rates (5.27)–(5.28). As a last step, we solve the linear system of equations
(5.25)–(5.26) to find the probabilities P0,m and P1,p and the tunneling current
(5.29).

5.7.2 Single-Particle Tunneling

There are few general remarks we can make in relation to the system of
equations (5.25)–(5.29). Since the tunneling occurs only through a single
base pair, the I–V characteristics should also depend on the position of the
base pair through which the tunneling current is measured. This dependence
can be illustrated for the hole system without the hole-phonon interactions.
For such a system we have only the hopping of the hole within the finite trap
system with a finite number of sites (base pairs). The corresponding hopping
Hamiltonian of the trap takes the form

Htrap =
Nt∑

n=1

ε c†ncn − t
∑

i

[
c†ncn+1 + h.c.

]
. (5.30)

Assuming zero boundary conditions at the ends of the trap, i.e. deep trap
approximation, we can easily find the hole wave functions within the trap as

ΨK(n) = sin
(

πK

Nt+1
n

)
, (5.31)

where K = 1, . . . , Nt. It is easy to check that the functions ΨK(n) satisfy
the boundary conditions ΨK(n = 0) = ΨK(n = Nt+1) = 0. The energy
corresponding to the state ΨK is εK = −2t cos(πK/(Nt+1)). Therefore, for
a finite trap with Nt sites there areNt energy levels within the trap. Generally,
if we measure the transverse tunneling current then we should expect Nt steps
in the I–V dependence, where each step corresponds to a single energy level.
This is not the case when the tunneling occurs through a single base pair
because then the contribution to the tunneling current of the Kth state will
be proportional to sin2 (πKn0/(Nt+1)). If this coefficient is zero then there is
no contribution of the corresponding state and the step related to this state
will be suppressed. For example, for Nt = 2 and 4 and for any positions of the
tunneling site, n0, there are always Nt steps in the I–V dependence. A more
interesting structure is expected for Nt = 3 and 5. It is easy to see that for
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Nt = 3 there are three steps for n0 = 1 and two steps for n0 = 2 since in the
last case the contribution from K = 2 will be suppressed. Similarly, we can
find that for Nt = 5 and for n0 = 1 there are 5 steps in the I–V dependence,
while for n0 = 2 and 3 there are 4 and 3 steps, respectively. The position of
all the steps in the I–V dependence will determine the energy structure of the
trap. If we take into account the hole-phonon interaction then an additional
scale in the energy spectra of the trap system and an additional structure in
the I–V dependence due to the phonons should be expected.

The energy spectra of the hole-phonon quantum system, described by the
Hamiltonian Htrap can be found only numerically. To find the eigenfunctions
and eigenvalues of a single-hole trap system we make the system finite by
introducing limitations on the total number of phonons [94]

∑
i nph,i ≤ 10,

where nph,i is the number of phonons on site i. The energy spectra of a trap
system without a hole can be easily found. In this case the Hamiltonian Htrap

is just the Hamiltonian of free phonons at each site of the trap, so the energy
of the trap system is just the sum of the energy of all phonons present in the
system.

After we derive the energy spectra of the DNA Hamiltonian (5.22) without
holes and with a single hole in the trap we solve the system of linear equations
(5.25)–(5.26) for a given bias voltage to find the probabilities P1,p and P0,m.
Then we substitute this solution into (5.29) to find the stationary tunneling
current under a given bias voltage. We have calculated the current (5.29)
as a function of Vsd for different values of on-site energy, ε, which can be
changed by the gate voltage or by doping. By varying Vsd we are keeping the
on-site energy ε the same and vary the chemical potentials of the leads as
μL = Vsd/2 and μR = −Vsd/2.

There are five dimensionless parameters which characterize the I–V de-
pendence: the nonadiabaticity parameter [95] γ = �ω/t, with a typical value
of ∼ 0.01–0.5 for DNA, the canonical hole-phonon coupling constant [95]
λ = χ2/(2�ωt) which is ∼ 0.2–1 for DNA, dimensionless bias voltage Vsd/t,
on-site energy ε/t, and the ratio of the relaxation time and the tunneling
time τΓ0.

The calculations have been performed for Nt = 2 and Nt = 3, i.e., for
2 and 3 base pairs in the trap. The example of such a system could be
the guanine hole traps: GG and GGG spots surrounded by adenines. In all
the calculations we kept the ratio of the relaxation and the tunneling time
equal to 1 (τΓ0 = 1), i.e., the hole-phonon system in the trap is not in the
equilibrium. Different values of τΓ0, ranging from τΓ0 � 1 (equilibrium case)
to τΓ0 � 1 (nonequilibrium case) do not modify qualitatively the behavior
of the I–V curve. The phonon steps in the I–V dependence can be seen only
when the temperature is less than the phonon frequency. In our calculations
the temperature is equal to 0.01t.

In Fig. 5.7, our results are shown for two base pairs (sites) in the trap.
The tunneling occurs through one of the sites, n0 = 1. For an uncoupled
hole-phonon system the I–V dependence has two steps corresponding to two
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Fig. 5.7. a–d. Current vs the source-drain voltage shown for two base pairs in the
trap (Nt = 2) and different values of phonon frequency and hole-phonon interaction
strength: a γ = 0.1, λ = 0.5; b γ = 0.1, λ = 1.0; c γ = 0.2, λ = 0.5; d γ = 0.2,
λ = 1.0. Solid line corresponds to ε = 1.3t while the dashed line is for ε = 2.7

single-hole energy levels. The distance between the steps is δVsd = 2t. For
a small hole-phonon coupling constant λ = 0.5 (Fig. 5.7a,c), the additional
structures of width δVsd � �ω due to the phonon sidebands appear only
at the first step and the second step can still be clearly distinguished. At
the same time for a large gate voltage (large on-site energy ε), the phonon
steps are suppressed and the I–V structure becomes similar to that of a zero-
coupling strength, which is shown in Fig. 5.7a,c by dashed lines. For a strong
hole-phonon interaction (λ = 1), the phonon steps suppress the steps due to
inter-site hopping within the trap (Fig. 5.7b,d). This suppression becomes
stronger for a larger non-parabolicity γ, which is illustrated in Fig. 5.7b,d by
a solid line for γ = 0.1 and γ = 0.2. With increasing gate voltage the phonon
steps disappear and the I–V dependence shows a clear two-step structure.

The origin of such a suppression of the phonon steps can be understood
by considering the case of a very short relaxation time. If the relaxation time
is much smaller than the tunneling time, then before tunneling the hole-
phonon system is in equilibrium. At low temperatures this means that the
system will be at the ground state, i.e., without any phonons if there are
no holes in the trap and in the polaronic state when there is one hole. The
tunneling current through the trap can be considered as a two-step process:
the tunneling from the left contact into the trap and the tunneling from
the trap into the right contact. Since we consider only the states with no
more than one hole in the trap then the tunneling from the left contact will
be tunneling to the state without any phonons. The final state after the
tunneling will be the state of a single hole-phonon system. The condition of
the tunneling is that the energy of the hole in the left contact is equal to
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the energy of a single hole-phonon system, which can be either in the ground
state or in the excited states. Since the tunneling rate is proportional to the
overlap of the hole-phonon trap state, the state without any phonons and
the hole in the n0 site (see (5.28)), the tunneling occurs only into two states
of the coupled hole-phonon system. These states are polaronic states of the
hole-phonon system originated from a single hole state of the trap system
without hole-phonon coupling. Therefore, the tunneling from the left contact
will probe only a single-hole state, i.e. it results into a two-step structure due
to hole-hopping in the I–V dependence.

Tunneling to the right contact is from the ground state of the coupled
hole-phonon system. After the tunneling the trap system is just the phonon
system, which can be either in the ground state or in the excited states. The
energy conservation during the tunneling (see (5.27)) means that the energy
of the ground state of the hole-phonon system is equal to the energy of the
hole in the right contact plus the energy of the phonon state in the trap.
Therefore, the tunneling from the trap into the right contact should produce
the phonon steps in the I–V dependence.

Finally, tunneling from the left contact into the trap results in steps in
the I–V dependence due to hole-hopping between the sites of the trap, while
the tunneling from the trap into the right contact produces the steps due to
the phonons. If the gate voltage or the on-site energy is increased, then when
the tunneling from the left contact into the traps is allowed, the chemical
potential of the right contact will be low enough. This means that after the
tunneling, the trap system can be left in the state with many phonons. In
terms of the phonon steps this means that the steps will be suppressed.

From Fig. 5.7, we can conclude that for typical parameters of the DNA
structure the hopping integral between the sites within the DNA traps and
phonon frequency which determine the energetics of the hole-phonon trap
system, can be found from the dependence of the tunneling current on Vsd.
From a small gate voltage, the phonon frequency can be found from the I–V
curve, while for a larger gate voltage, the hopping integral can be obtained.

The I–V curve should show even richer structure for a larger number of
sites in the trap. In Fig. 5.8, the current as a function of the bias voltage
is shown for Nt = 3 sites. In this case, the tunneling is possible through
the sites n0 = 1 and n0 = 2. For an uncoupled hole-phonon system, the
I–V curve shows three steps for n0 = 1 (dotted line in Fig. 5.8a), and two
steps for n0 = 2 (dotted line in Fig. 5.8b). This means that for n0 = 2,
only two states have non-zero amplitude at n = 2 and they contribute to the
tunneling current. The finite hole-phonon coupling results in two effects: the
phonon steps in the I–V dependence similar to a two-site trap (Fig. 5.7), and
the polaronic effect which redistributes the hole density along the trap and
increases or decreases the tunneling current.

For a small hole-phonon coupling (λ = 0.5), the phonon steps are seen only
at the first hopping step (Fig. 5.8a,b (solid lines)). The separation between
the steps is the phonon frequency. Similar to Fig. 5.7, an increase of the gate
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Fig. 5.8. a–d. Current vs the source-drain voltage shown for three base pairs in
the trap (Nt = 3) and γ = 0.2, but for different tunneling points n0 and for different
values of hole-phonon interaction strength: a n0 = 1: λ = 0.5 and ε = 1.7t (solid
line), λ = 0.5 and ε = 3.0t (dashed line), λ = 0 and ε = 1.7t (dotted line); b i0 = 2:
λ = 0.5 and ε = 1.7t (solid line), λ = 0.5 and ε = 3.0t (dashed line), and λ = 0,
ε = 1.7t (dotted line); c i0 = 1: λ = 1 and ε = 1.7t (solid line), ε = 3.0t (dashed
line), d i0 = 2: λ = 1 and ε = 1.7t (solid line), ε = 3.0t (dashed line)

voltage (the on-site energy) suppresses the phonon steps and the I–V curve
becomes similar in structure to the uncoupled case (Fig. 5.8a,b, dashed lines).
The main difference between the coupled and the uncoupled systems is the
different amplitude of the steps. This difference is due to the redistribution
of the hole within the trap due to the interaction with the phonons. This
results in a suppression of the tunneling current when the tunneling occurs
through the site n0 = 1 and enhancement of the tunneling current for n0 = 2
(Fig. 5.8a,b). Therefore, the interaction with the phonons or the polaronic
effect increases the probability for the hole to occupy the site n = 2.

For a larger hole-phonon coupling (λ = 1), the steps due to the hole-
hopping almost completely disappear for n0 = 1 (Fig. 5.8c, solid line),
but some structure is still visible for n0 = 2 (Fig. 5.8d, solid line). As we
mentioned above, with increasing gate voltage the phonon steps should be
suppressed and the I–V structure should clearly show the steps due to the
hole hopping between the sites of the trap. This behavior is illustrated in
Fig. 5.8c,d by dashed lines.

To illustrate the polaronic effects due to the hole-phonon coupling which
is clearly seen in Fig. 5.8, we have calculated the density of holes and the
average number of phonons within the traps for different strengths of the hole-
phonon interaction. The results are shown in Fig. 5.9. With increasing hole-
phonon interaction, the hole states become more localized at the center of
the trap (see Fig. 5.9), i.e. we observe the polaronic effect in the trap system.



104 Apalkov, Wang, Chakraborty

Fig. 5.9. a,b. The average number of holes (a) and the average number of
phonons (b) for a single-hole system in a GGG trap, shown as a function of the
base index. Dots and triangles corresponds to the hole-phonon interaction strength
λ = 1.0 and 0.5, respectively

Localization of the hole at the center of the trap results in an increase of the
tunneling current for tunneling through the central site of the trap n0 = 2
(see Fig. 5.8b,d), and a decrease of the tunneling current through n0 = 1
(see Fig. 5.8a,c). In addition to the changes to the tunneling current, the
polaronic effect also modifies the structure of the I–V curve. This can be seen
in Fig. 5.8a, where increasing the hole-phonon interaction, the third step due
to the hole hopping disappears. Therefore, in the hole-phonon coupled system
with Nt = 3, only two steps due to the hole hopping can be clearly seen in
the I–V dependence at a large gate voltage.

5.7.3 Bipolaron Formation in a DNA Molecule

In the previous subsections, we disregarded the Coulomb blockade, the effects
related to the hole-hole interactions. Therefore, we assumed the trap system
can be occupied only by a single hole. This assumption is valid as long as
the repulsion between the holes is quite strong. The specific feature of the
hole-phonon system is that the repulsion between the holes can be strongly
suppressed in such systems and might even result in an effective attraction
between the holes. If there is an attraction between the holes then the trap
with the two holes should have a lower energy than the trap with a single
hole. Such energetics should modify the I–V dependence of the transverse
tunneling current. To study this problem, we first analyze the condition of
the trapping of two holes by the trapping spots, such as a GG, GGG, or
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GGGG. The formation of the bound state of two holes trapped by the G-
sites is analogous to bipolaron formation in the homogeneous one-dimensional
system [96].

To write the Hamiltonian of a many-hole system within a trap, we need
to add to the single-particle Hamiltonian (5.22) the term which describes the
Coulomb interaction between the holes. Therefore, now the Hamiltonian of
the hole system within a trap consists of three parts: (i) the tight-binding
Hamiltonian which includes the hole-hopping between the nearest base pairs
and the on-site energies of a hole, (ii) the hole-hole interaction Hamiltonian,
and (iii) the Holstein’s phonon Hamiltonian with the diagonal hole-phonon
interaction [78]

Htrap = Ht + Hi + Hph , (5.32)

with

Ht =
∑

i,σ

εic
†
i,σci,σ − t

∑

i,σ

[
c†i,σci+1,σ + h.c.

]
, (5.33)

Hi =
∑

i,j,σ

Vi,jni,σnj,−σ +
∑

i,j �=i,σ

Vi,jni,σnj,σ , (5.34)

Hph = �ω
∑

i

b†ibi + χ
∑

i,σ

c†i,σci,σ

(
b†i + bi

)
, (5.35)

where ci,σ is the annihilation operator of a hole with spin σ on site i, and
ni,σ = c†i,σci,σ. The Hamiltonian (5.21) without the phonon part Hph was
studied for a homogeneous system in [34].

In the tight-binding Hamiltonian (5.33), we assume that the site i can be
either an adenine or a guanine. We then take the on-site energy of the hole
at adenine (A) site as the zero energy, i.e. εA = 0, and the on-site energy
of the hole at the guanine (G) site to be negative, εG = −ΔGA < 0. In the
interaction Hamiltonian Hi, we take into account only the Hartree interaction
between the holes. The first term in (5.34) describes the repulsion between the
two holes with different spin. The holes can then occupy the same site. The
second term in (5.34) corresponds to the repulsion between the two holes with
the same spin. To get the basic idea about the typical range of the interaction
parameters resulting in the formation of a bound state of two holes within the
region of the G-trap, we introduce a single-parameter interaction potential
of the form

Vi,j = V0

[
(i− j)2 + 1

] 1
2 , (5.36)

where V0 is the on-site repulsion between the two holes. The form of the
interaction potential, Vi,j , (5.36) takes into account the finite spreading of
the hole on-site wave function. This spreading is about the distance between
the nearest base pairs. Although the actual dependence of the interaction
potential on the separation between the holes is more complicated [97] than
(5.36), this difference is not important for our analysis since only the on-site
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interaction plays the main role in the formation of the bound state of two
holes [98].

Similar to the analysis in the previous subsection, we include in the hole-
phonon Hamiltonian only the optical phonons with diagonal hole-phonon
interaction, and do not take into account the acoustic phonons which results
in non-diagonal hole-phonon interaction [99, 100], i.e. modify the tunneling
integral. In (5.33)–(5.35), we also assumed that the hopping integral t, the
phonon frequency ω, and the hole-phonon coupling constant χ, do not depend
on the specific type of the base pairs (A or G).

The form of the total Hamiltonian, (5.32)–(5.35), leads to four dimen-
sionless parameters which characterize the system: the nonadiabaticity pa-
rameter [95] γ = �ω/t, the canonical hole-phonon coupling constant [95]
λ = χ2/(2�ωt), dimensionless hole-hole interaction strength V0/t, and the
dimensionless difference between on-site energies of G and A, δGA = ΔGA/t.

We determine the eigenfunctions and eigenvectors of the hole-phonon sys-
tem numerically by exactly diagonalizing the Hamiltonian (5.32)–(5.35) for
a finite size system consisting of six base pairs (sites). We also introduce
limitations on the total number of phonons [94],

∑
i nph,i ≤ Nmax. To com-

pare the energy spectrum of the systems with different number of holes, we
keep the maximum number of phonons per hole the same for all the sys-
tems. Therefore, for the two-hole system the maximum number of phonons
is Nmax = 16 and for the one-hole system Nmax = 8.

Our finite size system contains six sites which are originally adenines. We
then introduce the G-traps with a different number NG of guanines, G, GG,
GGG, and GGGG, in the middle of the system. For example the system with
two guanines is AAGGAA. For different traps we calculate the energy of the
ground state of the systems with one and two holes. There are different ways
to define the bound state of two holes within the trap. The first one is based
on the analysis of the hole density distribution within the trap. When the
two holes occupy the same site then we can tell that this is the bound state
of the two-hole system. The second one is based on energetics of the two-hole
system. Denoting the corresponding energies of the hole system as E1,NG (for
the one-hole system with NG guanines) and E2,NG (for the two-hole system
with NG guanines), we can write the energetic condition that the trap with
NG guanines will accommodate two holes as

E2,NG < E1,NG + E1,1 (5.37)

or
E2,NG < E1,NG + E1,NG . (5.38)

The meaning of the first condition (5.37) is as follows [101]: If the two holes
are injected initially into the single guanine traps (NG = 1) of the DNA and
then one of the holes is trapped by the NG trap, then the condition (5.37)
means that the second hole will also be trapped by the same NG trap. This
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condition corresponds to the experimental realization of the injection of the
holes into the DNA molecule.

The second condition (5.38) is relevant to the transverse tunneling ex-
periments. This condition actually means that if the first hole tunnels into
the trap system then the second hole can also tunnel into the same trap
system, i.e. the energy of a two-hole system is less than twice the energy of
a single-hole system.

Since we are interested in the transverse tunneling current, we concentrate
below on the condition (5.38) for the bound state of two holes. The condition
(5.38) will determine the critical value of the hole-hole interaction strength,
V cr

0 . That means for V0 < V cr
0 two holes will be trapped by the same trap

with NG guanines. For V0 > V cr
0 such a trapping is energetically unfavorable.

For our investigation of the system (5.21)–(5.24), we consider the following
typical DNA parameters: 0.1 eV < t < 0.3 eV, 0.1 eV < ΔGA < 0.5 [102,103],
0.05 eV < �ω < 0.1 eV. For the dimensionless canonical hole-phonon coupling
constant we have taken the value λ = 1. For this coupling constant, the size
of the polaron is about 2–3 base pairs. Our calculations show that the critical
value V cr

0 is very small (V cr
0 ≈ 0.1 eV) when two holes have the same spin and

they can not occupy the same site. This small value of V cr
0 also illustrates the

fact that the phonon mediated attraction between the holes is largest when
the holes occupy the same site. Therefore, in what follows we shall consider
only the case of two holes with opposite spin.

In Fig. 5.10, the ground state energy of a single hole is plotted as a function
of the hole-phonon coupling constant, λ, for different types of traps. For
λ ≈ 1, the difference between the bound state of a hole in G and GG traps
is about 0.03 eV, which is smaller than the value (0.05 eV) obtained in [104].
The size of the polaron in our calculations is 2–3 base pairs depending on the
values of t and ω.

Following the condition (5.38), we need to compare the energy of a single-
hole system with the energy of a two-hole system. In Fig. 5.11, the ground
state energy E2,NG of two holes bound in a single trap is plotted for NG = 3

Fig. 5.10. The ground state energy of a single hole in a trap containing NG guanines
is shown as a function of the hole-phonon coupling constant, λ at t = 0.2 eV and
ΔGA = 0.3 eV. The numbers next to the lines are the number of guanines in the
trap
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Fig. 5.11. a,b. Ground state energy of two holes in the trap containing NG = 3
guanines (a) and NG = 4 guanines (b) as a function of the inter-hole interaction
strength, V0, for ΔGA = 0.3 eV (solid line) and ΔGA = 0.5 eV (dashed line)

(Fig. 5.11a) and for NG = 4 (Fig. 5.11b) as a function of the hole-hole
interaction strength for different values of ΔGA and t. Here we notice that at
some critical value V b

0 of the hole-hole interaction strength, there is a change
of slope in the E2,NG(V0) dependence. This critical value corresponds to the
condition that the two holes are bound in the G-traps, forming a bipolaron.
The bound state in this case means that the holes are at the same site of
the trap. The illustration of this fact is given in Fig. 5.12. In Fig. 5.12a the
average number of holes, 〈nh〉 = 〈ni,σ〉+〈ni,−σ〉, is shown as a function of the
base pair index for a GGGG trap and two different values of the hole-hole
interaction strength, V0. It is clearly seen that for V0 = 0.8 eV < V b

0 , the two
holes are almost at the same G sites, while at V0 = 1.2 eV > V b

0 the holes are
away from each other. The corresponding distribution of the average number
of phonons 〈nph〉, is shown in Fig. 5.12b.

Another critical value of V0 is introduced by the equation (5.38). The
competition between 2E1,NG and E2,NG is illustrated in Fig. 5.13. Comparing
the energies 2E1,NG and E2,NG for λ = 1 and different values of t, ΔGA,
and ω, one can determine V cr

0 . The result is summarized in Table 5.1 for the
GGGG trap. The corresponding results for the GGG trap gives about 0.1 eV
smaller values for V cr

0 . The dimensionless parameters, γ, δGA, and V cr
0 /t,

are also given in Table 5.1. From these data we can conclude that within
the present range of parameters the dependence of V cr

0 on ΔGA is weak, and
V cr

0 /t depends mainly on γ. This dependence can be approximated by a linear
function as

V cr
0 ≈ 2.3γt+ 1.6t ≈ 2.33�ω + 1.6t . (5.39)
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Fig. 5.12. a,b. The average number of holes (a) and the average number of
phonons (b) for a two hole system in a GGGG trap are shown as a function of
the base index. The tunneling integral is t = 0.3 eV and the hole-phonon cou-
pling is λ = 1. Dots and triangles corresponds to inter-hole interaction strength
V0 = 0.8 eV and 1.2 eV respectively

Table 5.1. Calculated values of V cr
0 for various values of the dimensionless DNA

parameters

t (eV) �ω (eV) ΔGA (eV) V cr
0 (eV) γ δGA V cr

0 /t

0.1 0.1 0.1 0.38 1.00 1.00 3.8
0.1 0.1 0.3 0.41 1.00 3.00 4.1
0.1 0.1 0.5 0.43 1.00 5.00 4.3
0.1 0.05 0.1 0.32 0.50 1.00 3.2
0.2 0.1 0.1 0.48 0.50 0.50 2.4
0.2 0.1 0.3 0.56 0.50 1.50 2.8
0.2 0.1 0.5 0.58 0.50 2.50 2.9
0.3 0.1 0.1 0.78 0.33 0.33 2.6
0.3 0.1 0.3 0.75 0.33 1.00 2.5
0.3 0.1 0.5 0.80 0.33 1.67 2.7
0.3 0.05 0.3 0.54 0.17 1.00 1.8
0.3 0.05 0.5 0.58 0.17 1.67 1.9

The condition (5.37) of formation of the bound state of two holes within
the guanine traps gives the higher [101] critical values of the on-site hole-hole
repulsion potential, V cr

0 , by approximately 0.3 eV.
We see from these data that depending on the parameters of DNA, the

critical hole-hole interaction strength V cr
0 can range from 0.3 eV to 0.8 eV.
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Fig. 5.13. Energies 2E1,4 and E2,4 of a two-hole system are shown as a function of
hole-phonon coupling, λ, by dashed and solid lines, respectively. Tunneling integral
is t = 0.3 eV and ΔGA = 0.3 eV

Numerical analysis of the electron correlations in different types of DNA [97]
shows that the hole-hole interaction strength is around 0.9 eV for A-DNA
and 1.5 eV for B-DNA. Additional suppression of the inter-hole interaction
by a factor of ≈ 0.7 [77] can occur for DNA in solution, when hole-hole
interaction is screened by polar solvent molecules and mobile counterions.
Under this condition trapping of two holes by GGG and GGGG traps would
be possible. Formation of the bound state of two holes at the G-traps re-
quires also a strong hole-phonon interaction, which should overcome the
hole-hole Coulomb repulsion. In our calculations, the hole-phonon coupling
constant was λ = 1 which is larger than the experimentally reported λ ≈ 0.2
in Ref. [105]. Hence, experimental observation of the two-hole bound state
should give an additional estimate for the strength of hole-phonon inter-
action.

5.7.4 Pair Tunneling

Experimental observation of the bipolaron formation within the DNA traps
should provide additional information about the internal parameters of the
DNA molecule, such as the hole-hole repulsion strength, the hole-phonon
coupling constant and others. In this section, we discuss the possible mani-
festation of the bipolaron in the transverse tunneling experiments. We show
below that the presence of a bound state of two holes results in the specific
I–V dependence of the tunneling current.

Formation of the bound state of two holes within the guanine trap means
that the energy of the two holes in the trap is less than the energy of a single
hole. This fact results in a modification of the I–V dependence of the tunneling
current. Indeed, since there is energy conservation during the tunneling the
energy of the hole in the contact should be equal to the energy of the hole in
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the trap. This means that if the bipolaron has a lower energy than a single
hole, then the tunneling of two holes [106] simultaneously becomes more
energetically favorable than the tunneling of a single hole.

To illustrate the manifestation of pair tunneling in the transverse tunnel-
ing experiments, we consider below a simple model. In this model, we assume
that there is no phonon in the system, but there is an effective attraction be-
tween the holes, i.e. the energy of two holes is less then the energy of a single
hole in the trap. We will also concentrate only on the competition between
the contributions of the two-hole states and a single-hole state into the tun-
neling current and assume that the trap system has a single two-hole level
and a single one-hole level. In this case the corresponding rate equations take
the form

dP0

dt
= − (W0→1 + W0→2)P0 + W1→0P1 + W2→0P2

dP1

dt
= W0→1P0 − (W1→0 + W1→2)P1 + W2→1P2 (5.40)

dP2

dt
= W0→2P0 + W1→2P1 − (W2→1 + W2→0)P2 ,

where P0, P1, and P2 are the probability that there are no holes, one hole,
and two holes in the trap, respectively. These probabilities should also satisfy
the normalization condition P0 + P1 + P2 = 1. The transition rates in the
system of linear equations (5.40) can be written as

W1→0 = Γ1 [1 − fL(E1) + 1 − fR(E1)]
W0→1 = Γ1 [fL(E1) + fR(E1)]
W1→2 = Γ1 [fL(E2 − E1) + fR(E2 − E1)]
W2→1 = Γ1 [1 − fL(E2 − E1) + 1 − fR(E2 − E1)]

W2→0 = Γ2

∑

i,j

{[1 − fL(εi)] [1 − fL(εj)]

+ [1 − fR(εi)] [1 − fR(εj)]

+ [1 − fL(εi)] [1 − fR(εj)]} δ
(
εi + εj − E2

)

W0→2 = Γ2

∑

i,j

{
fL(εi)fL(εj)+

fR(εi)fR(εj)fL(εi)fR(εj)
}
δ
(
εi + εj − E2

)
,

where Γ1 and Γ2 are the tunneling rates for one- and two-hole tunneling, and
E1 and E2 are the energies of one hole and two hole systems, respectively.
Here the energy E2 takes into account the interaction between the holes
and can be expressed in terms of the bound energy, ΔB, of two holes as
E2 = 2E1−ΔB. When the ground state of the two hole system is a bipolaron
then ΔB > 0, otherwise ΔB < 0.
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We can see from the expression for the transition rates that the specific
feature of the pair tunneling is the presence of the sum over the hole states in
the contacts. This sum should modify the dependence of the transition rates
on the chemical potentials of the contacts and, correspondingly, on the bias
voltage. If we assume that the density of states of the hole in the contacts is
constant, then the transition rate corresponding to the tunneling of a single
hole from the contact into the trap will not depend on the chemical potential.
The transition rate corresponding to the tunneling of two holes from the
same contact into the trap will be proportional to the chemical potential,
i.e., ∝ (2μs − E2), while the transition rate of the two hole tunneling from
different contacts will not depend on the chemical potential of the contacts.
The dependence of the transition rates on the chemical potential and the bias
voltage results in the special structure of I–V characteristics for the systems
with pair tunneling.

Under the given bias and gate voltages, the stationary solution of the lin-
ear system of equations (5.40) can be found and the corresponding tunneling
current can be calculated from the following expression

I = [WR,1→0 −WR,1→2]P1 + 2WR,2→0P2 − [WR,0→1 + WR,0→2]P0 . (5.41)

The I–V characteristics has been found for different gate voltages and
different ratios Γ2/Γ1. Since the tunneling rate Γ2 corresponds to the pair
tunneling it is smaller than Γ1. Below we assume that at zero bias and zero
gate voltage, the chemical potentials of the contacts coincide with the energy
level of a single hole in the trap, i.e. E1. In this case it is convenient to
measure the bias voltage and the gate voltage in the units of ΔB = 2E1−E2.
The results of the calculations are shown in Figs. 5.14 and 5.15 for ΔB > 0
and ΔB < 0, respectively. For a positive ΔB, i.e. when the bound state of

Fig. 5.14. Current vs bias voltage is shown for ΔB > 0 and for different values of
ratio Γ2/Γ1. The gate voltage is 0.2ΔB and the temperature is 0.01ΔB . The ground
state of the trap is the bound state of two holes
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Fig. 5.15. Current vs bias voltage is shown for ΔB < 0 and for different values of
ratio Γ2/Γ1. The gate voltage is 0.2ΔB and the temperature is 0.01ΔB. The ground
state of the trap is a single-hole state

two holes has the lower energy than a single-hole state, the I–V structure has
a clear linear dependence on the bias voltage within the whole region of the
parameters (Fig. 5.14). There are two steps in the I–V dependence, where
each step corresponds to the opening of an additional channel for tunneling.
In what follows, we analyze these channels in more detail. The variation
of Γ2/Γ1 has a strong effect on the I–V curve. With decreasing Γ2/Γ1, the
contribution of the pair tunneling becomes suppressed and at a very small
Γ2/Γ1 only a single step due to a single-hole tunneling can be seen in the I–V
dependence.

The behavior of the I–V dependence becomes very different at ΔB < 0
(Fig. 5.15). In this case we also have two steps. Now the first step is due
to a single-hole tunneling, while the second step is due to a combination of
pair tunneling and a single-hole tunneling. At a high bias voltage, i.e. within
a second step, we can see the linear dependence in the I–V characteristics,
which is a specific feature of the pair tunneling of the holes. With a decrease
of the ratio Γ2/Γ1, the pair tunneling and correspondingly, the linear depen-
dence becomes suppressed, but still the structure has the two steps. Now the
second step is entirely due to a single-hole tunneling and is a manifestation
of the Coulomb blockade.

The origin of the different steps at ΔB > 0 is analyzed in Fig. 5.16, where
the occupations of the levels of the traps are shown as a function of bias
voltage. The gate voltage is Vg = 0.2ΔB and at the zero bias voltage, the
trap is occupied by two holes. With an increase of the bias voltage, tunneling
to the left contact becomes allowed and we can see the linear dependence of
the tunneling current on the bias voltage. The trap is partially occupied by
two holes, and only the pair-tunneling contributes to the tunneling current.
With an additional increase of the bias voltage, the Fermi level of the right
contact becomes equal to the energy of a single-hole state in the trap and
the tunneling of a single hole becomes energetically allowed. These results in
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Fig. 5.16. a Current vs the bias voltage, shown for ΔB > 0, Γ2/Γ1 = 0.1, and gate
voltage Vg = 0.2ΔB. b The corresponding probabilities, P0, P1, and P2, are shown
as a function of the bias voltage. The ground state of an isolated trap is the bound
state of two holes

the first step of the I–V curve. Within this region we have the pair-tunneling
and a single-hole tunneling to the empty trap or from the trap occupied
by a single hole. The origin of the second step at a higher bias voltage is
the opening of an additional channel for tunneling: the single-hole tunneling

Fig. 5.17. Current vs bias voltage is shown for ΔB > 0 and for different values
of gate voltage Vg. The ratio of the pair tunneling rate and a single-hole tunneling
rate is Γ2/Γ1 = 0.1. The temperature is 0.01ΔB . The ground state of the trap is
the bound state of two holes
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from the two-hole state in the trap. Finally, the shape of the I–V curve
is determined by the following three channels of tunneling: pair tunneling,
a single-hole tunneling to the empty trap or from a single-hole state of the
trap, and a single-hole tunneling from the two-hole state of the trap or to
a single-hole state of the trap. The opening of different channels depends on
the gate voltage. Therefore, by variation of the gate voltage we can modify the
I–V structure of the tunneling current through the DNA trap. In Fig. 5.17,
different possible I–V dependencies are shown at different gate voltages. At
small and high gate voltages there is only a single step in the I–V curve, while
at an intermediate gate voltage there are two steps.

5.8 Summary

Many experimental measurements of charge migration along DNA have been
carried out in the last decade, especially after the direct measurement of
DNA conductance became available. The apparently diverse conclusions ex-
tracted from different experiments have made it imperative to initiate system-
atical and comprehensive theoretical efforts for fundamental understanding
of the underlying mechanisms for the charge transfer in DNA. One focus
of these efforts is the mechanistic understanding of the observed weak dis-
tance dependence of charge transfer along a DNA with the specific sequence:
(G:C)(T:A)M(G:C)3. Previously, thermally-induced hopping mechanism was
invoked to explain it by many authors. In this mechanism, strong dephas-
ing effects is assumed to introduce phase incoherence in the spatial scale of
a nanometer. We have proposed that the phase coherence is maintained in
the nano-scale of distance in DNA but the two-stranded geometry plays an
important role in the weak distance dependence. In other words, the distance
dependence is a geometrical characteristic of the quantum transport rather
than a trivial property of the classical transport. Within this framework,
a quantitative analysis based on the multichannel superexchange mechanism
successfully explains the main feature of the experimental result and makes
some predictions for future experiments. In the existing experiment, a crit-
ical number Mc = 3 is observed when the crossover from strong to weak
distance dependence occurs. For the multichannel superexchange mechanism,
this crossover number depends on the ratio of the intra- to interstrand cou-
pling parameter in DNA. A crossover number different from three may be
observed in other experiments.

The experimental analysis of the transverse transport through a DNA
trap can provide additional information about the parameters of the DNA
molecule. The dependence of the tunneling current on the applied bias voltage
has a staircase structure. The shape of the structure can be changed by
applying the gate voltage to the trap. If the repulsion between the holes
within the trap is strong then the main mechanism of tunneling is a single-
hole tunneling. In this case, the staircase structure of the I–V dependence has
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two types of steps: the first one is due to the hole hopping between the sites
of the trap, while the second one is due to hole-optical phonon interactions,
i.e. the phonon sidebands. At a small gate voltage, both types of steps are
present in the I–V dependence and the phonon frequency can be extracted
from the I–V curve. At a large gate voltage, the phonon steps become strongly
suppressed and the steps due to hole hopping can be clearly seen in the I–V
dependence. In this case the width of the steps gives the value of the hopping
integral between the sites of the trap.

The transverse tunneling measurements can also be used to analyze the
possibility for formation of the bipolaron, i.e. the bound state of the two holes
(polarons), within the DNA trap. If the bound state of two holes has a lower
energy than a single-hole state then the main contribution to the tunneling
current at a low bias voltage comes from the pair tunneling of two holes.
This tunneling process results in a specific dependence of the tunneling rate
on the bias voltage. As a result of this dependence the I–V curve in the case of
a bipolaron formation can be distinguished from the I–V curve corresponding
to a single-hole tunneling.

Acknowledgement. This work has been supported by the Canada Research Chair
Program and a Canadian Foundation for Innovation (CFI) Grant.

References

1. K.B. Beckman and B.N. Ames, J. Biol. Chem. 272, 19633 (1997); S. Loft and
H.E. Poulsen, J. Mol. Med. 74, 297 (1996); A.P. Grollman and M. Moriya,
Trends in Genetics 9, 246 (1993); C.J. Burrows and J.G. Muller, Chem. Rev.
98, 1109 (1998).

2. E. Braun and K. Keren, Adv. Phys. 53, 441 (2004).
3. C. Dekker and M.A. Ratner, Phys. World 14, (8), 29 (2001).
4. J. Lagerqvist, M. Zwolak and M. Di Ventra, Nano Letters 6, 779 (2006).
5. M. Xu, R.G. Endres and Y. Arakawa, Chapter 9, this volume.
6. M. Zwolak and M. Di Ventra, Nano Letters 5, 421 (2005).
7. K.F. Herzfeld, J. Chem. Phys. 10, 508 (1942).
8. J. Ladik, Acta Phys. Acad. Sci. Hung. 11, 239 (1960).
9. D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 58, 411 (1962).

10. K.V. Mikkelsen and M. A. Ratner, Chem. Rev. 87, 113 (1987); M.D. Newton,
Chem. Rev. 91, 767 (1991).

11. R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
12. D.N. Beratan, J. Betts and J.N. Onuchic, Science 252, 1285 (1991); J. Evenson,

M. Karplus, Science 262, 1247 (1993); S. Steenken, S.V. Jovanovic, J. Am.
Chem. Soc. 119, 617 (1997); S.O. Kelley and J.K. Barton, Chem. Biol. 5,
413 (1998); M. Ratner, Nature 397, 480 (1999); E. Boone and G.B. Schuster,
Nucleic Acids Res. 30, 830 (2002); D.M. Adams, et al., J. Phys. Chem. B 107,
6668 (2003).



5 Charge Migration Through DNA 117

13. R.G. Endres, D.L. Cox and R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004).
14. G.B. Schuster (Ed.), Long-range charge transfer in DNA, Springer-Verlag,

Berlin Heidlberg, (2004).
15. J. Jortner and M. Bixon, (Eds.), Electron transfer: from isolated molecules to

biomolecules, Part Two, John Wiley & Sons, Inc., (1999).
16. D. DeVault, Quantum-mechanical tunnelling in biological systems, 2nd ed.,

Cambridge University Press, (1984).
17. G. Fischer, Vibronic Coupling, Academic Press, (1984).
18. C.R. Calladine, H.R. Drew, B.F. Luisi and A.A. Travers, Understanding DNA

(Elsevier, London, 2004); J.D. Watson, et al., Molecular Biology of the Gene,
(Benjamin Cummings, San Francisco, 2004), 5th edition; B. Alberts, et al.,
Molecular Biology of the Cell, (Garland Science, New York, 2002), 4th edition.

19. H. Sugiyama and I. Saito, J. Am. Chem. Soc. 118, 7063 (1996).
20. H.Y. Zhang, X.Q. Li, P. Han, X.Y. Yu and Y.J. Yan, J. Chem. Phys. 117, 4578

(2002).
21. E. Artacho, M. Machado, D. Sanchez-Portal, P. Ordejon, and J. M. Soler, Mole.

Phys. 101, 1587 (2003).
22. E. Maciá, F. Triozon and S. Roche, Phys. Rev. B 71, 113106 (2005).
23. W. Ren, J. Wang, Z.S. Ma and H. Guo, Phys. Rev. B 72, 035456 (2005).
24. S.D. Wetmore, R.J. Boyd and L.A. Eriksson, Chem. Phys. Lett. 322, 129

(2000).
25. A.A. Voityuk, J. Jortner, M. Bixon and N. Rösch, J. Chem. Phys. 104, 9740
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(2002).
57. K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt, F.D. Lewis,

Y.A. Berlin, M.A. Ratner and L.D.A. Siebbeles, J. Am. Chem. Soc. 127, 14894
(2004).

58. A.K. Felts, W.T. Pollard and R.A. Friesner, J. Phys. Chem. 99, 2929 (1995).
59. A. Okada, V. Chernyak and S. Mukamel, J. Phys. Chem. A 102, 1241 (1998).
60. W.B. Davis, M.R. Wasielewski, M.A. Ratner, V. Mujica and A. Nitzan, J. Phys.

Chem. A 101, 6158 (1997).
61. J. Yi, Phys. Rev. B 68, 193103 (2003).
62. H. Yamada, Int. J. Mod. Phys. B 18, 1697 (2004).
63. K. Iguchi, J. Phys. Soc. Jpn. 70, 593 (2001).
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