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Abstract

A system of two-dimensional electron gas in a strong magnetic ®eld exhibits a
remarkable phenomenon known as the fractional quantum Hall e�ect. Rapid
advances in experimental techniques and intense theoretical work for well over a
decade have signi®cantly contributed to our understanding of the mechanism
behind the e�ect. It is now a well established fact that electron correlations are
largely responsible for the occurrence of this phenomenon. In recent years,
theoretical and experimental investigations have revealed that those electron
correlations, which are responsible for the quantum Hall e�ect, are also the reason
for various spin transitions in the system. In this review, we systematically follow
the theoretical studies of the role spin degree of freedom play in the quantum Hall
e�ect regime and also describe several ingenious experiments reported in recent
years which are in good agreement with the emerging theoretical picture.
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1. Introduction

Discovery of the fractional quantum Hall e�ect (FQHE) in 1982 [1], only two
years after the discovery of the integer quantum Hall e�ect (IQHE) [2] opened a new
chapter in condensed matter physics which has, over all these years, enriched the
®eld with a wide variety of interesting and often unexpected phenomena [3±6] related
to electron correlations. The importance of the experimental discovery was high-
lighted with a Nobel prize for H. StoÈrmer and D. Tsui in 1998 jointly with
R. Laughlin [7±9], whose seminal work explained the initial experimental observa-
tions. This theory had a profound in¯uence on the rapid developments in our
understanding of the e�ect which subsequently followed, as it opened up the whole
®eld for exploration [10]. In this review, we will however demonstrate that it is
essential to go beyond the Laughlin approach in order to understand a very
fundamental property of the FQHE system, namely, various spin transitions at
several primary ®lling factors. From early theoretical works and the supporting
experimental evidences (old and new), it has now been well established that the states
at ¸ ˆ 2

3, ¸ ˆ 4
3, ¸ ˆ 2

5 and ¸ ˆ 8
5 begin with a spin-singlet ground state at low magnetic

®elds. As the magnetic ®eld is increased there is a rather sharp transition to a fully
spin-polarized ground state. Recent experimental results indicate that these transi-
tions are of ®rst-order type. Spin reversed states are also apparent at ¸ ˆ 3

5, the
existence of which was predicted in earlier theoretical calculations. Similarly, spin-
reversed excitations, rather than Coulomb-driven quasiparticle±quasihole excita-
tions, which are predicted to exist under suitable conditions and manifest themselves
by the linear magnetic ®eld dependence of the energy gap, are established in various
experiments as well.

In section 2, we present, in a nutshell, the early days of the development of the
FQHE and then gradually move into the domain of spin e�ects in the system. We
present a systematic picture of the developments of our understanding of the spin
degree of freedom in QHE and describe how various experiments have o�ered a clear
means to visualize these spin e�ects. A detailed account of the results of tilted-®eld
experiments at various ®lling factors is given in this section. Similarly, a detailed
theoretical picture of various spin-reversed ground states and the spin-reversed
quasiparticles is also presented.

Section 3 describes more recent experimental and theoretical results. These
include nuclear magnetic resonance, optical spectroscopy, and the observation of
novel e�ects like hysteresis, the huge longitudinal resistance maximum, etc, which
are direct re¯ections of spin transitions in the system. Spin excitations near a ®lled
Landau level, including skyrmionic excitations, are also brie¯y discussed.

The review concludes with a brief look at the open questions and theoretical
challenges which need to be faced in the near future.

T . Chakraborty960
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2. Early work

The fractional quantum Hall e�ect was experimentally realized in high-mobility
two-dimensional electron gas (2DEG) in GaAs/AlxGa1¡xAs heterostructures [1,
3±5]. It is chracterized by the fact that the Hall conductance has plateaus quantized
to certain simple fractions ¸ of the unit e2=h and at the same value of the magnetic
®eld, longitudinal resistivity shows an almost dissipationless current ¯ow. Here ¸ is a
rational fraction with an odd denominator{. Early results of the discovery are
displayed in ®gure 1. For ¸ > 1, the characteristic features of the integral QHE are
clearly visible in this ®gure{. In the extreme quantum limit, i.e. for ¸ < 1 and at low
temperatures, one observes a clear minimum in »xx and a quantized Hall plateau at
¸ ˆ 1

3. Later, in more re®ned experiments [12±14] these e�ects at several other
fractions were observed which are displayed in ®gure 2 and summarized below:

Some of the fractions have as yet shown structures in »xx only. The ®rst row of
fractions are simply ¸ ˆ p=q…2p < q†. The second row contains the fractions

¸ ˆ 1 ¡ p=q and the last row contains the other fractions ¸ ˆ 1 ‡ p=q ;

Electron spin transitions in quantum Hall systems 961

{ In fact, an even denominator fraction has also been found to exhibit the FQHE [11, 12].
{ A very lucid account of early experiments leading to the discovery of FQHE has been presented

by StoÈ rmer in Reference [7].

Figure 1. The very ®rst result of the FQHE at 1/3 ®lling of the lowest Landau level [1].
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1 ‡…1 ¡ p=q† ;2 ‡p=q, etc. The major characteristics of FQHE, namely, the appear-
ence of plateaus in »xy and minima in »xx, are similar in nature to those of the IQHE.
However, the physical origin of the FQHE need to be di�erent from that of IQHE
because

(1) plateaus and minima appear at fractional ®lling factors where no structure is
expected in the single-particle density of states, and

(2) the e�ect is observed only in samples of very high mobility.

These facts lead to a natural conclusion that electron±electron interaction plays a
major role in the e�ect. Therefore, immediately after the experimental discovery a
major task for theoreticians was to determine the properties of an interacting 2DEG
with a neutralizing background subjected to a strong perpendicular magnetic ®eld
such that only the lowest Landau level is partially ®lled. Among the various attempts
to solve this problem, the most successful theory in 1983 was that of Laughlin [10]

who established that the ground state at ¸ ˆ 1
3 is a translationally invariant liquid. He

also explained the mechanism behind the exceptional stability of the 1
3

state.

2.1. L aughlin’s wavefunction: the beginning

The best source for understanding Laughlin’s approach is, of course, his own
articles [8, 10, 15]. A detailed version of this theory and its various outcomes is
available in [16, 17]. In this theory, electrons are con®ned in the xy plane which is
taken to be a complex plane with z ˆ x ¡ iy being the electron position. In a
symmetric gauge with a vector potential, A ˆ 1

2…xŷ ¡ yx̂†, the single-particle wave
functions (unnormalized)

’m ² jmi ¹ z=`0… †m exp…¡jzj2=4`2
0† …1†

are eigenfunctions of the orbital angular momentum. Here, `0 ² -hc=eB… †1=2 is the
cyclotron radius in the lowest Landau levelÐthe magnetic length. Some important

T . Chakraborty962

Figure 2. Overview of the observed fractions in the FQHE measurements.
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results readily follow from (1). The degeneracy of a Landau level ns ˆ A=2p`2
0, A

being the area of the system, is the upper bound to the quantum number m. This is
seen by requiring that phr2i µ A. The area covered by a single electron in state jmi,
moving in its cyclotron orbit is, in fact, proportional to m : hmjr2jmi ˆ 2…m ‡1†`2

0

(including the appropriate normalization factor [16±18] in (1)). This then leads to
m µ ns ¡ 1. Therefore, the state space of an electron in the lowest Landau level is
spanned by 1 ;z;z2 ;. . . ;zns ¡1 times the exponential factor exp…¡jzj2=4`2

0†.
The Jastrow-type many-electron (spin polarized) wave function proposed by

Laughlin [10] for the ¸ ˆ 1=m state is

Ám ˆ
Y

ne

j ;kˆ1
j<k

…zj ¡ zk†
m

Y

ne

jˆ1

exp…¡jzj j
2=4`2

0†: …2†

When m is an odd integer, this wave function obeys Fermi statistics. The wave
function is entirely made up out of states in the lowest Landau level. It is also an
eigenstate of the angular momentum with eigenvalue M ˆ 1

2 ne…ne ¡ 1†m. The total
angular momentum M is the degree of the polynomial (conservation of angular
momentum). Let us expand the ®rst product in powers of z1, keeping all the other
coordinates ®xed. The highest power of z1 is then m…ne ¡ 1† which, from the
arguments above, must be …ns ¡ 1†. For large ne, it then follows that m º 1

¸
[16].

For m ˆ 1 (®lled Landau level), the polynomial
Q

j<k…zj ¡ zk† is the Vandermonde
determinant of order ne. As ne ! 1, the particle density in this state tends to
…2p`2

0†
¡1 [19]. The Laughlin state for m ˆ 1 is the exact ground state for a ®lled

Landau level.
The Laughlin state (2) has a very interesting property, i.e. when one electron is

adiabatically moved while the position of all the other electrons are held ®xed, the
m…ne ¡ 1† zeros are attached to the position of the other electrons. The m-fold
vanishing of the wave function when two electrons come close helps to keep the
electrons away from each other. Halperin pointed out that the Laughlin wave
function makes optimum use of the zeros by placing them directly at the position of
the electrons and thereby reduces the Coulomb energy of the system [20]. There are
no wasted zeros in the system. At the same time, the wave function (2) describes a
state where m ¯ux quanta of applied magnetic ¯ux are bound to each electron, which
leads to the ®lling factor of ¸ ˆ 1=m. A slight deviation of the density from ¸ ˆ 1=m

can be achieved by having additional zeros (or ¯ux quanta) in the system not tied to
any electron. This would generate the fractionally-charged quasiholes and quasi-
particlesÐthe elementary excitations in the system proposed by Laughlin [10] . The
energy cost to create these elementary excitations, i.e. the energy gap, essential to
explain the fractional quantization of the Hall e�ect, keeps the system pinned at the
density corresponding to ¸ ˆ 1=m.

Although the form of wave function (2) could have been anticipated before
Laughlin’s work, especially, after the work of Bychkov et al. [19] at ¸ ˆ 1, any
practical use of the function was not immediately apparent. This is because of the
explicit dependence of the wave function on the particle position. The steps that were
needed to circumvent this problem were entirely due to Laughlin’s brilliant idea of
mapping the system described by this wave function on a two-dimensional, charge-
neutral classical plasma [16, 17]. This mapping not only provided a means to
calculate the ground-state energy and correlation function, it also provided a robust

Electron spin transitions in quantum Hall systems 963
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picture of the liquid state. It provided explanations for (i) uniform density of the
liquid state, (ii) incompressibility of the system, and (iii) showed how one can
calculate the quasiparticle and quasihole creation energies [16, 17]. The fundamental
ideas of Laughlin’s theory, like the incompressibility, zeros bound to electrons, etc.,
still remain the cornerstones for all other approaches [21, 22] to explore the unique
properties of incompressible, correlated electron systems in a magnetic ®eld [16].

While details of Laughlin’s mapping of the electron system onto a classical
plasma can be found in [16], let us brie¯y mention here some of the points pertinent
to our present review. In this approach, one writes the probability distribution

Ámj j2 ˆ exp…¡Hm† ;

Hm ˆ ¡2m
X

j<k

ln zj ¡ zk ‡
X

j

zj
2
=2`2

0 ;

where Hm is readily recognized as the Hamiltonian for a charge neutral 2D classical
plasma with logarithmic interparticle interaction and an uniform neutralizing
background with particle density »m ˆ 1=2p`2

0m. The plasma maintains its charge
neutrality by spreading out uniformly with density »m (i.e. ¸ ˆ 1=m ). From the vast
literature of classical plasma (see, for example, [23, 24]), Laughlin was able to extract
the relevant properties that are applicable to his 2D electron system, namely, the
pair-correlation function, the ground-state energy, and a very important fact that the
system is a translationally invariant liquid for m ˆ 3 ;5 ; . . . [16].

In order to obtain densities slightly di�erent from ¸ ˆ 1=m, we can add a few
extra zeros not tied to electron positions i.e. ¸ < 1=m. One then creates Laughlin’s
quasihole excitations given by the state

Á…¡†
m

ˆ exp ¡1
4

X

l

jzlj
2… †

Y

j

zj ¡ z0…
Y

j<k

zj ¡ zk… m
; …3†

where z0 ˆ x0 ¡ iy0. State (3) has a simple zero at z ˆ z0 for any j, as well as m-fold
zeros at each point where zj ˆ zk , for k 6ˆ j. The plasma Hamiltonian in this case is
that of a classical one-component plasma with an extra phantom point charge at z0

whose strength is less by a factor 1=m. The plasma will neutralize the phantom by a
de®cit of 1=m charge near z0. Elsewhere in the interior of the plasma the charge
density remains unchanged. The real electron system will have a net charge ¡e=m

accumulated in the vicinity of z0 and a quasihole excitation is created. A somewhat
similar situation can be thought of for the fractionally-charged quasiparticles. For
details about the calculation of quasihole and quasiparticle creation energies, as well
as a comparison with the experimental results for the energy gap, see [16]. Direct
detection of the fractional charge …e=3† of Laughlin quasiparticles has been reported
recently [25].

Laughlin’s theory at ¸ ˆ 1=m, m ! odd integer, cannot be directly applied to the
case of m being an even integer because in that case the wave function (equation (2))
describes a system of particles obeying Bose statistics. E�orts are under way to
generalize the Laughlin wave function where Fermi statistics is properly included [26,
27], but the suitability of that approach is still unclear. Since the state at ¸ ˆ 1

2 is a
very enigmatic case, it has received a lot of attention lately [26±31]. A detailed
description of this interesting problem is, however, beyond the scope of this review.

T . Chakraborty964
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2.2. Mixed-spin ground state

At high magnetic ®elds and for large enough values of the g factor, all electrons
are expected to have their spins aligned with the magnetic ®eld and one can safely
ignore the spin degree of freedom in the theory of FQHE. Halperin [20] was the ®rst
to point out a very important fact, i.e. the g factor for electrons in GaAs is about a
quarter to that of the free electron value but 1=m¤ is large. This leads to a very small
Zeeman energy relative to the cyclotron energy. Therefore the usual assumption of
full spin polarization at all ®lling factors is worth a re-examination. He proposed
that a Laughlin-like but spin-unpolarized state can be constructed at ¸ ˆ 2=…m ‡n†

Á ˆ
Y

j<k

zj ¡ zk… m
Y

¬<­

z¬ ¡ z­… m
Y

j ;¬

zj ¡ z¬… n
Y

j

exp…¡jzjj
2=4`2

0†
Y

¬

exp…¡jz¬j2=4`2
0† ;

…4†

where Roman and Greek indices correspond to electrons with two di�erent spin
states{. The ground-state energy of the ¸ ˆ 2

5 …m ˆ 3;n ˆ 2† state, calculated for the
®rst time by Chakraborty and Zhang [32] using the two-component classical plasma
approach [16], was Eunpol ˆ ¡0:434e2=°`0. When compared with the ground-state
energy of the fully spin polarized state, Epol º ¡0:4303 § 0:003e2=°`0 [33] it is clear
that the fully spin-polarized state is not always favoured energetically, especially
when the Zeeman energy is vanishingly small. With this result a very intriguing
possibility to observe a spin-reversed FQHE ground state was thereby established for
the ®rst time. It indicated that although at high magnetic ®elds (or a non-zero g

factor) the Zeeman energy will stabilize the polarized state, there always exists a
possibility for a transition to an unpolarized state at lower ®elds (or vanishingly
small g values, as described below){. Immediately after this work, a systematic study
of spin polarizations in the ground state at various ®lling factors was undertaken by
Zhang and Chakraborty [35], using a method which was to become a very popular
tool for studying the QHE in later years. The method involves exact diagonalization
of a few-electron Hamiltonian in a magnetic ®eld and in a suitable geometry (in this
particular case, the periodic rectangular geometry) . A brief description of the method
is given below.

Let us consider a system of ne electrons in a rectangular cell in the xy plane with
periodic boundary conditions [16, 36]. The area of the cell is a £ b. In the Landau
gauge, the single-electron wave function is given by

’nL j…r† ˆ
1

2nL nL!p1=2b`0
… †

1=2
X

1

kˆ¡1

HnL
…ky ¡ x†`0 exp ‰ikyy=`2

0 ¡ …ky ¡ x†2=2`2
0Š:

…5†

Here ky ˆ Xj ‡ka, the integer j …1 µ j µ ns† speci®es the state and Xj ˆ …2p`2
0
=b†j is

the centre coordinate of the cyclotron motion which is conserved by the electron±

electron interaction. HnL
…x† is the Hermite polynomial and nL is the Landau

quantum number. The area of the cell is ®xed to ab ˆ 2p`2
0ns, where ns is an integer

which is the degeneracy of a single Landau level and the ®lling factor is ¸ ˆ ne=ns. In

Electron spin transitions in quantum Hall systems 965

{ In later years, this two-spin state became very popular as a state describing a two-layer system,
albeit at zero separation of the layers.

{ A brief but comprehensive review of spins in the QHE is available in Reference [34].
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the lowest Landau level …nL ˆ 0† the Hamiltonian is written in the second quantized
form as

H ˆ E0

X

j ;¼

a
y
j¼aj ;¼ ‡

X

j1 ;j2 ;j3 ;j4¼;¼ 0

Aj1 j2j3j4 a
y
j1 ;¼a

y
j2¼ 0 aj3 ;¼ 0 aj4 ;¼ ;

where the single-electron term is the result of the interaction between an electron and
its image and therefore, E0 is the classical Coulomb energy of a Wigner crystal with
rectangular unit cell [37] which depends only on the cell geometry. The two-electron
term of the Hamiltonian where we consider the Coulomb interaction is given by

Aj1j2 j3 j4
ˆ ¯ 0

j1 ‡j2 ;j3‡j4
F j1 ¡ j4 ; j2 ¡ j3… † ; …6†

F ja ; jb… † ˆ
1

2ab

X

0

q

X

k1 ;k2

¯qx ;2pk1 =a¯qy ;2pk2=b¯ 0
ja ;k2

£
2pe2

°q
F…q† exp 1

2
q2`2

0 ¡ 2pik1 jb=ns… :

For a pure two-dimensional system F…q† ˆ 1, but it is di�erent from unity when we
consider below the ®nite width of the electron wave function perpendicular to the
electron plane. In equation (6), the summation over q excludes qx ˆ qy ˆ 0 and the
Kronecker delta with the prime means that ¯ 0

j1 ;j2
ˆ 1 when j1 ˆ j2 (mod ns), and

q ˆ …2p=a†n1 ;…2p=b†n2… †, where n1 and n2 are integers. The basis states are chosen to
be the antisymmetrized products of single-particle eigenfunctions (equation (5))
denoted by jj1 ; j2 ; . . . ; jne

i, with the quantum number J ²
Pne

iˆ1 ji (mod ns) being the
total momentum along the axis ®xed by the Landau gauge. It is interesting to note
that according to the particle±hole symmetry in a Landau level, one has ¸ $ 1 ¡ ¸
for spinless electrons and ¸ $ 2 ¡ ¸ otherwise. The latter case was ®rst pointed out
in [38]. This correspondence rule, which ignores Landau level mixing, is, as we shall
demonstrate below, a very good assumption in order to explain many of the
experimental results for a two-dimensional electron gas. A priori it is not obvious
that a similar result would hold for a two-dimensional hole gas, created either in a p-
type GaAs heterojunction [39±41] or in a quantum well structure [42±44]. Here,
because of the heavier hole mass, Landau levels are much more closely spaced.
Moreover, the spin±orbit interaction invalidates the distinction between the spin gap
and the cyclotron gap. Fortunately, experimental results on two-dimensional hole
systems, described below, indicate that the correspondence rule holds for the hole
system equally well. The electron±hole symmetry, as explained above, is therefore
quite robust.

The total energy of ne two-dimensional (2D) interacting electrons consists of two
terms: (i) the Coulomb term, which depends on the total spin jS j and the
perpendicular component of the external magnetic ®eld, and (ii) the Zeeman term
Ez ˆ g·BBSz, where g is the LandeÂ g factor for electrons in the medium and ·B is the
Bohr magneton. A fully spin-polarized state corresponds to jS j ˆ ne=2. An un-
polarized state corresponds to jS j ˆ 0 for ne even and 1

2 for ne odd. Any other values
of jS j would correspond to a partilally polarized state.

Existence of spin unpolarized states in low magnetic ®elds at ¸ ˆ 2
3 and the

corresponding electron±hole symmetric ¸ ˆ 4
3 state was ®rst pointed out by Maksym

[45] in ®nite-size calculations in a periodic rectangular geometry. He argued that the
spin transitions are the result of competition between Coulomb repulsion, exchange

T . Chakraborty966
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and interaction of unlike spins. In the case of ®lling factors ¸ ˆ 2
3, 2

5, and other ®lling
factors, similar conclusions about the nature of spin polarizations were also reported
by several other authors [46, 47]

From the discussions above the following results have emerged (table 1) : at zero,
or very low Zeeman energies, the preferred spin states at the ground states of the
major fractions are as follows:

(1) ¸ ˆ 1
3 and ¸ ˆ 5

3 (electron±hole symmetric) are fully polarized;

(2) ¸ ˆ 2
3 ; 2

5 and ¸ ˆ 4
3 ;8

5 (electron±hole symmetric) are spin unpolarized;

(3) ¸ ˆ 3
5 and ¸ ˆ 7

5 (electron±hole symmetric) are partially polarized.

Experimental veri®cations of these predictions of various spin polarizations is
discussed in section 2.6. It is interesting to note that the ground state at ¸ ˆ 1

3 is
fully spin polarized even in the absence of Zeeman energy (inclusion of Zeeman
energy would make this state even more favourable relative to other spin states) .
This is in line with the fully antisymmetric wave function of Laughlin discussed
above. At other ®lling factors, spin-reversed ground states are possible for vanish-
ingly small Zeeman energy. As we shall see below, many of these predicted spin
states have been observed in experiments. In ®gure 3, we present the results for the
ground-state energy (per particle) for (a) ¸ ˆ 2

5 and (b) ¸ ˆ 2
3 where the Zeeman

energy …g ˆ 0:4† contributions are included [48]. In both cases, a crossover magnetic
®eld Bc was observed, below which a spin-unpolarized state is energetically favoured.
The fully spin-polarized state is favoured for magnetic ®elds above the crossover
magnetic ®eld Bc. In order to evaluate Bc for a more realistic system, one should
include corrections owing to ®nite thickness of the 2DES and the Landau level
mixing, to be discussed below.

2.2.1. Finite-thickness corrections

An important correction to the ground-state energy and the excitation energy is
to consider the ®nite width of the electron wave function perpendicular to the
electron plane. Here usually one considers a variational wave function in the z

direction (where only the lowest subband is considered) of the form [49, 50]

Á…z† ˆ 1
2
d3…

1=2
z exp…¡dz=2† ; …7†

Electron spin transitions in quantum Hall systems 967

Table 1. Ground-state energy per particle for various ®lling factors and ground-state spin
polarizations. The Zeeman energy is not included in the energy values which are in units
of e

2=°`0. The ¸ ˆ 1
3,

2
5 results are for a four-electron system and ¸ ˆ 2

3, 3
5 are for a six-

electron system. For incompressible states, the ground-state energy is rather insensitive
to the system size [16]. The experimental results for these ®lling fractions are now
available and they are discussed in section 2.6.

Ground-state energy

¸ S ˆ 0 S ˆ 1 S ˆ 2 S ˆ 3 Ground state

1
3

70.4135 70.4120 70.4152 Ð Polarized
2
3 70.5331 70.5291 70.5257 70.5232 Unpolarized
2
5

70.4464 70.4410 70.4403 Ð Unpolarized
3
5 70.5074 70.5096 70.5044 70.50104 Partially polarized
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where d is the variational parameter which depends on the sample parameter
(e�ective mass, electron density, etc. ). The case of a true two-dimensional system
corresponds to d ˆ 1. For a non-zero width of the electron plane the function F…q†
in equation (6) is modi®ed as

F…q† ˆ
8 ‡9…q=d† ‡3…q=d†2

8…1 ‡ q=d†3 ; …8†

whose major e�ect is to soften the short-range divergence of the bare Coulomb
interaction, when the interelectron spacing is comparable with the inversion layer
width. As a result, many important energies in the FQHE are sharply reduced
[16, 51]. In the calculations that follow, the parameter ­ ˆ …d`0†

¡1 determines the
three-dimensionality of the system{. Figure 4 depicts the ground-state energy of the
Laughlin state and is seen to be reduced drastically as a result of the ®nite-thickness
correction [16].

2.3. Spin-reversed quasiparticles

After it was theoretically established that under certain conditions various FQHE
ground states are spin unpolarized, it was quite natural to inquire if the lowest-lying
excitations also involve spin ¯ip. The energy gap, Eg ˆ "p ‡"h, which corresponds to
the energy required to create a quasiparticle ("p ) and a quasihole ("h) well separated
from each other, was estimated by several authors [33, 52±56]. Results of the exact
diagonalization scheme for ®nite electron systems in a periodic rectangular geometry
by Chakraborty et al. at ¸ ˆ 1

3
[57, 58] are shown in ®gure 5 as solid lines with open

or ®lled points. Finite-thickness corrections and Zeeman energy (in K) "Z ˆ 0:535B

(B in tesla) are already included in these results. At low ®elds, the lowest energy
excitation, which corresponds to spin-reversed quasiparticles and spin polarized

T . Chakraborty968

(a) (b)

Figure 3. Ground state energy per particle (in units of e2=°`0† versus B (tesla) for (a) ¸ ˆ 2
5

and (b) ¸ ˆ 2
3 for di�erent spin polarizations: fully spin polarized …""†, spin

unpolarized …"#† and partially spin polarized …l†. The dashed lines correspond to
energetically unfavoured regions [48].

{ For B measured in tesla, ­ ¹ 0:525B1=6 , at ¸ ˆ 1
3 and ­ ¹ 0:416B1=6 at ¸ ˆ 2

3 for parameters

appropriate to GaAs heterostructures.
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quasiholes, rises linearly because of the dominant contribution of Zeeman energy.
As the magnetic ®eld is increased further, a crossover point is reached beyond which
a fully polarized quasiparticle±quasihole state is energetically favoured, and
correspondingly, we obtain the B1=2 dependence (modi®ed by the magnetic ®eld
dependence of ­). In fact, the very possibility of linear ®eld dependence of the gap (in

Electron spin transitions in quantum Hall systems 969

Figure 4. Ground-state energy per particle as a function of the dimensionless thickness
parameter ­ ˆ …d`0†

¡1
for the Laughlin wave function.

Figure 5. Theoretical results (upper two curves) : calculated energy gap Eg (K) versus
magnetic ®eld B (T) for a ®ve-electron system. Open circles are for spin reversed
quasiparticles and spin polarized quasiholes and ®lled circles are for the fully spin
polarized case. Experimental data of [59] (open and ®lled symbols) : Activation energy
(K) as a function of magnetic ®eld. Open symbols are the data for ¸ ˆ 2

3. Filled
symbols are for ¸ ˆ 1

3, except for two ®lled squares at 5.9 and 7.4 T which are for
¸ ˆ 5

3 and 4
3.
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contrast to the B1=2 dependence of a Laughlin quasiparticle gap) and its association
with Zeeman energy was ®rst emphasized in [57, 58] and subsequently observed in
experiments (see sections 2.6 and 3.4).

In ®gure 5, we compare our theoretical results for the energy gap with the
activation energy data by Boebinger et al. [59] who reported a systematic study of the
energy gap for the ®lling fractions ¸ ˆ 1

3,
2
3,

4
3 and 5

3. The energy gap is usually derived
from the measured temperature dependence of the magnetoconductivity : ¼xx (or »xx

since near the »xx minima, »xx ½ »xy, and ¼xx ˆ »xx=…»2
xx ‡»2

xy† ¹ »xx=»2
xy ), as

¼xx / »xx / exp…¡W =kBT †, where W ˆ 1
2 Eg is the activation energy and kB is

Boltzmann’s constant. The remarkable behaviour in these experimental results is
the linear increase of the activation data for ¸ ˆ 2

3 (open symbols) , and a somewhat
modi®ed B1=2 behaviour at high ®elds, not unlike the theoretical results discussed
above.

Calculation of the charge density pro®les at ¸ ˆ 1
3 revealed [38] that the spin-

reversed excitation has a localized fractional charge of 1
3, the same as for the

excitation without spin reversal. The density pro®le of the spin-reversed excitation
show that the spin-reversed electron is localized around the centre of the defect,
which is a spin-1 object with a fractional charge of 1

3. The energy gain in a spin-
reversed excitation, as opposed to a spin-0 excitation, is explained as the result of less
energy being required to accumulate the charge at the defect.

For an in®nite system, Morf and Halperin [33] proposed the following trial wave
function for spin-reversed quasiparticles

Áq ˆ
Y

ne

jˆ2

…zj ¡ z1†
¡1

ÁL ; …9†

where ÁL is the Laughlin state. Using the classical plasma analogy, they argued that
jÁqj2 is the distribution function for a two-dimensional plasma in which particle 1
has its charge reduced by a factor ‰1 ¡…1=m†Š in its repulsive interaction (in the
corresponding plasma Hamiltonian) with the other particles. Particle 1 has, however,
the same attractive interaction with the background as the other particles. Particle 1
will therefore be attracted to the centre of the disc, while a two-dimensional bubble

will be formed near the origin of size ‰1 ¡…1=m†Š. As a result, there will be an extra
negative charge e=m near the origin. A two-component plasma calculation was
performed by Chakraborty [60] to demonstrate that this wave function indeed has
the lowest energy in the absence of Zeeman energy.

It is interesting to note that for a number nq of spin-reversed quasiparticles in the
Laughlin state at ¸ ˆ 1=m, a trial wave function can be written as [38]

Á…z1 ; . . . ;zne
† ˆ

Y

ne

i<j

zi ¡ zj… m¡1‡¯¼i ¢¼j exp ¡
1

4`2
0

X

ne

iˆ1

jzij
2

" #

; …10†

where ¼i ˆ ¡1 for i ˆ 1 ; . . . ;nq and ¼i ˆ 1 for i ˆ nq ‡1 ; . . . ;ne, zi is, as usual, the
complex coordinate of the ith electron. Let us now consider the following two cases:
(a) nq ˆ 1 and (b) nq ˆ 1

2 ne. In the former case, we have the state containing just one
spin-reversed quasiparticle and (10) reduces to state (9). In case (b), we have the spin
unpolarized state at ¸ ˆ 2=…2m ¡ 1† and equation (10) reduces to the state
equation (4) discussed in section 2.2.

The spin-reversed quasiparticle (qp)±quasihole (qh) gaps for two di�erent ground
states (spin-unpolarized and fully spin polarized) at ¸ ˆ 2

5 are depicted in ®gure 6 (a).

T . Chakraborty970
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These are the lowest energy excitations in the presence of Zeeman energy{. The sharp
change in slope is similar to the re-entrant behaviour observed in activation energy
measurements at ¸ ˆ 8

5 to be discussed below. The excitations were identi®ed here as
the spin-reversed qp±qh pair [48].

The results for the qp±qh gap for ¸ ˆ 2
3 are depicted in ®gure 6 (b). Just as in

®gure (a), we plot only the lowest energy excitations as a function of the magnetic
®eld, with the Zeeman energy included. In this case, the situation is clearly di�erent
from that of ¸ ˆ 2

5. Below the crossover point the preferred ground state is spin-
unpolarized. The lowest energy excitations in this state involve a spin-polarized qp-
spin-reversed qh pair. The energy gap decreases rapidly and vanishes before the
crossover point is reached. From this point onward the discontinuity in the chemical
potential is in fact negative, indicating that FQHE is unstable in this region of the
magnetic ®eld. Beyond the crossover point, the spin-unpolarized state is no longer
the ground state and the energy gap is to be calculated from the fully spin-polarized
ground state. In this case spin-reversed qp-spin-polarized qh pair-excitations have
the lowest energy and the energy gap steadily increases with the magnetic ®eld.
Therefore, between the two ground states exhibiting FQHE there is a gapless domain

where the FQHE state is not stable. Such a gapless domain is not present at ¸ ˆ 2
5.

Similar gapless regions and much more complicated structures in the magnetic ®eld
dependence of the quasiparticle±quasihole gap were predicted theoretically for other
higher-order ®lling factors [61].

One such interesting case is the ®lling factor ¸ ˆ 3
5

[16, 61]. In ®gure 7, we present
the results for the ground-state energy per particle for ¸ ˆ 3

5 versus the magnetic ®eld
where the Zeeman energy …g ˆ 0:5† is also included. The results are shown for three
values of the total spin …S ˆ 1, 2 and 3). Only two states (spin polarized …"" ;S ˆ 3†
and partially polarized …l†, with S ˆ 1) are found to provide the lowest energy with
increasing magnetic ®eld. The spin-unpolarized state …S ˆ 0† is much higher in
energy compared to the other two states and is not included in the ®gure. As for the 2

5

Electron spin transitions in quantum Hall systems 971

(a) (b)

Figure 6. Lowest energy quasiparticle±quasihole gap (in units of e2=°`0) as a function of
magnetic ®eld B (in tesla) for (a) ¸ ˆ 2

5 and (b) ¸ ˆ 2
3. Above and below the crossover

point, two di�erent ground states from ®gure 3 are considered. The gap is non-
existent in the shaded region as discussed in the text [48].

{ In ®gures 6±8 we use material parameters that are appropriate to GaAs heterostructures.
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state, we observe a crossover point in the magnetic ®eld below which the partially
polarized spin state is energetically favoured. The fully polarized spin state is
favoured for magnetic ®elds beyond the crossover point.

The results for the qp±qh gap (in units of e2=°`0) versus the magnetic ®eld are
presented in ®gure 8. The Zeeman energy contribution has been included in these
results. At low magnetic ®elds (up to ¹7.5 T), the spin-reversed qp±spin-polarized qh

T . Chakraborty972

Figure 7. Ground-state energy per particle (e2=°`0) versus B (tesla) at ¸ ˆ 3
5 for various spin

polarizations ; the fully polarized …"" ;S ˆ 3 and partially polarized l;S ˆ 1;2† spin
states. The dashed lines in all the curves correspond to the energetically unfavoured
regions [61].

Figure 8. Quasiparticle±quasihole gap (e2=°`0) versus the magnetic ®eld B (tesla) at ¸ ˆ 3
5 for

various spin polarizations in two di�erent ground states. The shaded region indicates
that the gap is non-existent there, as discussed in the text. The regions I±V are also
explained in the text [61].
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gap is found to have the lowest energy (region I). With increasing magnetic ®elds, for
a short range of magnetic ®elds (up to ¹9.5 T) the spin-reversed qh±spin-polarized
qp gap is favoured energetically (region II). For a further increase of the magnetic
®eld up to the crossover point (region III), a spin-reversed qp±qh gap is found to
have the lowest energy. In the region of magnetic ®eld beyond the crossover point,
the spin-partially-polarize d state is no longer the ground state and the energy gap is
to be calculated from the fully spin-polarized ground state. In this state for
15 µ B 9 21 T, the gap is, in fact, ®rst negative for a few values of B and then
vanishingly small, indicating that the FQHE is no longer observable here. The
energy gap is, however, found to reappear beyond 21 T (region IV), ®rst with the
spin-reversed qh±spin-polarized qp gap and eventually, for B 0 25 T (region V), a
fully spin-polarized qp±qh gap appears to have the lowest energy. The fully spin-
polarized gap is quite expected given the very high magnetic ®elds in this region. But
the existence of spin-reversed excitations prior to this region is quite surprising.

In regions I±III, considering the di�erent Zeeman energy contributions for
di�erent spin polarizations of qps and qhs, the novel transitions should be
observable. The activation energy is expected to be linear in all three states, but
the slopes will be di�erent because of the di�erent Zeeman energies. The activation
energy in region IV will also be linear while that in region V does not have a Zeeman
contribution and hence a B1=2 behaviour is expected. Experimental investigation of
the activation energy at this ®lling fraction should be able to distinguish the spin-
reversed qp state from the spin-reversed qh state.

Rezayi investigated the FQH states at ¸ ˆ 1
3 and ¸ ˆ 2

5 by ®nite-size numerical
calculations in a spherical geometry allowing reversed spins [62]. He found that the
spin-reversed excitations can have, in general, lower energies, which may in some
cases overcome the energy gap.

Morf and Halperin [63] numerically calculated the quasiparticle energy for the
trial wave function equation (9) in a spherical geometry where one electron spin is
reversed relative to the spin of all others. From their Monte Carlo calculations of
systems containing up to 32 electrons they estimated the creation energy of a spin-
reversed quasiparticle in the thermodynamic limit to be

"s
qp º 0:041 § 0:004 …e2=°`0†

(in the absence of Zeeman energy). Taking into account the ®nite width of the wave
function in the z direction, their estimates were

"s
qp º

0:0367 ; ­ ˆ 1
4 ;

0:0319 ; ­ ˆ 1
2 ;

0:0244 ; ­ ˆ 1:

8

>

>

<

>

>

:

These authors estimated that the crossover from spin reversed to spin polarized
excitations would be at Bc º 7 T.

2.3.1. L andau level mixing

The early work on the e�ect of Landau level mixing on the ground state was by
Yoshioka [64] who concluded that the correction is insigni®cant for the Laughlin
ground state at ¸ ˆ 1

3. A Monte Carlo study of the ¸ ˆ 1
3 FQHE state, in particular,

the spin-polarized and spin-reversed quasiparticle energy gap, was reported recently

Electron spin transitions in quantum Hall systems 973
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in [65, 66] where the in¯uence of the Landau level mixing on the energy gap was also
investigated. The latter correction was included as follows: in terms of the e�ective
Bohr radius aB ˆ °-h2=m¤e2 and the mean interparticle spacing r0 ˆ 1=…pn†1=2, the
®lling factor is written as ¸ ˆ 2`2

0
=r2

0, and the electron gas parameter rs ˆ r0=aB. The
degree of the Landau level mixing is expressed as e2=°r0… =-h!c ˆ rs¸=2. Therefore,
for a ®xed ¸, rs gives a measure of the Landau level mixing. Since rs / m¤=B1=2, one
can increase the Landau level mixing either by increasing m¤ or by decreasing the
magnetic ®eld{. Figure 9 shows the spin-polarized and spin-reversed energy gaps
as a function of rs for a system of 20 electrons [65, 66]. The crossover magnetic ®eld,
Bc, below which the spin-reversed excitations are energetically favoured, is
Bc ˆ Dsp ¡ Dsr… =g·B, where Dsr …Dsp† is the spin-reversed (spin polarized) eneregy
gap. For GaAs, Bc º 14 T for rs ˆ 2, and for rs ˆ 10, Bc º 7 T. In fact, ®gure 9
shows that the Landau level mixing has a weaker e�ect on Dsr but has a strong e�ect
on Dsp. Interestingly, when one includes the ®nite-thickness correction, Bc is only
weakly dependent on the Landau level mixing, and our original results [57, 58]

remain valid. This is seen in ®gure 10 where the energy gaps are plotted with the
®nite-thickness corrections included.

2.4. Excitation spectrum

The excitation spectrum at the FQHE ®lling factors were calculated by various
authors [16, 67, 68] following the recipe of Haldane [16, 67, 69, 70] for a few electrons
in a periodic rectangular geometry. The method is described very brie¯y as follows{ :
for every lattice vector Lmn, ‰max̂ ‡nbŷŠ, there is a translation operator which
commutes with the Hamiltonian. The eigenvalues of this operator are
exp‰2pi…ms ‡ nt†=nd Š, where nd is the highest common divisor of ne and ns . The
quantum numbers s and t …s;t ˆ 0 ;1 ; . . . ;nd ¡ 1† are related to the physical
momentum by

T . Chakraborty974

Figure 9. Monte Carlo results for the spin-polarized …°† and spin-reversed …¦† energy gaps
at ¸ ˆ 1

3 as a function of rs, for a truely two-dimensional system [65, 66].

{ For parameters appropriate to GaAs heterostructures, i.e. ° ˆ 12:6 and the e�ective mass
m¤ ˆ 0:067m0, rs ˆ 6:3=‰B…tesla†Š1

=2.

{ For details of the formalism see Reference [16].



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
20

:2
4 

25
 A

ug
us

t 2
00

7 

k`0 ˆ
2p

ns¶

1=2

s ¡ s0 ;¶… t ¡ t0†‰ Š ;

where the point …s0 ;t0†, corresponding to the state k ˆ 0, is required to be the most
symmetric point of the reciprocal lattice, and ¶ ˆ a=b is the aspect ratio. Using this
approach, Yoshioka calculated the density-wave and spin-wave spectra for ¸ ˆ 1

3 and

¸ ˆ 2
5

[68]. The ground state was found at k ˆ 0 for both ¸ ˆ 1
3 and ¸ ˆ 2

5 and, as
expected, the total spin of the ground state is ne=2 for ¸ ˆ 1

3
and zero at ¸ ˆ 2

5
. The

excited states were classi®ed by their values of jS j and Sz. At ¸ ˆ 1
3, the density-wave

mode corresponds to the excited states with jS j ˆ Sz ˆ ne=2 and the spin-wave mode
corresponds to the excited states with jS j ˆ Sz ˆ ne=2 ¡ 1. The results are shown in
®gure 11, for zero ®nite-thickness correction. Clearly, the spin wave mode has almost
always lower energies than that for the density-wave mode.

Electron spin transitions in quantum Hall systems 975

Figure 10. Same as in ®gure 9, but with ®nite-thickness correction included [65, 66].

Figure 11. ¸ ˆ 1
3 : density-wave spectrum (closed circles) and the spin-wave spectrum (open

circles) for a ®ve-electron system. ¸ ˆ 2
5 : density-wave spectrum (closed squares) and the

spin-wave spectrum (closed squares) for a four-electron system [68].
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The analysis of the excitation spectrum at ¸ ˆ 2
5 is somewhat complicated. First,

it should be noted that the momentum k is de®ned modulo G ˆ n1b=q`2
0 ;n2a=q`2

0… ,
where n1 and n2 are integers and q is the denominator of the ®lling factor ¸ ˆ p=q
[16, 67]. However, the density operator

»¼…k† ˆ
X

j

exp ¡i
2p`2

0

b
kx j ‡

ns`
2
0

2a
ky… †¡

1

4
k2`2

0 a
y

j‡ns`2
0
ky=a ;¼

aj ;¼

is de®ned as modulo Gd ˆ n1b=`2
0 ;n2a=`2

0… , which is larger than G by a factor of q
[68]. Therefore, it is possible that the excited states with k can be a density or spin
wave mode with momentum k ‡ G in the ®rst Brillouin zone of Gd . The other point is
that, although the spin wave mode has jS j ˆ 1, not all states with jS j ˆ 0 belong to
the density wave mode; it can also correspond to the state where two spin waves are
excited. Yoshioka settled this problem by calculating the matrix element of the total
density operator or the spin-density operator between the ground state and the
excited states. That way, one can assign the lowest energy density wave and spin
wave mode at each allowed value of k ‡G [68]. The results are displayed in ®gure 11.

2.5. T ilted-®eld e�ects

Measurement of the FQHE in a tilted ®eld has now become an established
technique for investigating spin polarizations at various ®lling factors. The technique
was ®rst applied by Fang and Stiles [71] to study the g factors in Si inversion layers,
where they realized that the Landau level spacing -h!c depends on the perpendicular
component of the ®eld B?, but the Zeeman energy depends on the total ®eld Btot.
Therefore, by tilting the sample they could vary the two energies independently.

An interesting e�ect of the tilted ®eld is to make the electron wave function more
two dimensional, that is, the tilt angle squeezes the wave function in the z direction.
It has been demonstrated in [72] that at a ®xed value of the perpendicular component
of the magnetic ®eld B?, increasing the tilt angle increases the ®nite-thickness
parameter d (introduced in equation (7)) and decreases the dimensionless parameter{
­ ˆ …d`?†¡1. Consequently, the energy gap increases with increasing tilt angle. The
electron±hole symmetry for the spin polarized system is, however, not broken by this
e�ect. Early results on the FQHE in a tilted ®eld [73] were explained as a
manifestation of this e�ect.

Another e�ect of the tilted ®eld is the subband Landau-level coupling, known
from the investigations of the single-electron problem [74, 75] and in the FQHE
regime [76]. We consider the situation where electrons are con®ned in the xy plane by
a parabolic potential well V …z† ˆ Az2. This choice of the potential is particularly
useful because in this case exact results are available for the single-particle
SchroÈdinger equation [74]. Parameters of the potential are, however, adjusted such
that they correspond to the subband energy of a more realistic triangular potential
using the Fang±Howard choice of the trial wave function [16]. A magnetic ®eld is
applied in the xz plane and we consider the electrons to be in the lowest Landau level
and also in the lowest subband. We choose the gauge such that the vector potential is
A ˆ …0 ;xBz ¡ zBx ;0†, where Bx ˆ B sin ³, Bz ˆ B cos ³ and ³ is the tilt angle. The
single-particle SchroÈdinger equation is solved by an appropriate rotation [74] of

T . Chakraborty976

{ The Coulomb energy is expressed in units of e2=°`? , where `? ˆ … -hc=eBz†
1=2 is the

perpendicular component of the magnetic length `0.
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coordinates and the energy eigenvalues are those for two harmonic oscillators with
frequencies

!1;2 ˆ f1
2…!2

c ‡!2
0† § 1

2‰!
4
c ‡!4

0 ‡2!2
0…!2

x ¡ !2
z†Š

1=2g1=2
; …11†

where !0 ˆ 2A=m¤… †1=2, !z ˆ !c sin ³, !z ˆ !c cos ³ and m¤ is the e�ective mass.
Note that the Landau-level degeneracy and the ®lling factor depend only on the
magnetic ®eld component normal to the electron plane.

The Coulomb interaction energy of the electron system subjected to a tilted
magnetic ®eld has been evaluated for electrons in a periodic rectangular geometry
[16, 76]. The appropriate single-electron states are (compare with equation (5))

’j…r† ˆ
1

b`1`2p… †
1=2

X

1

kˆ¡1

exp fikyy=`2
0 ¡ …ky ¡ x† cos ¿ ‡z sin ¿

2
=2`2

1

¡ …ky ¡ x† sin ¿ ¡ z cos ¿
2
=2`2

2g ; …12†

where a and b are the two sides of the rectangular cell. The magnetic length is

`0 ˆ … -h=m¤!z†
1=2 and `1 ˆ … -h=m¤!1†

1=2
; `2 ˆ … -h=m¤!2†

1=2. Also, in equation (12)

¿ ˆ 1
2

arctan
sin…2³†

cos…2³† ¡ A…2m¤=e2†
…13†

is the angle of rotation of the coordinates to separate the variables in the single-
particle SchroÈdinger equation. The two-electron term of the Hamiltonian is now
modi®ed as (compare with equation (6))

Aj1 ;j2 ; j3 ; j4
ˆ 1

2

…

dr1

…

dr2’¤
j1
…r1†’¤

j2
…r2†v…r1 ¡ r2†’j3…r2†’j4…r1†

ˆ
1

2ab

X

q

X

s

X

t

¯qx ;2ps=a¯qy ;2pt=b¯ 0
j1 ¡j4 ;t

2pe2

°q

£ exp 2pis… j1 ¡ j3†=ns ¡ p…s2 ‡¶2O2
1t2†=…ns¶O1†

2

p1=2
I…s;t†¯ 0

j1‡j2 ; j3 ‡j4
;

…14†

where v…r† is the Coulomb interaction in the periodic rectangular geometry and the
Kronecker delta with a prime means that the equality is de®ned as modulo ns. The
summation over q excludes qx ˆ qy ˆ 0. The last term in equation (14) is written
explicitly as

I…s;t† ˆ

…1

0

exp ¡z2 ¡ 2
p

ns¶

s2 ‡¶2t2

O3 ¡ O
2
2=O1

" #1=2

z

8

<

:

9

=

;

cos 2
p

ns¶

1

O3 ¡ O
2
2=O1… †

1=2
O2

O1
sz

2

4

3

5dz

…15†

and

Electron spin transitions in quantum Hall systems 977
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O1 ˆ
!1

!z

cos2 ¿ ‡
!2

!z

sin2 ¿;

O2 ˆ
!2

!z

¡
!1

!z

sin ¿ cos ¿;

O3 ˆ
!1

!z

sin2 ¿ ‡
!2

!z

cos2 ¿: …16†

Here ¶ denotes the aspect ratio. It is easy to check that when ³ ˆ 0 and the strength
of the con®nement potential goes to in®nity, i.e. !0 ! 1, we get ¿ ˆ 0, O1 ! 1,
O2 ! 0 and O3 ! 1. In that limit, equation (14) gives the usual result for a 2DEG
with a perpendicular magnetic ®eld.

When the magnetic ®eld is perpendicular to the electron plane there is, of course,
electron±hole symmetry in the lowest Landau level. In that case the Hamiltonian
does not have any explicit dependence on the magnetic ®eld and in units of potential
energy, properties of 1

3 and 2
3 ®lling factors are always the same. In the present case,

such an ideal situation does not exist, and in order to study angular dependence of
the energy gap for 1

3 and 2
3, we need to consider the di�erent frequencies which appear

in equation (11) for the two ®lling factors (see equations (14)±(16)). This is a direct
consequence of a tilted ®eld. Coupling of subband and Landau levels is found to
break the electron±hole symmetry in such a way that the angular dependence of the 2

3
energy gap rises rapidly, but the gap for the 1

3 state is almost ¯at as the tilt angle is
increased [76]. The major e�ect of the tilted ®eld, which is exhibited by various spin
transitions in the experiments described below, is to alter the Zeeman energy.

2.6. T ilted-®eld experiments: the evidence

Investigations of the FQHE in tilted magnetic ®elds began in earnest with the
®rst reported work of Haug et al. [77]. They pointed out that in a tilted magnetic ®eld
the electron±hole symmetry between the ¸ ˆ 1

3 and ¸ ˆ 2
3 states is broken. Activation

energy for the 1
3-®lled state determined from measured temperature dependence of

the diagonal resistivity was found to decrease slightly as the tilt angle was increased
(the activation energy was found to be W ˆ 1:67 K at ³ ˆ 08 and W ˆ 1:52 K at
³ ˆ 63:78). On the other hand, for the 2

3 ®lling factor, activation energy showed a
rapid increase with increasing tilt angle. This observed di�erence in behaviour
between the two ®lling factors could not be explained by a change of the z extension
of the wave function.

2.6.1. Spin states at ¸ ˆ 1
3 and ¸ ˆ 5

3
Clark et al. [78, 79] probed spin con®gurations of several fractional states, for the

®rst time, by tilting the ®eld B at an angle ³ to the sample plane normal (increasing
its absolute value at ®xed density n and the perpendicular component B?), and also
by increasing the density of the system (at ³ ˆ 08) so that the fraction occurs at
higher B?. They found that, with increasing tilt-angle, dramatic changes occur in the
»xx minima of various ®lling factors. In ®gure 12 we present some of the experi-
mental results of »xx versus ³ by Clark et al. Clearly, the 4

3 state is ®rst destroyed,
followed by a re-emergence as ³ and hence the magnetic ®eld is increased. The same
e�ect was also observed for ¸ ˆ 2

3. In contrast, the »xx minima for 5
3 and 1

3 remain
essentially unaltered with increasing tilt angle. In fact, the theoretical work discussed
above predict that at low ®elds, the 2

3 and 4
3 states should be spin-unpolarized …S ˆ 0†.

T . Chakraborty978
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An important clue to understanding the experimental results by Clark et al. is the
fact that, allowing for the spin degree of freedom, the electron±hole symmetry is
between ¸ and 2 ¡ ¸ [38] as discussed in section 2.2. Therefore, the 1

3 and 5
3 ®lling

factors which are the spin-polarized states even at low magnetic ®elds, as predicted
theoretically, remain una�ected by the tilted-®eld. For the 2

3 and 4
3 states, the

increasing magnetic ®eld destroys the reversed-spin states and eventually, they re-
emerge as fully spin-polarized states.

To check that the tilted ®eld is not a�ecting the wave function in the z direction,
as discussed above, Clark et al. moved the fractional states ¸ ˆ p=q to higher B? at

³ ˆ 08 by increasing the electron concentration using persistent photoexcitation
techniques. They observed identical e�ects [79], which indicates that increasing the
®eld simply in¯uences the spin states of di�erent ®lling factors. The experimental
work by Clark et al. is an important step in our understanding of the FQHE; it
established the theoretical predictions of spin-reversed states discussed in section 2.2,
on a ®rm footing.

Electron spin transitions in quantum Hall systems 979

Figure 12. The e�ect of tilted ®eld on the diagonal resistivity »xx for various ®lling factors
versus the magnetic ®eld [78].
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2.6.2. Spin transitions at ¸ ˆ 8
5

In the absence of any Landau level mixing, ¸ ˆ 8
5 is electron±hole symmetric to

¸ ˆ 2
5. In this state, Eisenstein et al. [80] observed interesting re-entrant behaviour in

the presence of a tilted magnetic ®eld. When the sample is tilted, the 8
5 state initially

becomes weak (®gure 13). Increasing the angle to about ³ ˆ 308, the FQHE
minimum splits into two minima of comparable strength whose ®eld positions
straddle the location of ¸ ˆ 8

5. In fact, precisely at ¸ ˆ 8
5 the resistivity exhibits a

local maximum . A further increase of the tilt angle reverses the trend: the high-®eld
component of the doublet becomes dominant and gradually moves on to ¸ ˆ 8

5. For

³ > 378, there is only a single minimum at ¸ ˆ 8
5 which grows stronger as the tilt

angle is increased. The Hall resistance shows a plateau at »xy ˆ 5h=8e2 in both the
low- and high-angle regimes.

Eisenstein et al. [80] interpreted these results as due to a phase transition from an
unpolarized ground state at small tilt angles to a fully polarized ground state at large
tilt angles. This interpretation gains more weight when one looks at the energy gap of
¸ ˆ 8

5
, determined from the activated temperature dependence of the resistivity. The

resulting energy gap D is plotted in ®gure 14 as a function of the total magnetic ®eld
Btot , where the perpendicular component of the ®eld is ®xed at B? ˆ 5:95 tesla. As
seen in the ®gure, the energy gap decreases linearly with Btot at small tilt angles and
rises linearly with Btot in the high-angle regime. The magnitudes of the slopes
j@D=@Btotj are nearly equal in the two phases, and a g factor deduced from the slope
is ¹0.4, close to the bulk GaAs value. These facts led the authors to interpret the
results as a spin transition where for Btot < 7 T (i.e. ³ < 308), the system corresponds
to an unpolarized ground state with DS ˆ ‡1, where DS is the di�erence in spin of
the quantum liquid state before and after the excitation of a quasiparticle±quasihole
pair [80]. For Btot > 7 T, the ground state is spin polarized but DS ˆ ¡1. We wish to
point out the striking resemblance between the observed energy gap and what we
predicted theoretically at ¸ ˆ 2

5 (see ®gure 6 (a)).

T . Chakraborty980

Figure 13. »xx versus ¸ around ¸ ˆ 8
5, exhibiting splitting of the 8

5 minimum at ³ ˆ 308. Right
panel shows the temperature dependence of »xx for the 8

5 minimum at various tilt
angles, (a) ³ ˆ 08, (b) ³ ˆ 18:68, (c) ³ ˆ 42:48 and (d ) ³ ˆ 49:58 [80].
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2.6.3. Spin transitions at ¸ ˆ 2
3 and ¸ ˆ 4

3
The energy gap at ¸ ˆ 2

3
and signatures of possible spin transitions on the

magnetic-®eld dependence of the energy gap was studied by several authors. As
discussed above, experimental results of Haug et al. [77] with tilted magnetic ®elds
indicated an apparent violation of the electron±hole symmetry between ¸ ˆ 1

3 and 2
3

with fully spin-polarized ground states and excitations. Eisenstein et al. [81] observed
a re-entrant behaviour at ¸ ˆ 2

3 and explained it as being most likely the result of spin
transitions. Clark et al. [82] found that in a tilted-®eld experiment and at a ®xed
temperature T , the depth of the »xx minimum at ¸ ˆ 2

3 was reduced over a range of
tilt angle which would most likely indicate a minimum in the energy gap as a
function of the total magnetic ®eld. They also observed a splitting of the »xx

minimum at 2
3 at angles where the minimum was weakest. Eisenstein et al. , however,

did not observe any such splitting. They also did not observe any linear region of the
energy gap at ¸ ˆ 2

3.
Engel et al. [83] studied the gap at ¸ ˆ 2

3 and ¸ ˆ 3
5 in a tilted magnetic ®eld. They

found that at both these ®lling factors the energy gap D versus the total magnetic
®eld Btotal exhibited minima which were accompanied in transport by splitting of the
»xx minimum. The result for the activated energy gap D (K) versus the total magnetic
®eld Btotal obtained by Engel et al. is displayed in ®gure 15. They observed a
prominent minimum at a critical ®eld of Bc;total ˆ 1:83 § 0:02 T. For a magnetic ®eld
well above this critical ®eld …Btotal > 2:1 T), the data for D is ®t very well by a straight
line of slope 0:4·B º g·B for GaAs, indicating the Zeeman energy contribution
corresponding to a single spin ¯ip. The splitting of the FQHE, which depends on the
tilt angle and the minimum in the gap versus Btotal , were explained by these authors
as being the result of ground-state spin transitions, as predicted in the theoretical
work discussed above. They did not, however, observe any region in Btotal where the
gap completely vanishes, in contrast to the expectations from the theorteical work at
¸ ˆ 2

3
described above. Of course, it is noteworthy that these experimental results at

¸ ˆ 2
3 are di�erent from those at ¸ ˆ 8

5 because in the present case there are no sharp
transitions present in the energy gap as a function of magnetic ®eld. Instead, the

Electron spin transitions in quantum Hall systems 981

Figure 14. Energy gap D of ¸ ˆ 8
5 as a function of the total magnetic ®eld Btot [80].
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energy gap at ¸ ˆ 2
3 does show a sharp drop, very near Bc;total and exhibits a linear

increase in both directions away from Bc;total .
The activation energy gap, measured by Clark et al. [79] for ¸ ˆ 4

3,
5
3 and 7

5 versus
the total magnetic ®eld, are displayed in ®gure 16. The disparity between the 4

3 and 5
3

states is quite striking: while D5=3 remains virtually unchanged over the entire range

T . Chakraborty982

Figure 15. The activation energy gap versus the total magnetic ®eld at ¸ ˆ 2
3

[83].

Figure 16. Activation energy gap at ¸ ˆ 4
3 ; 5

3 and ¸ ˆ 7
5 versus the total magnetic ®eld [79].
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of magnetic ®eld studied, D4=3 collapses from 340 mK at ³ ˆ 08 …B? ˆ 5 T) to zero
over the range B ˆ 5±6:7 T. The 4

3 state is absent in the magnetic ®eld range of B ˆ 7±

9 T and reappears at higher magnetic ®elds.
Sachrajda et al. [84] reported activation measurements on ¸ ˆ 2

3
, 4

3
, 5

3
and 7

5
as

a function of carrier density. The results are consistent with the observations of
Clark et al. [78] and support the picture of spin polarizations at these ®lling factors.
Tilted ®eld activation measurements at ¸ ˆ 5

3, 4
3 and 7

5 as a function of carrier density
were also reported by this group [85]. At ¸ ˆ 4

3 and 7
5, a strong density dependence

was observed. Linear behaviour of the activation gap at ¸ ˆ 2
3 was also reported in

[86].
Supporting evidence to the results of Clark et al. [78] also came from Davies et al.

[40] who reported very interesting FQHE experiments in high-quality p-type
heterojunctions with tilted magnetic ®eld. They found the same magnetic-®eld
dependent behaviour for ¸ ˆ 4

3 as observed in n-type heterojunctions by Clark
et al. They also noted that for the two-dimensional hole system one requires a
smaller magnetic ®eld to destroy and return the 4

3 state which suggests that the
Zeeman splitting is larger for the present system. In the two-dimensional hole system
grown in a symmetrically modulation-doped quantum well, remarkable transitions
at ¸ ˆ 4

3
and ¸ ˆ 7

5
, similar to those observed by Davies et al. were also reported in

[42] by varying the potential symmetry of the quantum well structure and thereby
varying the valence band structure [43].

Muraki and Hirayama observed the re-entrant behaviour for the ¸ ˆ 4
3 FQHE

state by varying the density of a 2D hole gas con®ned in a modulation-doped
quantum well [44]. Similar re-entrant behaviour of the 4

3 FQH state in a high mobility
2D hole system by changing the carrier density, was observed earlier by Rodgers et al.
[41]. However, the results of Muraki and Hirayama revealed a very unusual
behaviour. Here the activation gap D4=3 initially increases with magnetic ®eld and
then shows two distinct minima at B ˆ 8:4 T and B ˆ 10:4 T (®gure 17). In contrast,

D5=3 increases steadily over the entire range of the magnetic ®eld. Observation of the
two minima of D4=3 is yet to be explained. It is di�cult to explain this observation
owing to LL mixing because such a mixing would break the particle±hole symmetry
of the 5

3
state to the 1

3
state. In these results, the 5

3
state seems to be stable over the

entire magnetic ®eld range, which is expected from the particle±hole symmetry
related to the 1

3
state. The prominent oscillation in the ¸ ˆ 4

3
activation energy results

must be related to spin transitions at this ®lling factor which are not present for

¸ ˆ 5
3. The details are, however, need to be worked out.

Electron spin transitions in quantum Hall systems 983

Figure 17. Activation energy gap at ¸ ˆ 4
3 and 5

3 as a function of the magnetic ®eld [44].
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2.6.4. Spin transitions at ¸ ˆ 3
5 and ¸ ˆ 7

5
The results for the activated energy gap versus the total magnetic ®eld at ¸ ˆ 3

5
obtained by Engel et al. [83] is displayed in ®gure 18. As discussed in the theoretical
results for this ®lling factor, the gap structure is much more complicated than that
for ¸ ˆ 2

3 or 2
5. A minimum in the gap is clearly visible and for magnetic ®elds near the

critical ®eld, the energy gap structures qualitatively resemble those of region III, IV
and V of ®gure 8. The energy gap of the ¸ ˆ 7

5 state (electron±hole symmetric to
¸ ˆ 3

5) was measured by Clark et al. [79] and is shown in ®gure 16. These authors
noted that, just like the energy gap for the 4

3 state, the energy gap of this state
decreases rapidly and disappears beyond 9 T.

2.7. Other related experiments

Kukushkin et al. [87, 88] investigated the spin con®gurations of the QHE states at
various ®lling factors using time-resolved radiative recombination of photoexcited
holes bound to acceptors. The ¸ ˆ 2

3 FQHE state was observed to be spin
unpolarized (as expected from theoretical investigations ) for B ˆ 1:7 T, and a fully
spin-polarized state for B > 4 T. In between these two magnetic ®eld values, there is
a gradual transition from the initial spin state (unpolarized) to the ®nal (spin
polarized) state. In a more re®ned experiment, these authors noticed a half-polarized
state midway between the spin transitions. This will be discussed in section 3.4.

Although the activation energy measurements provide information about the
quasielectron±quasihole gap, the spin polarizations of individual quasiparticles
cannot be studied in this method. Dorozhkin et al. [89, 90] explored the di�erent
spin orientations of quasielectrons and quasiholes via capacitance spectroscopy and
magnetotransport . The magnetocapacitance between the 2DES and the gate
provides information of the lowest state energy of a 2DES. In a tilted magnetic
®eld, variation of energy with the in-plane component of the magnetic ®eld is used to
analyse the spin con®gurations at ¸ ˆ 1

3 and ¸ ˆ 2
3. The degree of spin polarization

was found to be constant at ¸ < 2
3, but decreases at ¸ ¶ 2

3. These results are taken as
indications for the existence of spin-reversed quasielectrons and spin-polarized
quasiholes in agreement with the theoretical predictions [48, 57, 58].

T . Chakraborty984

Figure 18. The energy gap versus the total magnetic ®eld at ¸ ˆ 3
5

[83].
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3. Recent developments

After a few relatively quiet years following the tilted-®eld studies, investigations
of the spin-reversed ground state and excitations took o� with renewed enthusiasm
where new ideas were introduced and more re®ned experiments were performed.
New dimensions were added by looking at the temperature dependence of the spin
polarization, as well as the pressure-induced zero Zeeman gap. These results are the
topics of the following sections.

3.1. Temperature dependence: experimental results

A very ingenious and direct approach to study spin polarizations of a 2DES in
the QHE regime using optically-pumped nuclear magnetic resonance (OPNMR)
spectra was reported by Barrett et al. [91]. They measured the Knight shift Ks…¸;T †
of the 71Ga nuclei located in n-doped GaAs quantum wells using optically pumped
nuclear magnetic resonance [92, 93]. For details of those experiments we refer to the
original publications [91±93]. Very brie¯y, the samples consist of forty GaAs
quantum wells 300 AÊ wide and separated by Al0:1Ga0:9As barriers 1800 AÊ wide.
The nuclear spins in the multiple quantum well structure are strongly polarized by
optical pumping of interband transitions with near-infrared laser light. Optical
pumping generates electrons and holes in the GaAs wells with non-equilibrium spin
polarizations, which in turn polarize the nuclei in the well through electron±nucleus
hyper®ne couplings. From the radio-frequency measurements of 71Ga NMR spectra,
Barrett et al. studied the shift between the lower frequency, attributed to 71Ga nuclei
in the quantum wells, and the higher frequency resonance due to 71Ga nuclei in the
barrier. The shift is supposed to have occurred as a result of the magnetic hyper®ne
coupling between the 71Ga nuclei and electrons in the wells. The hyper®ne coupling
constant was found to be isotropic in those experiments and therefore the observed
NMR frequency shift is a direct measure of the electron spin polarization. These
studies include the integer [91] and fractional [94] QHE regime.

Temperature dependence of the Knight shift for ¸ ˆ 0:98 and B ˆ 7:05 T
measured by Barrett et al. is shown in ®gure 19. In this ®gure, the dashed line

Electron spin transitions in quantum Hall systems 985

Figure 19. Experimental results for the temperature dependence of the Knight shift for
¸ ˆ 0:98 and B ˆ 7:05 T (open squares). The dashed line is the theoretical result
obtained for a non-interacting electron system. The temperature dependence of Ks for
¸ ˆ 0:88 (open circles) and ¸ ˆ 1:2 (open triangles) at B ˆ 7:05 T is given as an inset
[91].
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corresponds to a non-interacting electron system where the chemical potential lies in
the middle of the Zeeman gap, Ks…T † ˆ Ks…0† tanh Ez=4kBT… †, Ks…0† ˆ 20 kHz and
Ez=kB ˆ 2:08 K. Quite clearly, this simple model does not ®t the data, notably at low
temperatures, where a rapid drop of Ks (and hence a rapid drop in spin polarization)
was observed.

In ®gure 20, we show the temperature dependence of electron spin polarization
for ¸ ˆ 1

3, observed by Khandelwal et al. [94]. In the ®gure, for comparison, these
authors also plotted the spin polarization of non-interacting electrons at ¸ ˆ 1,
described above, but now with B ˆ 12 T. They also noted that a value of D º 2Ez in
tanh D=4kBT… † provides a good ®t for the saturation region. These experimental
results are in excellent agreement with the theoretical results to be discussed below.

The original work of Barrett et al. [91] described above prompted other groups to
investigate spin polarizations by various other means. Manfra et al. [95,96] measured
the temperature dependence of spin polarizations at the ¸ ˆ 1 quantum Hall state
using magnetoabsorption spectroscopy which distinguishes the occupancy of the two
electron spin states. The results are very similar to those of ®gure 19.

Investigations by Kukushkin et al. [87, 88] of spin polarizations from the analysis
of circular polarization of time-resolved radiative recombination of 2D electrons
with photoexcited holes bound to acceptors, discussed above, also provide results for
the temeparture dependence of spin polarizations. These results for the ¸ ˆ 2

3 FQHE
state, measured at di�erent magnetic ®elds, are shown in ®gure 21. In the low-®eld
case …B ˆ 2:12 T), spin polarization reveals a non-monotonic behaviour with
increasing temperature, in agreement with the theoretical predictions [97] (see
below). At a higher magnetic ®eld …B ˆ 3:38 T), the decrease of electron spin
polarization is more gradual.

3.2. Temperature dependence: theoretical work

One important result of the NMR Knight-shif t studies of the two-dimensional
electron gas is the temperature dependence of hSzi. In the canonical ensemble

T . Chakraborty986

Figure 20. Experimental results for the electron spin polarization as a function of
temperature at ¸ ˆ 1

3
[94]. The dashed line is the spin polarization of non-interacting

electrons at ¸ ˆ 1 (see text). The inset depicts the saturation region. The dashed line
is the spin polarization of non-interacting electrons for the ¸ ˆ 1 QHE state (see
text).
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hSz…T †i ²
1

Z

X

i

exp…"i=kT †hijSzjii;

where the summation runs over all states including all possible polarizations

hijSzjii ˆ ¡ne=2 ; . . . ;0 ; . . . ;ne=2 ;

"i is the energy of state jii, with Zeeman coupling included, i.e.

"i ˆ Ei ¡ g·BBhijSzjii;

and Z is the canonical partition function

Z ˆ
X

i

exp…¡"i=kT †:

The ground state and the excited states for a given ®lling factor can be calculated,
e.g. from the exact diagonalization of a few-electron system Hamiltonian in a
periodic rectangular geometry [16]. In the absence of the Zeeman term in the
Hamiltonian H, for each state jii with Szjii ˆ szjii and Hjii ˆ Ejii, there is a state
ji 0i for which Hji 0i ˆ Eji 0i but Szji

0i ˆ ¡szji
0i. These terms cancel each other in the

sum of hSzi. On the other hand, if the Zeeman term is included in the Hamiltonian,
hSzi 6ˆ 0 because these terms then sum up to [97],

sz exp…¡­E† exp…­g·BszB† ¡ exp…¡­g·BszB†‰ Š ˆ 2sz exp…¡­E† sinh ­g·BszB… †:

Generally, the sum over all energy states will then yield a non-vanishing polarization.
However, the system can still be unpolarized at T ˆ 0 if the ground state, even in the
presence of the Zeeman coupling, is unpolarized.

In ®gure 22, we show the numerical results for hSz…T †i= max hSzi as a function of
T (in units of potential energy{) for the ¸ ˆ 1

3 ®lling factor. In this calculation the
magnetic ®eld value is ®xed at 10 T, but a range of g values are considered. We
consider a ®ve-electron system in a periodic rectangular geometry. Here the ground
state is known to be fully spin polarized, and except for very small values of Zeeman
energy where spin-reversed quasiparticles are energetically favourable, the excited

Electron spin transitions in quantum Hall systems 987

Figure 21. Experimental results for the electron spin polarization as a function of tempera-
ture at ¸ ˆ 2

3 for magnetic ®elds B ˆ 2:12 T and B ˆ 3:38 T [87].

{ The conversion factor for T is, e.g. e2=°`0 ˆ 51:67B1=2 for parameters appropriate to GaAs,
where the energy is expressed in K and the magnetic ®eld B is expressed in tesla.
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states are also expected to be spin polarized. This is precisely what is seen at T ˆ 0
for even the lowest value of g we consider here.

When the Zeeman energy is decreased (i.e. the g values are reduced), hSz…T †i
drops o� more rapidly with increasing temperature. For large T , we notice a 1=T

decay of hSz…T †i. This result can be explained by the following arguments: in the
limit T ! 1 the leading term in the expansion of hSz…T †i is

s…0†
z ‰1 ¡ exp…¡2­g·Bs…0†

z B†Š

when the ground state has non-vanishing polarization s
…0†
z . If the ground state is

unpolarized then the leading term is

¡2s…1†
z exp ‰¡­…E1 ¡ E0†Š sinh…­g·Bs…1†

z B† ;

where E0 is the energy of the ground state and E1 ¡ g·Bs
…1†
z B the lowest energy with

non-vanishing polarization s
…1†
z . At the high-temperature limit these expressions

above are both proportional to B=T . Therefore, at high temperatures the system
behaves like a Curie paramagnet [97].

Temperature dependence of hSz…T †i at higher order ®lling factors show even
more interesting features. For example, at ¸ ˆ 2

3 and ¸ ˆ 2
5, we know that the ground

states are spin singlets for low Zeeman energies discussed above. At low Zeeman
energies, the curves peak at T ¹ 0:01 (®gures 23 and 24) and then at high
temperatures they decrease as 1=T . The appearence of the peak is presumably
related to the `re-entrant’ behaviour of the activation energy observed earlier in
transport measurements and discussed in section 2.6. This behaviour was associated
[97] with a phase transition from one spin ground state (unpolarized) to the other
(polarized but with spin-reversed excited states) [48, 72, 80]. It is quite likely that, at
the low-temperature side of the peak, the system has a spin-reversed ground state as
well as spin-reversed excitations. At the high-temperature side of the peak, the
system, on the other hand, has a spin-polarized ground state but the excitations are
still spin reversed. Theoretical predictions of the temperature dependence of hSz…T †i

T . Chakraborty988

Figure 22. Electron spin polarization hSz…T †i versus the temperature T at ¸ ˆ 1
3 for a

magnetic ®eld of 10 T and various values of the g factor.
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at ¸ ˆ 2
3 described above (®gure 23) are in excellent agreement with the correspond-

ing experimental results discussed above (®gure 21).
At ¸ ˆ 3

5, the ground state is at S ˆ 1 (and accordingly Sz ˆ 0 and Sz ˆ 1 are
degenerate in the absence of Zeeman coupling). This means that the system will be at
least partially polarized no matter what value of g one considers (except for g ˆ 0,
when, of course, hSzi ˆ 0). For low values of g and at low temperatures, we see
(®gure 25) a gradual formation of the peak in hSz…T †i and a transition to the fully
polarized state when g is further increased [97]. This behaviour is consistent with the
behaviour of hSz…T †i at other ®lling fractions discussed above and can be interpreted
as transitions from the partially polarized to a spin-singlet state and eventually to a
fully polarized state. The high-temperature behaviour is, however, the same as in all
other ®lling fractions described here.

Electron spin transitions in quantum Hall systems 989

Figure 23. Electron spin polarization hSz…T †i versus the temperature T at ¸ ˆ 2
3 for various

values of the g factor.

Figure 24. Electron spin polarization hSz…T †i versus the temperature T at ¸ ˆ 2
5 for various

values of the g factor.
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3.3. V anishing Zeeman energy: more evidence

The possibility of realizing a two-dimensional electron system with a vanishingly
small g factor via application of pressure was pointed out earlier in the literature [98].
Application of a hydrostatic pressure is expected to produce changes in the band
structure and the spin±orbit coupling, which would result in a reduction in the
magnitude of the LandeÂ g factor experienced by the electrons. An enhancement of
the FQHE at ¸ ˆ 4

3 with increasing hydrostatic pressure was interpreted as resulting
from the pressure-induced reduction of the g factor [98]. This method of changing
the Zeeman energy of fractional states seems to be an attractive alternative to the
conventional rotation of the sample described above.

3.3.1. Spin transitions at ¸ ˆ 2
5

Kang et al. [99] studied the spin transitions at ¸ ˆ 2
5. Their experiments involved

high mobility GaAs heterostructures subjected to pressures up to 14 kbar. They
noticed that with increasing pressure the FQHE states at ¸ ˆ 2

5
(and also ¸ ˆ 3

7
)

gradually disappear. At pressures slightly above the critical pressure where the state
collapses, a re-entrant behaviour at ¸ ˆ 2

5 was induced by rotating the sample relative
to the applied magnetic ®eld. As discussed above, these results indicate a transition
from a spin-polarized ground state at low pressures to a spin-unpolarized ground
state at high pressures. Application of hydrostatic pressure results in a decrease in
the magnitude of the g factor which in turn reduces the Zeeman energy and drives
the spin transition.

The energy gap of the FQHE state at ¸ ˆ 2
5, obtained by Kang et al. [99] at

di�erent magnetic ®elds is shown in ®gure 26. Each data point corresponds to a
di�erent pressure and therefore corresponds to a di�erent g value. The energy gap at
the highest and lowest magnetic ®elds shown here correspond to 11.2 and 14.2 kbar
of pressure, respectively. A minimum in the energy gap at around 8 T of magnetic
®eld corresponds to 13.8 kbar of pressure. These authors estimated that the ¸ ˆ 2

5
state is spin polarized below 13.5 kbar of pressure and spin unpolarized at higher
pressures.

T . Chakraborty990

Figure 25. Temperature dependence of the electron spin polarization at ¸ ˆ 3
5 for various

values of the g factor.
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In the experimental study of Leadley et al. [100], hydrostatic pressure of up to
22 kbar was applied to the sample. In GaAs, application of a hydrostatic pressure
reduces the magnitude of g from 0.44 which approaches zero at ¹ 18 kbar. They also
observed a re-entrant behaviour of the activation energy gap at ¸ ˆ 2

5 which, as
discussed above, indicates that a spin transition from the unpolarized to a fully spin
polarized spin state has taken place at that ®lling factor (®gure 27).

There is a clear correspondence between the results of these two groups and
the re-entrant behaviour at ¸ ˆ 8

5 observed earlier in magnetotranspor t experiments,
as discussed above. From these results it can be safely concluded that the spin
properties of ¸ ˆ 2

5 and its electron±hole conjugate, ¸ ˆ 8
5 predicted in the theoretical

studies [16, 20, 32, 35] in low magnetic ®elds is now well established.

Electron spin transitions in quantum Hall systems 991

n =2/5 

Figure 26. Energy gap at ¸ ˆ 2
5

[99]. Each datum point corresponds to di�erent pressures
(see text).

Figure 27. Experimental results for the energy gap …Eg) as a function of the Zeeman energy
…Ez† at ¸ ˆ 2

5
[100].
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3.4. Hysteresis and spin transitions

Our predictions of the nature of spin polarizations and magnetic ®eld dependence
at ¸ ˆ 2

3 ; 3
5 and ¸ ˆ 2

5 (®gures 3, 6, 7 and 8) has received strong support from two
very interesting recent experiments at these ®lling factors [101, 102]. KronmuÈ ller et al.
[101] used high mobility and narrow quantum well (15 nm thickness and 120 nm
spacer thickness) structures and the samples were processed as Hall bars of two
di�erent widths (80 and 800 mm). For the 80 mm Hall bar at 0.4 K, a (standard) sweep
rate of 0.7 T min¡1 and a current of 100 nA did not produce any unusual behaviour
in the longitudinal resistance Rxx. In the fractional regime, the minimum of Rxx was
found to approach zero at ¸ ˆ 2

3. However, at a much slower sweep rate
(0.002 T min¡1), a large and sharp …DB º 0:2 tesla) maximum appeared very close
to ¸ ˆ 2

3 (®gure 28). Clearly, this peak stands out over all the other maxima in the
surrounding magnetic ®eld region: the peak value of Rxx exceeds those of the
surrounding values by up to a factor of three. Even when the carrier density was
varied over the range 1:2 £ 1015 to 1:4 £ 1015 m¡2 the position of the maximum
remained at ¸ ˆ 2

3
. The formation of the huge longitudinal resistance maximum

(HLRM) takes place on a very large time scale. Typically, for a 80 mm wide Hall
bar it takes 10 min for the maximum to saturate, while it takes 50 min for the 800 mm
bar. At lower temperatures, a similar maximum was also observed at ¸ ˆ 3

5

(®gure 29).
Given the signi®cant time and size dependence of the HLRM it is not surprising

that the HLRM exhibits hysteretic e�ects (®gure 30). For an up-sweep of the
magnetic ®eld, the position of the maximum is at slightly higher ®elds. On the other

T . Chakraborty992
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Figure 28. Longitudinal resistance at 0.4 K and for two di�erent electron densities. The
`slow’ sweep corresponds to 0.002 T min¡1, and the `fast’ sweep rate is 0.7 T min¡1 [101,103].
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hand, for a down sweep, the maximum is much wider and more symmetric around
¸ ˆ 2

3.
These surprising observations have been attributed to the fact that the electronic

system spontaneously separates into di�erent domains, and scattering of the charge
carriers o� the domain walls contribute to the high resistance. If the experimental

Electron spin transitions in quantum Hall systems 993

Figure 29. Longitudinal resistance at 40 mK. The dashed curve corresponds to `up-sweep’ at
0.6 T min¡1 . The dotted curve is for `down-sweep’ at 0.6 T min¡1 and the solid line is
for slow down-sweep (0.006 T min¡1) [101,103].
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Figure 30. Observed hysteresis of the HLRM at 0.4 K [103].
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situation happens to be where the ground state energies of the two di�erent spin
states are nearly degenerate (®gures 3 (b) and 7) such a domain structure is entirely
conceivable. No such competing states are predicted at ¸ ˆ 1

3 or other nearby ®lling
factors in these experiments and no maximum was observed at any other ®lling
factors. The fact that these observations were related to the spin properties was
underscored in tilted ®eld measurements where the maxima were found to disappear
completely at tilt angle of 408 (®gure 31).

Cho et al. [102] observed hysteretic behaviour at ¸ ˆ 2
5 under hydrostatic

pressure, which, as described in section 3.3, seems to be an essential ingredient for
inducing a spin transition at this ®lling factor. They observed indications of similar
hysteretic behaviour also at ¸ ˆ 4

7 and 4
9. Since hysteresis often accompanies a ®rst-

order phase transition, these authors concluded that the transition between FQHE
liquids with di�erent spin polarizations is perhaps a ®rst-order phase transition. It is
fairly obvious that the threshold magnetic ®eld (or the g factor) for a spin transition
strongly depends upon the ®lling factor. While the transitions are observed at higher
g values at ¸ ˆ 2

3
, hydrostatic pressure is essential to reduce the g factor in order to

observe the spin transition at ¸ ˆ 2
5. This is quite apparent in our theoretical results

shown in ®gures 23 and 24.
As mentioned above, the HLRM develops within a time period of the order of

minutes and hours, depending upon the width of the sample. These long times are,
however, typical for relaxation e�ects of nuclear spin systems. In order to explore the
possibility of any such connection, KronmuÈller et al. [104] performed NMR
experiments where the sample is brought to the HLRM state and then an AC
magnetic ®eld perpendicular to the static ®eld was created by application of a radio

T . Chakraborty994
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Figure 31. Longitudinal resistance for di�erent tilt angles. Results for the fast sweep are
shown as broken lines, and solid lines correspond to slow sweep. At 408, the e�ect is no

longer visible for sweep rates down to 0.002 T min¡1 [103].
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frequency (rf ). In this experiment, it was established that the resistance value of the
HLRM drops when rf frequencies correspond to splitting of nuclear spins. These
authors therefore concluded that the electron transport in the HLRM state must be
related to nuclear spin polarization which might happen when the electrons pass
between domains of unpolarized and polarized ground states.

3.5. The half-polarized states

As mentioned above, electron spin polarization at various QHE ®lling factors
can be explored experimentally by analysing the circular polarization of time-
resolved radiative recombination of two-dimensional electrons with photo-excited
holes bound to acceptors. Details on this type of experimental probe can be found
in [87, 105, 106]. From the measured luminescence spectra, information about the
magnetic ®eld dependence of the electron spin polarization at various quantum Hall
states were derived by these authors. Their typical results are shown in ®gure 32. For
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Figure 32. Electron spin polarization as a function of the external magnetic ®eld of various
®lling factors which show quantum Hall e�ects [106].
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the ®lling factors ¸ ˆ 2
3 and ¸ ˆ 2

5, the experimental results clearly indicate the
expected spin transition from an unpolarized state at low ®elds to a fully polarized
state when the magnetic ®eld is increased. Interestingly, there is also a weak structure
visible midway between the two prominent phases. This weak structure corresponds
to half the maximal spin polarization.

Observation of these half-polarized states is quite remarkable because their
presence at these two ®lling factors cannot be explained by any conventional
theoretical approaches which are currently available [107]. For higher order ®lling
factors, many more intermediate spin polarizations are also clearly visible (®gure 32).

3.6. Spin properties of a system at ¸ ˆ 1
Lately, it has been realized that the innocuous lowest odd integer ®lling factor,

which was thought to have the simplest and a rather benign state, has interesting
spin-related e�ects in the ground state as well as in the low-lying excitations. In our
discussions of the ¸ ˆ 1 state that follow, we consider the case of zero Zeeman
splitting. In the presence of interparticle interactions, which we consider to be
Coulombic, the system can in fact, lower its interaction energy by maximizing its
total spin (Hund’s rule). This is because states with maximum total spin are
symmetric under spin exchange and hence the spatial part of the wave function is
fully antisymmetric. In the lowest Landau level, the kinetic energy is a constant and
the system is fully spin polarized.

The spatial part of the wave function is a Vandermonde determinant [19]

C ²
Y

i<j

…zi ¡ zj†
Y

k

exp…¡jzk j2=4`2
0† ;

which is the Laughlin wave function for a ®lled Landau level [16]. In this case, the
total spin is S ˆ ne=2 and SzC ˆ …ne=2†C. The corresponding pair-correlation
function is [16, 10]

g… jr ¡ r
0j† ˆ 1 ¡ exp…¡jr ¡ r

0j2=2`2
0†:

The exchange energy is then calculated from

Eex ˆ
e2

°`0

p

2

1=2
¹ 64 K‰B…tesla†Š1

=2
;

where the energy is in Kelvin and we have considered the parameter values for GaAs.
This is also the energy of the lowest-lying charged excitation with a single ¯ipped
spin (in the absence of Landau level mixing) [38]. Inclusion of the contribution from
the Landau level mixing causes a rapid decrease of the spin-reversed excitation
energy, as demonstrated in the Monte Carlo results of [66] and reproduced in
®gure 33.

The above discussion for ¸ ˆ 1 cannot be extended to general ®lling factors. It
should be kept in mind that Hund’s rule, which suggests that the ground state should
have the maximum total spin quantum number consistent with the Pauli principle,
does not always apply to two-dimensional electron systems in a strong magnetic
®eld. In fact, we have already noticed that at certain ®lling factors incompressible
ground states do occur which are singlets. These states appear because of electron
correlations which dictates that staying in the lowest Landau level is less bene®cial
for the spin-unpolarized states than for the spin polarized states.

T . Chakraborty996
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The temperature dependence of the spin polarization at ¸ ˆ 1 was calculated
theoretically by the exact diagonalization method applied to ®nite-size systems in a
periodic rectangular geometry [108], as described above for the fractional ®lling
factors. The results for hSzi versus T (in units of e2=°`0 ) is shown in ®gure 34 (a) for
an eight-electron system at ¸ ˆ 1. Here the value of the magnetic ®eld is kept ®xed

Electron spin transitions in quantum Hall systems 997

Figure 33. Monte Carlo results for the energy to create a well-separated (spin reversed)
quasielectron±quasihole pair at ¸ ˆ 1 as a function of rs [66].

Figure 34. Electron spin polarization as a function of temperature for a six-electron system
at ¸ ˆ 1 for various values of the g factor, (a) without and (b) with ®nite-thickness
correction included. Experimental results of (ú ) [91] and …¯ ;°† [95,96] are also
presented here for comparison [108].
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(10 T) but we considered di�erent values of the g factor. The experimental results of
Barrett et al. [91] and the results from magnetoabsorption spectroscopy [95, 96] are
also included here for a comparison. Clearly, the observed data show a much sharper
drop with increasing temperature than our theoretical results. However, when we
include the ®nite-thickness corrections (®gure 34 (b)), agreement with the experi-
mental results improves signi®cantly. In addition to this theoretical work, there are
also calculations for the temperature dependence of the spin polarization at ¸ ˆ 1,
which involve a continuum quantum ®eld theory of a ferromagnet as a model and its
properties at ®nite temperatures [109]. The other work was based on a many-body
perturbation theory [110, 111]. The agreement between the calculated temperature
dependence of the spin polarization from these theories and the observed results are
not very satisfactory.

In a recent paper, Song et al. [112] reported NMR spectroscopy in a somewhat
similar set up as that of Barrett et al. [91] in order to explore ¸ ˆ 1 (®gure 35) and
¸ ˆ 3 (®gure 36). Interestingly, the temperature dependence of the spin polarization
at ¸ ˆ 3 revealed a di�erent behaviour as compared to that at ¸ ˆ 1. More
speci®cally, the results of Song et al. indicated that even at the lowest temperature
studied, electron spin polarization at ¸ ˆ 3 does not show any indication of
saturation and with increasing temperature it sharply drops down to zero.

Motivated by these interesting experimental results of Song et al. , Chakraborty
and PietilaÈ inen [113] studied the temperature dependence of the spin polarization at
higher Landau levels. As discussed above, in this type of work energies are evaluated
via exact diagonalization of a few electron system in a periodic rectangular geometry
[16]. Since even at the lowest experimental magnetic ®eld the Landau level separation
-h!c is still an order of magnitude greater than typical energies due to the Coulomb
interaction, electrons in the lowest Landau level can be treated as inert. In the
calculations that follow we can therefore consider the lowest Landau level to be an
uniform background causing merely a constant shift to the interaction energies. The
higher Landau levels then enter the system Hamiltonian via a modi®ed interaction
potential [114]. More speci®cally, for a ®nite number of active electrons na in a
rectangular cell (correspondingly, 2na=…¸ ¡ 2† number of inert electrons in the ®lled

T . Chakraborty998

Figure 35. Temperature dependence of the spin polarization at ¸ ˆ 1 for two di�erent
values of the ®nite-thickness parameter ­ [113]. Experimental data points are from [112].
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level) and choosing the Landau-gauge vector potential, the Hamiltonian in the
nL ˆ 0 ;1 Landau levels is (ignoring the kinetic energy and single-particle terms in the
potential energy which are constants [16]Ðsee equation (6)),

H ˆ
X

j1 ; j2 ; j3 ; j4

Anj1 ;nj2 ;nj3 ;nj4
a

y
nj1

a
y
nj2

anj3
anj4

;

Anj1 ;nj2 ;nj3 ;nj4
ˆ ¯ 0

j1‡j2 ;j3‡j4
F n… j1 ¡ j4 ; j2 ¡ j3† ;

F n… ja ; jb† ˆ
1

2ab

X

0

q

X

k1

X

k2

¯qx ;2pk1=a¯qy ;2pk2=b¯
0
jak2

£
2pe2

°q

8 ‡9…q=d† ‡3…q=d†2

8…1 ‡q=d†3

" #

£ Bn…q† exp…1
2
q2`2

0 ¡ 2pik1jb=ns† ;

Bn…q† ˆ
1 ; for nL ˆ 0;

…1 ¡ 1
2 q2`2

0†
2
; for nL ˆ 1;

8

<

:

ne ˆ

na ; for nL ˆ 0 ;

¸

¸ ¡ 2
na ; for nL ˆ 1:

8

>

<

>

:

Here, as earlier, a and b are the two sides of the rectangular cell which contains the
electrons. The Fang±Howard variational parameter d is associated with the ®nite-
thickness correction [16], ° is the background dielectric constant, and the results are

Electron spin transitions in quantum Hall systems 999

Figure 36. Temperature dependence of the spin polarization at ¸ ˆ 3 for di�erent values of
­ [113]. Experimental results are from [112].
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presented in terms of the dimensionless thickness parameter ­ ˆ …d`0†
¡1. The

Kronecker ¯ with prime means that the equation is de®ned mod ns, and the
summation over q excludes qx ˆ qy ˆ 0. As discussed in section 2.2, this numerical
method has been widely used in the quantum Hall e�ect literature [16] and is known
to be very accurate in determining the ground state and low-lying excitations in the
system.

Results for hSz…T †i=max hSz…T †i versus T for an eight-electron system in a
periodic rectangular geometry at ¸ ˆ 1 are presented in ®gure 35 where we also
present the experimental data of [112] for comparison. Here the temperature is
expressed in units of e2=°`0 and the conversion factor to Kelvin is
e2=°`0‰KŠ ˆ 51:67…B‰teslaŠ†1=2, which is appropriate for the system studied in the
experiments. In our calculations, we ®x the parameters as in the experimental
systems: the LandeÂ g factor is 0.44 and the magnetic ®eld is B ˆ 9:4 T. The curves
that are close to the experimental data (and presented here) are for ­ ˆ 2±4. As we
discussed above, at low temperatures there is a rapid drop in spin polarization and
for high temperatures spin polarizations decay as 1=T . Our results are in good
agreement with these experimental features. They were also in good qualitative
agreement with the earlier experimental results at this ®lling factor [108]. These
results are presented with the intention of comparing them with the temperature
dependence of the spin polarization at ¸ ˆ 3. The results in the latter case are shown
in ®gure 36 (again for an eight-electron system in a periodic rectangular geometry) .
In drawing this ®gure, we have taken the following facts from the experimental
results of [112] into consideration [113]:

(1) that the maximum hSzi is in fact 1/3 and not 1 as in ¸ ˆ 1,
(2) the experimental scale at ¸ ˆ 3 of [112] is the same as that at ¸ ˆ 1, and
(3) spin polarization at ¸ ˆ 3 is drawn in ®gure 36 on the same scale as for ¸ ˆ 1.

All the parameters except the magnetic ®eld are kept the same as in the case of ¸ ˆ 1.
Just as in the experimental situation, we ®x the magnetic ®eld for ¸ ˆ 3 at a much
lower magnetic ®eld of B ˆ 4:4 T. The ®lled Landau levels, however, are still found
to be inert at this low ®eld and this does not in¯uence our chosen Hamiltonian. As
seen in ®gure 35, numerical values of spin polarization are much smaller here
than those for ¸ ˆ 1. Our theoretical results for ­ ˆ 2±4 agree reasonably well with
the experimental results of [112] except in the high temperature regime where the
experimental data drop down to zero. Theoretical results, in contrast, have the usual
1=T tail. We should point out however, that owing to discreteness of the energy
spectrum for a ®nite number of electrons the terms with Sz and ¡Sz in the
polarization cancel each other at high temperatures like 1=T and we will always
end up with 1=T decay of hSz…T †i versus T [97]. Therefore, we cannot predict with
certainty how a macroscopic system would behave at high T . However, given the
¯uctuations in data points for ¸ ˆ 1 and ¸ ˆ 3 and the fact that the last few data
points for ¸ ˆ 3 are extremely small, it is not clear if one expects saturation of points
with 1=T behaviour or the spin polarization actually vanishes. Clearly, experimental
data at high temperatures do not show any sign of saturation and in order to settle
the question of the actual vanishing of hSz…T †i it would be helpful to have more data
in the high temperature regime. Saturation is also not visible in the low-temperature
region of the experimental data. In order to clarify many of these outstanding issues,
it is rather important to have more experimental studies of the temperature
dependence at this ®lling factor.

T . Chakraborty1000
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The in¯uence of higher Landau levels is found to be quite signi®cant for the
®lling factor ¸ ˆ 2

3
[113]. The results for hSz…T †i versus T at ¸ ˆ 8

3 are shown in
®gure 37, where we present results for a six-electron system and a magnetic ®eld
value of 4.4 T. In ®gure 37, we present our results for ­ ˆ 2 ;4, but the spin
polarization is rather insensitive to the ®nite-thickness correction. We also consider
two di�erent values of LandeÂ g factor: 0.44 (solid curves) and 0.05 (dashed curves).
Interestingly, the results indicate that the total spin S of the active electrons, unlike
in the lowest Landau level, is at its maximum value S ˆ na=2 even without Zeeman
coupling. Hence even an in®nitesimal Zeeman coupling will orient the spins in the
active system resulting in the polarization being 1=4. This is at odds with the
conventional composite fermion model which predicts fractions of the form 2 ‡2=m,
m odd, to be unpolarized [22]. This somewhat surprising behaviour can be thought
to be the result of more repulsive e�ective interactions forcing the electrons,
according to Hund’s rule, to occupy the maximum spin state more e�ectively as
compared with electrons on the lowest Landau level. In order to demonstrate this
behaviour we have considered the case of a very small Zeeman energy (dashed
curves), but the results still indicate full spin polarization of the active system. At this
low Zeeman energy, spin polarization drops rather rapidly from its maximum value
as the temperature is increased.

More experimental data points at ¸ ˆ 3 in the low- and high-temperature regime
would be very helpful. Experimental studies of ¸ ˆ 8

3 with NMR and optical
spectroscopy should be able to explore the spin states predicted in [113].

3.7. Spin excitations near a ®lled L andau level

It has long been known that for the odd integer QHE, the energy gaps measured
in transport experiments [115] exceed the single-particle Zeeman gaps, obtained from
bare g factors [116] by as much as a factor of 20. This result clearly indicated the
important in¯uence of the electron±electron interaction on the energy gaps. In the
following discussion of spin excitations around ¸ ˆ 1 we will try to demonstrate

Electron spin transitions in quantum Hall systems 1001

Figure 37. Temperature dependence of the spin polarization at ¸ ˆ 2
3 for ­ ˆ 2;4 and two

di�erent values of the LandeÂ g factor (g ˆ 0:44 and g ˆ 0:05). The results are almost
independent of ­ [113].
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the signi®cance of that inter-electron interaction. The simplest neutral excitations
of the fully spin-polarized ground state at ¸ ˆ 1 are those with a single reversed spin.
They carry charge §e and spin Sz ˆ 1

2 and they have the size of a magnetic length `0.
Interestingly, collective spin-wave dispersion can be calculated analytically [19, 117]

E…k† ˆ g·BB ‡
e2

°`0

p

2

1=2

‰1 ¡ exp…¡k2`2
0=4†I0…k2`2

0=4†Š ; …17†

where I0 is the modi®ed Bessel function of the ®rst kind. The neutral excitation at
k ˆ 0, i.e. the bare gap, E…0† ˆ g·BB can be measured in, e.g. electron spin
resonance experiments [116]. On the other hand, transport measurements are
sensitive to charged excitations for k ! 1,

E…k† ˆk!1
g·BB ‡

e2

°`0

p

2

1=2

; …18†

where the last term on the right-hand side corresponds to the energy required to
separate the quasi electron±hole pair [38]. This spin-wave dispersion seems to
account (with the ®nite-thickness correction included) for the many-body enhance-
ment of the spin gap at ¸ ˆ 1, which is deduced from the thermally activated
transport measurements.

It has been proposed theoretically [118, 119] that in the limit of vanishingly small
Zeeman energy, while the ground state at ¸ ˆ 1 is always ferromagnetic, the lowest
energy charged excitations are di�erent from a quasi electron±hole pair. These
quasiparticles cover an extended region and have a non-trivial spin order; these are
the so-called skyrmions. In this case, excitations still carry charge §e but at the
boundary of the system the local spin takes the value of the ground state and is
reversed at the centre of the skyrmion. Along any radius, the spin gradually twists
between these two limits. Although ¯ipping many spins in the skyrmionic picture
costs more Zeeman energy, the fact that neighbouring spins are nearly parallel saves
on exchange energy. The size of the skyrmion is determined by the competition
between the interaction energy and the Zeeman energy. The former favours a large
size in order to have uniform charge density, while the latter, with increasing ®eld
strength, tends to reduce the size.

The energy to create a skyrmion±antiskyrmion pair has been calculated by
Sondhi et al. [118]

E…g† ˆ
1

2

p

2

1=2 e2

°`0
1 ‡

3p

4

18

p… †
1=6

°a

`0
… †

1=3

gjln gj… †1=3

" #

; …19†

where a ˆ -h2=me2 is the Bohr radius. At g ˆ 0, equation (19) predicts a gap that is
half the energy to create a pair of single-particle excitations.

On the other hand, it has been noted by some authors that Landau level mixing
(LLM) has a signi®cant e�ect on the spin gap at ¸ ˆ 1. Using a variational quantum
Monte Carlo approach Kralik et al. [120, 121] calculated the in¯uence of Landau
level mixing on the single spin-¯ip gap. In their approach, LLM was incorporated by
multiplying the lowest Landau level wave function with a Jastrow factor

C ˆ ÁJÁLLL ; ÁJ ˆ
Y

i<j

exp ‰¡u… jri ¡ rjj†Š

T . Chakraborty1002
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and a parametrized function was adopted for the pseudopotential u…r†. The spin gap
was de®ned as the discontinuity in the chemical potential across the ¸ ˆ 1 state.
These authors found that the e�ect of the Jastrow factor was to decrease the spin gap
quite signi®cantly at low magnetic ®elds. For low rs{, the spin-¯ip energy with
Landau level mixing included is much lower than the k ! 1 energy of the spin wave
dispersion (equation (18)), and also much lower than the Hartree±Fock energy of a
skyrmion±antiskyrmion pair appropriate for ®nite g [119], and lower than the energy
calculated by Sondhi et al. A very signi®cant conclusion, which was derived from the
work of Kralik et al., was that energetically, single spin ¯ip excitations might be a
better candidate compared to skyrmions for lowest energy excitations at ¸ ˆ 1 under
appropriate conditions.

Experimental evidence for excitations near ¸ ˆ 1 which involve multiple spins
came from the pioneering work of Barrett et al. [91] described in section 3.1. Their
results for Knight shift Ks…¸† for B ˆ 7:05 T at T ˆ 1:55 K are shown in ®gure 38.
These results clearly do not agree with the non-interacting electron picture (solid
curve). Instead, when one moves slightly away from ¸ ˆ 1, rapid depolarization
indicates charge excitations of the ¸ ˆ 1 ground state, which have an e�ective spin of
…3:6 § 0:3†=2. Supporting evidence of such multi-spin excitations came from sub-
sequent magnetoluminescence studies [95, 96, 122] and transport measurements [123,
124].

A large reduction of the spin polarization observed near ¸ ˆ 1 should also be
expected near ¸ ˆ 3 because in this case the two lower Landau levels are fully ®lled
and would be inert as mentioned above. Theoretical works [125, 126] however
predicted that skyrmion excitations are energetically unfavourable for ¸ ˆ 3, 5 and
7, even in the limit of vanishing Zeeman energy. Cooper [127] extended these
calculations by including ®nite-thickness corrections and concluded that these
corrections should be able to make skyrmion excitations favourable for odd integer
®lling factors. In the NMR experiments of Song et al. [112] discussed above, the 71Ga
NMR results did show a signi®cant reduction of electron spin polarization when one

Electron spin transitions in quantum Hall systems 1003

Figure 38. Filling factor dependence of Ks for B ˆ 7:05 T at 1.55 K. The solid line depicts
what one expects for the non-interacting electron system and the dashed-line is for
®nite-size skyrmions [91].

{ rs is de®ned in section 2.3.1.
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moved away from ¸ ˆ 3. These results were interpreted as evidence for the existence
of skyrmion excitations near ¸ ˆ 3.

Analysis of circular polarization of time-resolved luminescence by Kukushkin
et al. [87, 88] (see section 2.7) however revealed a very di�erent picture. In these
experiments, spin excitations around ¸ ˆ 1 were investigated for very low magnetic
®elds (ratio of Zeeman to Coulomb energies were ¹0.005±0.009) . The results clearly
indicated only single spin-¯ip excitation rather than rapid depolarizations around

¸ ˆ 1. It is possible that the Landau level mixing becomes very important at these
low ®elds and single spin-¯ip excitations are energetically preferred, as suggested by
the work of Kralik et al. [120, 121].

It is well known that the measurement of heat capacity of a 2DES can provide
important information about the Landau quantized density of states and the
quantum Hall e�ects. The heat capacity results (®gure 39) on a multiple-quantum-
well sample in the quantum Hall regime exhibit several unusual features [128, 129].
At high temperatures …’ 70 mK) the measured data are consistent with the
calculated Schottky nuclear heat capacity of Ga and As atoms in the quantum wells
(QWs) [128]. At lower temperatures, however, C exceeds the calculated value by a
factor of up to ¹10 at T c. It should be noted that the peak value of the heat capacity
appears consistent with the Schottky nuclear heat capacity of the heterostructure if
the nuclei of the barrier atoms are also included (dotted line). This suggests that the
peak might arise from the contribution of nuclear spins of the barrier nuclei.

The NMR experiments in [93] indicated that nuclear spin di�usion from the
quantum wells into the barrier is very weak, except when optical pumping broadens
the Knight shift peak which then overlaps with the NMR peak of the barrier. This
type of spectral overlap can allow spin di�usion which is driven by the nuclear
magnetic dipole coupling. Enhancement of spin di�usion across the QW±barrier

T . Chakraborty1004

Figure 39. Measured heat capacity C versus temperature at B ˆ 8:5 T and ³ ˆ 308

…¸ ˆ 0:77). The solid line is the calculated Schottky nuclear heat capacity of the GaAs
100 QWs and the dotted line corresponds to that for a 100-period GaAs
heterostructure. Measured ¸ dependence of T c at ³ ˆ 308 is shown as an inset
[128,129].
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interface near T c could therefore originate from a broadening of the Knight shift
peak in the QWs as discussed above. In a liquid skryme phase, motional averaging of
the 2DES spin polarization would produce a single Knight shift [91]. In the case
when the skrymions are in a lattice state there is no motional averaging and
depending upon the local spin polarization of the 2DES, one can have both positive
and negative Knight shifts. As the experimental results indicate that above and
below the peak in C versus T the spin di�usion across the QW±barrier interface is
very weak, there is no overlap of the Knight shift peak and the NMR peak of the
barrier in both the liquid and solid skryme phase. It has been speculated [130] that
the peak is associated with the liquid±solid phase transition of the skyrmion system.

Melinte et al. [131] reported recent results on low-temperature heat capacity
measurements on a GaAs±AlGaAs multiple quantum-well heterostructure with
Zeeman energy tuned by tilting the sample in the magnetic ®eld. They noticed that
the nuclear contribution to heat capcaity decreases in the range 0:037 µ ~g 9 0:043,
where ~g ˆ jg¤j·BB=…e2=°`0†, and suppressed for ~g 0 0:04. This observation was
interpreted as evidence for a transition from skyrmions to single spin-¯ip excitations
at ~gc º 0:04. This critical ~g is somewhat smaller than the theoretical estimates [127].

Finally, Dolgopolov et al. [132] reported a direct measurement of the spin gap via
magnetocapacitance techniques. The gap was derived from the gate voltage
dependence of the electron density in the two-dimensional electron gas of the
sample. In the magnetic ®eld range 5 µ B µ 15 T, the spin gap displayed a linear
dependence on the magnetic ®eld, just like in activation energy measurements, and
corresponds to an enhanced LandeÂ factor g º 5:2. Neither the skyrmion model, nor
the model of the exchange-enhanced g factor can explain the observed results. To
sum up this section: it is fair to conclude that despite a profusion of experimental and
theoretical activities, mystery of the spin gap at ¸ ˆ 1 still remains largely
unresolved.

3.8. Spin transitions in a ¸ ˆ 2 bilayer QH system

Inelastic light scattering by a 2DEG is capable of probing excitations in the
system over a wide range of wave vectors [133]. It can measure the spin-density and
charge-density collective modes, as well as single-particle excitations. It has long
been known [134] that in a double-layer QHE system, interlayer electron correlations
are responsible for interesting physical e�ects such as the appearence of new
incompressible states. Experimentally it is now possible to create structures where
the two electron layers are separated by a distance which is comparable to intralayer
electron separation [34, 135]. Amazingly, in these experiments the individual layers
can be controlled independently. In a double-layer system, interlayer spin-dependent
correlations can be comparable to intralayer correlations (even in the case of weak
interlayer tunnelling) . When each layer has one spin-split Landau level occupied
(¸ ˆ 2), resonant inelastic light scattering studies [136] indicated that the spin density
excitations soften to as low as one-tenth of the zero-magnetic ®eld results. The
extremely low energy was, in fact, close to the Zeeman energy, calculated with
g ˆ ¡0:4. The collapse of the spin-density mode with ¯Sz ˆ 0 to an energy close to
the Zeeman splitting has been attributed to instabilities associated with the
emergence of ¯Sz ˆ 1 spin-¯ip excitations.

Sawada et al. performed transport measurements on a bilayer QH system [137].
They measured the width of the Hall plateau and activation energy at ¸ ˆ 2

3, 1 and 2
by changing the total electron density and the density ratio in the two quantum wells.

Electron spin transitions in quantum Hall systems 1005
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The experimental conditions were such that both the Zeeman energy and the
tunnelling energy were much smaller than the Coulomb energy. The ¸ ˆ 2

3 state
was found to be a compound state ¸ ˆ 1

3 ‡ 1
3 which was stabilized entirely by the

interlayer Coulomb interaction. Interestingly, the ¸ ˆ 2 quantum Hall state under-
goes a phase transition from a compound state ¸ ˆ 1 ‡1 (spin polarized) to a spin
unpolarized state, as the interlayer Coulomb interaction was increased over the
intralayer interaction by decreasing the total density. The ¸ ˆ 1 QH state was, as
expected [134, 135], stabilized entirely by the interlayer Coulomb interaction.

3.9. Spin e�ects in a narrow QH channel

Theoretical studies of a system of electrons interacting via the long-range
Coulomb potential in a narrow channel and in the quantum Hall regime have
uncovered a lot of interesting physics [138,139]. These studies indicated that as the
interaction strength was increased, abrupt jumps occurred in the expectation values
of translationally invariant states. The width of the charge±density pro®le also
displayed similar abrupt changes [138]. The phase diagram of stable 1D-FQHE
states were calculated and interestingly, the lowest half-®lled Landau level appeared
as a stable incompressible state under certain conditions. Experimental observation
of a signature of the FQHE in a narrow channel was, in fact, reported a few years
before [140].

Recent theoretical work on the QHE in a narrow channel [138, 139] revealed that
the temperature dependence of the electron spin polarization for a narrow quantum
Hall system shows behaviour analogous to that of a two-dimensional system at
major ®lling factors. At the lowest half-®lled quantum Hall state for which no two-
dimensional analogue exists, we ®nd a stable spin partially-polarized system [138].

In our model for the QHE in a narrow channel, we consider a ®nite number of
spin polarized electrons interacting via the long-range Coulomb potential [138] and
con®ned by a potential which is parabolic [141] in one direction and ¯at in the other.
A strong magnetic ®eld is applied perpendicular to the xy plane. The electrons are
con®ned in a cell of length a in the x direction and the width of the cell depends on
the strength of the con®ning potential …1

2 m¤!2
0y2† relative to the strength of the

interactions and also on the length of the cell. We impose a periodicity condition in
the x direction. For example, we use antiperiodic boundary conditions for 4ne

electrons so that the non-interacting ground states have zero total momentum [138].
Electrons are assumed to occupy only the lowest Landau level owing to the

strong magnetic ®eld. The e�ective magnetic length in the problem is
¶ ˆ -h=m ¤O… †1=2, where m¤ is the electron e�ective mass, O ˆ …!2

0 ‡!2
c†

1=2 and
!c ˆ eB=m¤ is the cyclotron frequency. The single-electron wave functions are plane
waves in the x direction and oscillator wave functions in the y direction centred at
y0 ˆ 2p¶2m=…a‰1 ‡…!0=!c†

2Š1
=2†. Here m is the momentum quantum number. The

corresponding energies, excluding the constant Landau level energy, are:
E ˆ …2p†2…¶=a†2

m in units of E0 ˆ … -h2=2m¤¶2†…!2
0=O2†. The Hamiltonian in the

lowest Landau level, which includes contributions from the electron±electron inter-
actions and the neutralizing background, is numerically diagonalized for a few-
electron system with the spin degree of freedom properly included. A phase diagram
is then obtained by plotting the energy gap (energy separation between the
translationally invariant ground state and the lowest excited state) [138] for various
values of a and the increasing strength of the interaction Ec ˆ e2=°¶ with respect to
the energy unit E0. We should point out that the evaluation of ®lling factors in a 1D

T . Chakraborty1006
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system is somewhat tricky. Here the single-particle states corresponding to a
particular Landau `level’ are not degenerate. One way is to calculate the areal
electron density and number of ¯uxes through a unit area and determine ¸ as the
ratio of these two quantities. Alternatively, we count the number of occupied states
and divide the number of electrons by that. Both methods are somewhat arbitrary:
one has to choose properly either the width of the density pro®le in the ®rst case (we
have used full width at half maximum) or, in the second approach, which state
should be considered as occupied. We have checked that both methods agree
reasonably well. The 1

3 FQH state in the present system is also identi®ed from the
momentum distribution function hn…k†i ˆ h0jay

kak j0i by comparing it with that for a
Laughlin-like wave function.

In ®gure 40, we present the results for the phase diagram, calculated for (a) a
system of four electrons with Sz ˆ 0 (Zeeman energy not included) and (b) a system
of six spinless electrons, for ¬ ˆ !0=!c ˆ 0:23 which is appropriate for B ˆ 10 T and
-h!0 ˆ 4 meV. The area of a ®lled dot is directly proportional to the energy gap. As is
evident in the ®gure, several quantum Hall states are stable with large energy gaps in
the parameter range considered in this work. For the N ˆ 4 system the ¸ ˆ 1

2 state,
which exists for the spinless system, cannot be resolved in this phase diagram. In
®gure 40 (a), the ¸ ˆ 1

2 states are expected to lie between ¸ ˆ 2
3 and ¸ ˆ 2

5. In general,

Electron spin transitions in quantum Hall systems 1007

Figure 40. Phase diagram for electrons in an impurity-free narrow channel quantum Hall
system (a) with and (b) without spin degree of freedom included.
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the energy gaps are larger for spinless electrons (®gure 40 (b)) because in the other
case there are low-lying spin excitations available.

Results for hSz…T †i versus T at ¸ ˆ 1, 2, 2
3, 2

5, 1
3 and 1

2 are shown in ®gure 41. In
these calculations the magnetic ®eld was kept ®xed at 10 T and the g factor was
varied …0:02 ¡ 0:52†. At ¸ ˆ 1, we ®nd the results to be similar to those for the two-
dimensional systems [108] and the system is fully spin polarized even for very low
values of the Zeeman energy. Qualitatively similar behaviour is also seen at ¸ ˆ 1

3. In
the same way, ¸ ˆ 2 is a spin-unpolarized state even at the highest value of the
Zeeman energy considered and ¸ ˆ 2

3 and ¸ ˆ 2
5 are spin-unpolarized states at low

Zeeman energies with a non-monotonic temperature dependence as predicted for a
2DES [97] (see section 3.2). As discussed above, such a non-monotonical behaviour
has been observed in experiments on a 2DES [87]. The clear correspondence with the
spin polarization in a two-dimensional system gives us con®dence that our
classi®cation of the QH states in a narrow channel system is essentially correct. At
¸ ˆ 1

2 we ®nd a spin partially-polarized state. An experimental probe of the narrow
channel QHE states would be very useful for understanding the physics of half-®lled
states [139], as predicted theoretically.

3.10. Spin e�ects near a compressible state

In recent years, a modi®ed Fermi liquid theory of Chern±Simons fermions, put
forward by Halperin et al. [28, 142], has proven to be a useful formalism in
understanding the nature of even-denominator ®lling factors such as ¸ ˆ 1

2 ;3
2, etc.

A detailed account of this theory is available in several excellent articles [28,
142,143]. We present below only the essential elements of this work. The approach
is essentially a transformation where each electron is converted to a fermion attached

T . Chakraborty1008

Figure 41. Spin polarization hSzi versus T for ¸ ˆ 1, 2, 2
3,

2
3,

1
2,

1
3 and 2

5 for a narrow channel
QHE system at various values of the g factor.
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to a ¯-function ¯ux of size 2mF0, where m is an integer and F0 is the ¯ux quantum.
The transformation (sometimes described as a singular gauge transformation)
corresponds to a change in phase of the many-electron wave function. As a result,
only the kinetic energy term [31] of the electron Hamiltonian is modi®ed. This term
includes, in addition to the electromagnetic vector potential resulting from the
externally applied magnetic ®eld, an additional vector potential which depends on
the position of the particles.

A simple way to deal with the transformed fermion system is to make a mean-

®eld approximation where the inter-particle interaction is turned o�, the density of
the transformed particles is assumed to be uniform and the ®ctitious ¯ux quanta
attached to the fermions are smeared out into an uniform ®eld. Then when the
electron ®lling factor is ¸ ˆ 1=2m and the sign of the attached ¯ux is chosen
appropriately, the externally applied magnetic ®eld is cancelled, on average, by the
®ctitious ®eld. The non-interacting fermions may then form a ®lled Fermi seaÐa
compressible state. When the electron ®lling factor di�ers from ¸ ˆ 1=2m, the
fermions see a net ®eld and since we are dealing with a system of non-interacting
fermions in a uniform ®eld, at ¸ ˆ p=…2mp ‡ 1†, p being an integer, the transformed
fermions will ®ll jpj Landau levels (corresponding to the residual magnetic ®eld), in
agreement with the composite fermion picture of Jain [21].

The mean-®eld approximation described above is rather crude and can only be
justi®ed as an initial step toward a complete theory for the interacting system of
fermions. In particular, contributions from the terms which are neglected in the
many-particle Hamiltonian, namely, the interparticle interaction and the correct
¯ux-®eld vector potential which depends on the positions of all the particles, need to
be estimated. Interestingly, as explained below, the spin-related e�ects observed in
recent experiments have put the mean-®eld approximation to a severe test.

Du et al. [144] and StoÈrmer and Tsui [145] have recently performed the angular-
dependent transport measurements of various fractional quantum Hall states. The
re-entrant behaviour observed at various fractions around ¸ ˆ 3

2 was interpreted via
a simple picture of composite fermions (CF) with a spin. Using the mean-®eld
picture of CFs described above, these authors described spin polarization of the CF
system at any FQHE state and Zeeman energy in terms of the crossings of spin-split
Landau levels from di�erent CF Landau levels. A problem remains, however, with
the spin polarization at ¸ ˆ 3

2. Analysis by these authors indicates a partially
polarized state. Experimental results [146] have, however, long asserted that the
system is fully spin polarized. In fact, in the electron system ¸ ˆ 3

2 is particle±hole
symmetric to ¸ ˆ 1

2, itself a spin polarized system. In the CF picture, ¸ ˆ 3
2 is a ®lled

Fermi sea and the particle±hole symmetry is not applicable. It is to be emphasized
that the interparticle interaction is ignored in this scheme. Instead, some suitable
e�ective parameters, such as g¤ or m¤ are introduced to determine the spin
polarization. The discrepancy between the CF prediction and experiments at ¸ ˆ 3

2

is most likely the result of an unknown behaviour of these parameters. On the other
hand, the discrepancy might also indicate that the simple-minded CF picture needs
to be generalized by including the mutual interaction between the composite
fermions. However, the nature of this interaction is not known. We wish to point
out that a similar situation exists at the half-polarized state described in section 3.5,
where the non-interacting CF system fails to explain the experimental results [107,
147, 148].

Electron spin transitions in quantum Hall systems 1009
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4. Summary and open questions

Fractional QHE has come a long way since the original discovery in 1982.
Although the Nobel prize to Laughlin was a recognition of his monumental
contribution in providing a theoretical explanation of the primary 1

3 state and
introduction of fractionally-charged quasiparticles in the system, a satisfactory
theoretical understanding of the e�ect in its present state, which has grown
signi®cantly into a vast ®eld, is still a long way o�. However, as we have tried to
demonstrate in this review, one aspect of this e�ect, namely, the importance of the
spin degree of freedom (and its various implications) is quite well established and is
an important consequence of the e�ect. New and ingenious experiments, which are
regularly reported in the literature, have provided a clear picture of this aspect of the
FQHE. It is now ®rmly established from all these experiments that for ®lling factors
¸ ˆ 2

3, 2
5,

3
5, etc., the ground state and low-lying excitations involve spin reversal, as

predicted theoretically. Similarly, the ground states of ¸ ˆ 1, 1
3, etc., are fully spin

polarized, but low-energy excitations are spin-reversed quasiparticles in the limit of
vanishing Zeeman energy. The temperature dependence of these spin-reversed
excitations are also well understood. There are still, however, a lot of problems that
need attention.

One important problem is to have a better understanding of the true nature of
spin excitations near ¸ ˆ 1. The role of skyrmionic excitations vis-aÁ-vis the e�ect of
Landau level mixing need to be clari®ed. Similarly, a sound theoretical foundation
for the hysteretic behaviour observed at ¸ ˆ 2

3 and ¸ ˆ 3
5 is still lacking. Spontaneous

separation of a 2DEG at ¸ ˆ 2
3 into spin domains, which is perhaps re¯ected in the

recent experiments discussed above, is a very intriguing possibility that requires a
suitable theoretical understanding.

Observation of the QHE at ¸ ˆ 5
2

and its absence at ¸ ˆ 1
2

is another puzzle which
remains to be resolved [14, 34]. Tilted-®eld experiments by Eisenstein et al. [149]

revealed a linearly decreasing activation gap with a g factor, derived from the slope,
of jgj º 0:56. This would clearly be an indication that unpolarized (or partially
polarized) spin states are involved. However, a re-entrant tilted-®eld behaviour,
which is associated with the partially spin polarized odd-denominato r states, is
absent for ¸ ˆ 5

2. Theoretical works on this ®lling factor are also inconclusive about
the spin state of this ®lling factor [114, 150, 151]. A detailed account of the ¸ ˆ 5

2
®lling factor can be found in [34]. Spin polarizations of the ¸ ˆ 3

2 state needs a better
explanation. Similarly, the recently observed half-polarized states require a clear
theoretical understanding. We also expect many more surprises from various ®lled
Landau levels and perhaps, even spin transitions at a half-®lled Landau level in a
narrow channel. It is indeed interesting to note that what started as a mere
consequence of a small g factor has now matured into a state of rich physics where
intricate roles are played by Zeeman energy, electron correlations, NMR, hydro-
static pressure, and many other factors. The chapter on spin e�ects in a QH system is
far from being closed.
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